| dc.rights.license | http://creativecommons.org/licenses/by-nc-sa/3.0/ve/ | |
| dc.contributor.author | Quintero M., Maria Alejandra | |
| dc.contributor.author | Ablan Bortone, Magdiel | |
| dc.contributor.author | Jeréz R., Mauricio | |
| dc.date.accessioned | 2011-07-12T21:47:39Z | |
| dc.date.available | 2011-07-12T21:47:39Z | |
| dc.date.issued | 2011-07-12T21:47:39Z | |
| dc.identifier.issn | 0556-6606 | es_VE |
| dc.identifier.uri | http://www.saber.ula.ve/handle/123456789/33485 | |
| dc.description.abstract | En este artículo se presenta una introducción a los algoritmos
genéticos, técnica heurística que puede ser utilizada para resolver
diversos problemas de planificación forestal. Al igual que otras
heurísticas los algoritmos genéticos pueden encontrar, en un tiempo
de computación aceptable, una buena solución a problemas de
optimización que en muchos casos no pueden resolverse con técnicas
clásicas de programación matemática, tales como la programación
lineal y sus extensiones. Para ilustrar el potencial que tienen los
algoritmos genéticos en el campo de la planificación forestal, se
utiliza un ejemplo de planificación del aprovechamiento en una
plantación, en el que se desea obtener una secuencia de cortas que
minimice los costos y satisfaga los requerimientos de madera de
una planta de producción de pulpa. Primero, el problema se resolvió
utilizando una técnica de programación matemática (programación
entera binaria), mediante la cual se obtuvo la solución óptima. Luego,
se diseñó un algoritmo genético y se evaluó su eficiencia en términos
del valor objetivo (costo total de aprovechamiento), error relativo
con respecto a la solución óptima, eficacia y tiempo de ejecución. El
algoritmo genético tuvo un excelente desempeño, presentó un error
relativo promedio de 0,24%, una eficacia del 99,76% y un tiempo
de ejecución 58,8% menor que el tiempo requerido para resolver el
modelo mediante programación entera binaria. | es_VE |
| dc.language.iso | es | es_VE |
| dc.rights | info:eu-repo/semantics/openAccess | |
| dc.subject | Heurísticas | es_VE |
| dc.subject | Programación matemática | es_VE |
| dc.subject | Programación entera binaria | es_VE |
| dc.subject | Algoritmos evolutivos | es_VE |
| dc.subject | Planificación forestal | es_VE |
| dc.title | Planificación del aprovechamiento forestal utilizando algoritmos genéticos | es_VE |
| dc.title.alternative | Forest harvest planning using genetic algorithms | es_VE |
| dc.type | info:eu-repo/semantics/article | |
| dc.description.abstract1 | In this paper, an introduction to genetic algorithms is presented.
This is an heuristic technique that can be suited for solving several
problems in forest planning. As other heuristics, the genetic
algorithms can find, in an acceptable computing time, a good
solution to optimization problems that, in many cases, can not be
solved with classic techniques of mathematical programming, such
as lineal programming and its variants. For illustrating the potential of
the Genetic Algorithm (GA) in the field of Forest Planning, an example
of harvest planning for a plantation is shown in which the goal is to
obtain the harvest sequence that minimize the operation costs and
satisfy the wood requirements of a pulp mill. First, the problem was
solved by using a mathematical programming technique (binary
integer programming), in order to obtain the optimal solution.
Thereafter, a GA was designed and its efficiency was assessed in terms
of the objective value (total harvest cost), relative error in relation to
the optimal solution, efficiency, and execution time. The GA had an
excellent performance, showing a relative error of 0,24%, an efficiency
of 99,76%, and an execution time 58,8 % lower than that needed for
solving the model with integer binary programming. | es_VE |
| dc.description.colacion | 29-39 | es_VE |
| dc.description.email | mariaq@ula.ve | es_VE |
| dc.description.email | mablan@ula.ve | es_VE |
| dc.description.email | mjerez@ula.ve | es_VE |
| dc.description.frecuencia | semestral | es_VE |
| dc.subject.facultad | Facultad de Ciencias Forestales y Ambientales | es_VE |
| dc.subject.keywords | Heuristics | es_VE |
| dc.subject.keywords | Mathematical programming | es_VE |
| dc.subject.keywords | Binary integer programming | es_VE |
| dc.subject.keywords | Evolutionary algorithms | es_VE |
| dc.subject.keywords | Forest planning | es_VE |
| dc.subject.publicacionelectronica | Revista Forestal Venezolana | es_VE |
| dc.subject.seccion | Revista Forestal Venezolana: Artículos | es_VE |
| dc.subject.thematiccategory | Geografía | es_VE |
| dc.subject.thematiccategory | Medio Ambiente | es_VE |
| dc.subject.tipo | Revistas | es_VE |
| dc.type.media | Texto | es_VE |