• español
    • English
    • français
    • português (Brasil)
  • français 
    • español
    • English
    • français
    • português (Brasil)
  • Ouvrir une session
Universidad de Los Andes

  • Accueil
  • Collèges et écoles
  • Unités de Recherche
  • Chercheurs
  • Revues Électroniques
  • Les Études Supérieures
  • Événements
Voir le document 
  •   SaberULA Institutional Repository l'Universidad de Los Andes, Mérida - Venezuela: Accueil
  • Facultades
  • Facultad de Ingeniería
  • Artículos, Pre-prints (Facultad de Ingeniería)
  • Voir le document
  •   SaberULA Institutional Repository l'Universidad de Los Andes, Mérida - Venezuela: Accueil
  • Facultades
  • Facultad de Ingeniería
  • Artículos, Pre-prints (Facultad de Ingeniería)
  • Voir le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

Increasing the working calibration range by means of artificial neural networks for the determination of cadmium by graphite furnace atomic absorption spectrometry

Thumbnail
Voir/Ouvrir
increasing-working.pdf (112.1Ko)
resumen.htm (2.384Ko)
Date
2006-01-31
Auteur
Hernández C., Edwin A.
Pascu de Burguera, Marcela
Burguera, José Luis
Ávila G., Rita M.
Rivas E., Francklin I.
Metadatos
Afficher la notice complète
Compartir por...
| | |
Résumé
Increasing the working calibration range by means of artificial neural networks for the determination of cadmium by graphite furnace atomic absorption spectrometry (Hernández C., Edwin A.; Ávila G., Rita M.; Rivas E., Francklin I.; Burguera, Marcela y Burguera, José Luis) Abstract Feed-forward artificial neural networks (ANNs), trained with the generalized delta rule, were evaluated for modeling the non-linear behavior of calibration curves and increasing the working range for the determination of cadmium by graphite furnace atomic absorption spectrometry (GFAAS). Selection of this analyte was made on the basis of its short linear range (up to 4.0 µg l-1). Two-layer neural networks, comprising one node in the input layer (linear transfer function); a variable number of neurons in the hidden layer (sigmoid transfer functions), and a single neuron (linear transfer function) in the output layer were assessed for such a purpose. The (1:2:1) neural network was selected on the basis of its capacity to adequately model the working calibration curve in the range of study (0-22.0 µg l-1 Cd). The latter resulted in a nearly six fold increase in the working range. Cadmium was determined in the certified reference material "Trace Elements in DrinkingWater" (High Purity Standards, Lot No. 490915) at four concentration levels (2.0, 4.0, 8.0 and 12.0 µg l-1 Cd), which were experimentally within and above the linear dynamic range (LDR). No significant differences (P < 0.05) were found between the expected concentrations and the results obtained by means of the neural network. The proposed method was compared with the conventional "dilution" approach, and with fitting the working calibration curve by means of a second-order polynomial. Modeling by means of an ANN represents an alternative calibration technique, for its use helps in reducing sample manipulation (due to the extension of the working calibration range), and may provide higher accuracy of the determinations in the non-linear portion of the curve (as a result of the better fitness of the model). Artículo publicado en: Talanta 63 (2004) 425-431
URI
http://www.saber.ula.ve/handle/123456789/16007
Colecciones
  • Articulos, Pre-prints (Facultad de Ciencias)
  • Artículos, Pre-prints (Facultad de Ingeniería)
Información Adicional
Correo Electrónicoehernandez@ucla.edu.ve
pascu@ula.ve
burguera@ula.ve
ritaavila@ucla.edu.ve
rivas@ula.ve
EditorSABER ULA

Univesidad de Los Andes

  • Rectorado
  • Vicerectorado Académico
  • Vicerectorado Administrativo
  • Secretaría

Navigation dans le document

  • Por Fecha de Publicación
  • Por Autores
  • Por Títulos
  • Por Palabras Clave

Questions fréquentes

  • ¿Cómo publicar?
  • ¿Cómo enviar o actualizar información?
  • ¿Cuál es la Licencia de Depósito de documentos en SaberULA?
  • ¿Qué es un Repositorio Institucional (RI)?
  • ¿Cómo obtengo RSS por tipo de documentos?

Localisez nous

  • emailsaber@ula.ve
  • +58-0274-240.23.43
  • Mérida - Venezuela

Suivez nous

facebook  twitter   

Contactez-nous | Faire parvenir un commentaire

Licencia Creative Commons Todos los documentos publicados en este repositorio se distribuyen bajo una
Licencia Creative Commons Atribución-NoComercial-CompartirIgual 3.0 Venezuela .

SaberULA Repositorio Institucional de la Universidad de Los Andes, Mérida, Venezuela 2018.

DSpaceDSpace software copyright © 2002-2016  DuraSpace.
Theme by  Atmire NV

 

 

Parcourir

Tout Saber-ULACommunautés & CollectionsPar date de publicationAuteursTitresSujetsCette collectionPar date de publicationAuteursTitresSujets

Mon compte

Ouvrir une session

Statistiques

Statistiques d'usage de visualisation

Univesidad de Los Andes

  • Rectorado
  • Vicerectorado Académico
  • Vicerectorado Administrativo
  • Secretaría

Navigation dans le document

  • Por Fecha de Publicación
  • Por Autores
  • Por Títulos
  • Por Palabras Clave

Questions fréquentes

  • ¿Cómo publicar?
  • ¿Cómo enviar o actualizar información?
  • ¿Cuál es la Licencia de Depósito de documentos en SaberULA?
  • ¿Qué es un Repositorio Institucional (RI)?
  • ¿Cómo obtengo RSS por tipo de documentos?

Localisez nous

  • emailsaber@ula.ve
  • +58-0274-240.23.43
  • Mérida - Venezuela

Suivez nous

facebook  twitter   

Contactez-nous | Faire parvenir un commentaire

Licencia Creative Commons Todos los documentos publicados en este repositorio se distribuyen bajo una
Licencia Creative Commons Atribución-NoComercial-CompartirIgual 3.0 Venezuela .

SaberULA Repositorio Institucional de la Universidad de Los Andes, Mérida, Venezuela 2018.

DSpaceDSpace software copyright © 2002-2016  DuraSpace.
Theme by  Atmire NV