VEREDICTO

Quienes suscriben, integrantes del Jurado designado por el Consejo de Estudios de Postgrado de la Universidad de Los Andes para conocer y emitir veredicto sobre la Tesis presentada por MOYEJA SANTANA JUAN DE JESUS, para optar al título de Doctor en Ecología Tropical y que se titula:

"RESISTENCIA A LA SEQUÍA EN Phaseolus vulgaris L: UN ENFOQUE AGROECOFISIOLOGICO"

hacen constar lo siguiente:

PRIMERO: Que hoy 02-05-97, a las 3:30 p.m., nos constituimos como Jurado en Salón de Reuniones del Postgrado en Ecología Tropical, siendo Presidente del Jurado la Dra. Aura Azócar I. SEGUNDO: A continuación se discutió si se procedía a su defensa pública. Luego de considerar las observaciones y críticas de cada miembro del jurado acordamos por unanimidad autorizar su presentación. TERCERO: A las 4:00 p.m. de este mismo día, el Jurado se reunió en el Salón de Postgrado en Ecología Tropical y se procedió al acto público de sustentación de la Tesis presentada a requerimiento del Jurado. CUARTO: Una vez concluida la sustentación correspondiente, el Jurado interrogó al aspirante sobre los diversos aspectos a que el trabajo se refiere. QUINTO: Seguidamente, la Presidenta del Jurado invitó al público asistente a formular preguntas y observaciones sobre el trabajo presentado. SEXTO: Una vez concluido el acto de presentación, el Jurado procedió a su deliberación final y concluyó que: SE APRUEBA LA TESIS DE DOCTORADO PRESENTADA A NUESTRA CONSIDERACION.

EL JURADO:

[Signatures]

Dr. Swar Rejas

Dra. Joellyne Ascencio

[Signature]
UNIVERSIDAD DE LOS ANDES
FACULTAD DE CIENCIAS
POSTGRADO DE ECOLOGÍA TROPICAL

RESISTENCIA A LA SEQUÍA EN
Phaseolus vulgaris L: UN ENFOQUE
AGROECOFISIOLÓGICO

Trabajo presentado ante la Universidad de Los Andes como requisito parcial para optar al grado de Doctor en Ecología Tropical

Juan de Jesús Moyeja Santana

Mérida - Venezuela
1997
El presente trabajo “Resistencia a la Sequía en *Phaseolus vulgaris* L: Un Enfoque Agroecofisiológico” ha sido realizado en el Centro de Investigaciones Ecológicas de Los Andes Tropicales (CIELAT) bajo la dirección de la Dra. Aura Azocar. Fue financiado por el proyecto C-592-93-C del CDCHT de la Universidad de Los Andes.
A mi esposa Evangelina y a mis hijos Juan de Jesús y Carmen Cecilia, quienes a través de su constante apoyo, dedicación y gran comprensión, permitieron que este trabajo se realizara. A ellos se los dedico con todo mi corazón.
AGRADECIMIENTOS

- A la Dra. Aura Azocar, por su asesoramiento y apoyo brindado en la realización de este trabajo.

- Al Ing. Bruno Añez, Director del “Instituto de Investigaciones Agropecuarias” de la Facultad de Ciencias Forestales, por su constante asesoramiento y el apoyo brindado en la realización de este trabajo.

- Al Dr. Jeffrey W. White, Director del Programa de Fisiología de Frijol en el “Centro Internacional de Agricultura Tropical”, en Cali-Colombia, por su asesoría en el trabajo experimental del CIAT en Cali en 1994.

- Al Técnico Agropecuario Cesar Figueredo y a todo el personal de la Estación Experimental del IIAP en San Juan de Lagunillas, Mérida, Venezuela.

- A los Técnicos Superiores Universitarios, Ana Rosa Sosa y Kleira Josefina Quintero y al Licenciado Clara Elena Méndez, por su valioso trabajo técnico experimental en el desarrollo del trabajo.

- Al Ing. Jhonny Camargo, por el tipeado del presente trabajo.
RESUMEN

De las leguminosas de grano, *Phaseolus vulgaris* L. es la que más se usa para consumo humano. Aunque se ha determinado que es una especie mas bien sensible a la sequía, en zonas tropicales y subtropicales su cultivo se realiza, en casi un 60%, en condiciones de secano, lo cual probablemente afecta negativamente el rendimiento en grano. El objetivo de este trabajo fue analizar los mecanismos de resistencia a la sequía y su efecto sobre el rendimiento en grano de distintos cultivares de esta leguminosa sometidos a diferentes niveles de déficit hídrico, para lo cual utilizamos dos tipos de enfoques complementarios: el ecofisiológico (análisis de mecanismos de adaptación a la sequía) y el agronómico (producción de materia seca, componentes del rendimiento y análisis del rendimiento en grano). El trabajo se realizó en condiciones de invernadero (Estación Santa Rosa, IIAP, ULA) y de campo (Estación Lagunillas, IIAP, ULA), en el Estado Mérida, Venezuela y en el CIAT, Cali, Colombia.

En condiciones de déficit hídrico, en ensayos realizados tanto en campo como invernadero, en Venezuela, los germoplasmas analizados mostraron los siguientes mecanismos: 1) escape a la sequía mediante i) adelantos en la iniciación floral, fructificación y madurez fisiológica: DOR-227, EXP-145 y Criolla San Juan. De los germoplasmas analizados en el CIAT, BAT-477 y San Cristóbal-83 mostraron características de alta resistencia a la sequía; y ii) crecimiento diferencial en altura y/o aumento de biomasa seca de la raíz, hoja y tallo: EXP-145, EMP-192 y DOR-227. 2) tolerancia a la sequía a altos potenciales hídricos a través de i) incremento de la densidad y profundidad radicular: DOR-227, EXP-145, EMP-192 e ICA-PIJAO; ii) incremento de la conductividad en fase líquida: Criolla San Juan, DOR-227 y EXP-145; iii) reducción del área foliar presente en todos los germoplasmas analizados en Venezuela y en BAT-477 y San Cristóbal del CIAT.

El déficit hídrico afectó en mayor grado la fotosíntesis neta de los germoplasmas A-70 y BAT-1224, mientras que en BAT-477 y San Cristóbal-83 el efecto fue menor. De las tres etapas fenológicas analizadas, en relación al parámetro del intercambio de gases, es en la floración donde se visualizaron mejor la relación entre fotosíntesis neta y conductancia estomática, resultando el germoplasma San Cristóbal-83, el mejor adaptado a la sequía debido a su capacidad de respuesta al déficit hídrico, mediante sus bajos potenciales hídricos y mayor eficiencia intrínseca en el uso del agua. Por otra parte la relación entre fotosíntesis neta y rendimiento en grano mostraron que bajo déficit hídrico todos los germoplasmas analizados disminuyeron PN y rendimiento, aunque San Cristóbal-83 mantuvo valores similares a los obtenidos bajo riego, lo cual sugiere un alto rendimiento bajo sequía.
El mayor número de mecanismos de resistencia a la sequía encontrados en DOR-227 y EXP-145 se correspondieron con su menor susceptibilidad a la sequía y por lo tanto su mayor rendimiento en grano. El bajo número de mecanismos encontrados en EMP-192 e ICA-PIJAO sería el responsable de la alta reducción, bajo déficit hídrico, de los componentes del rendimiento y por ende del rendimiento en grano presentado por estos germoplasmas.

El menor rendimiento en grano se encontró cuando el déficit hídrico se inició entre las etapas de floración y formación de vainas, en estas condiciones los más afectados serían Criolla San Juan, EMP-192 e ICA-PIJAO, con reducciones entre 30 y 63%. De estos resultados se puede concluir que los germoplasmas DOR-227 y EXP-145 son los más resistentes a la sequía, EMP-192 e ICA-PIJAO los más sensibles y Criolla San Juan ocuparía una posición intermedia.

Para el ensayo realizado en el CIAT encontramos que, egroecológicamente, bajo un déficit hídrico de 60 días aplicado en la etapa de prefloración, la variedad Criolla San Juan tiene la menor resistencia a la sequía en comparación con San Cristóbal-83, BAT-447, A-70 y BAT-1224. El comportamiento de Criolla San Juan sugiere que la resistencia a la sequía de germoplasmas con resistencia variable a la sequía dependerá de las condiciones del ambiente en que se realice el cultivo y de su capacidad adaptativa.

Con relación a los metabolitos analizados, se encontró que el contenido de N total y de proteína aumentó significativamente en los germoplasmas bajo déficit hídrico, sobre todo en DOR-227 y EXP-145, por lo cual sugerimos la utilización del %Nį(semilla) como un marcador metabólico de resistencia a la sequía en Phaseolus vulgaris L. La concentración y distribución de azúcares no mostró ninguna correlación con la resistencia a la sequía.
ÍNDICE GENERAL

Resumen... i
 Lista de tablas.. iii
 Lista de figuras... vi
 Introducción general ... 1
 Capítulo 1: Revisión de literatura .. 8
 Capítulo 2: Resistencia a la sequía en cultivares de Phaseolus vulgaris L 33
 Introducción .. 33
 2.1) Materiales y métodos .. 36
 2.2) Resultados ... 51
 2.3) Discusión .. 77
 2.4) Conclusiones ... 89
 Capítulo 3: Resistencia a la sequía en cinco cultivares de Phaseolus vulgaris L, bajo déficit hídrico diferencial .. 92
 Introducción .. 92
 3.1) Materiales y métodos .. 96
 3.2) Resultados ... 108
 3.3) Discusión .. 142
 3.4) Conclusiones ... 152
 Capítulo 4: Efecto del déficit hídrico sobre los niveles de nitrógeno y carbohidratos en plantas de Phaseolus vulgaris L .. 156
 Introducción .. 156
 4.1) Materiales y métodos .. 158
 4.2) Resultados ... 159
 4.3) Discusión .. 170
 4.4) Conclusiones ... 176
 Capítulo 5: Intercambio gaseoso de cinco germoplasmas de Phaseolus vulgaris L, bajo dos tratamientos hídricos de riego y sequía y su correlación con el rendimiento en grano .. 178
 Introducción .. 178
 5.1) Materiales y métodos .. 182
 5.2) Resultados ... 188
 5.3) Discusión .. 203
 5.4) Conclusiones ... 209
 Capítulo 6: Conclusiones generales y Recomendaciones ... 212
 Referencias Bibliográficas ... 218
LISTA DE TABLAS

<table>
<thead>
<tr>
<th>Tabla</th>
<th>Detalles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tabla 1.1:</td>
<td>Rendimientos experimentales de Phaseolus vulgaris L arbustiva (Fuente: Programa Internacional de Rendimiento y Adaptación del Frijol común (IBYAN), 1976-1984)</td>
</tr>
<tr>
<td>Tabla 1.2:</td>
<td>Rendimiento potencial de leguminosas de grano y otros cultivos (White, 1991)</td>
</tr>
<tr>
<td>Tabla 1.3:</td>
<td>Mecanismos de resistencia a la sequía e impacto sobre los procesos de productividad de cultivos según Turner (1979) y Jones et al (1981)</td>
</tr>
<tr>
<td>Tabla 1.4:</td>
<td>Parámetros del crecimiento de germoplasmas tolerantes y susceptibles a la sequía, creciendo en el CIAT, Palmira, Colombia, sometidos a los tratamientos (D y C) (Sponchiado, 1985)</td>
</tr>
<tr>
<td>Tabla 2.1:</td>
<td>Procedencia, origen, características y tipos de los germoplasmas de Phaseolus vulgaris L evaluados</td>
</tr>
<tr>
<td>Tabla 2.2:</td>
<td>Germoplasmas de Phaseolus vulgaris L utilizados en el ensayo de invernadero</td>
</tr>
<tr>
<td>Tabla 2.3:</td>
<td>Características del suelo (profundidad: 30 cm) de la Estación Experimental del IIAP en San Juan de Lagunillas, Mérida. Análisis realizado en el laboratorio de Suelo del IIAP (n = 4 muestras)</td>
</tr>
<tr>
<td>Tabla 2.4:</td>
<td>Características medidas, cosecha y el tiempo de cosecha</td>
</tr>
<tr>
<td>Tabla 2.5:</td>
<td>N° de plantas cosechadas y análisis efectuados</td>
</tr>
<tr>
<td>Tabla 2.6:</td>
<td>Análisis fisicoquímicos y de fertilidad, realizado en el Laboratorio de Suelo del IIAP (ULA). Muestras de suelo de la Estación Experimental de San Juan de Lagunillas, Mérida, 1992</td>
</tr>
<tr>
<td>Tabla 2.7:</td>
<td>Valores de retención de humedad W, en % a diferentes succiones S en atm. Laboratorio de Suelo del IIAP-ULA</td>
</tr>
<tr>
<td>Tabla 2.8:</td>
<td>Análisis de floración para 10 germoplasmas de Phaseolus vulgaris L, sometidos a dos tratamientos (riego y déficit hídrico) bajo condiciones de invernadero</td>
</tr>
</tbody>
</table>
Tabla 2.9: Variación promedio de componentes del rendimiento y rendimiento para 10 germoplasmas de Phaseolus vulgaris L, %RYDH/YC % de reducción del rendimiento, S índice de susceptibilidad a la sequía .. 59

Tabla 2.10: Estimaciones teóricas para ET0D: mm/día y mm/mes para cultivares de Phaseolus vulgaris L, creciendo a 20, 30, 40 y 50 DDS y para 0, 10, 20 y 30 DDH (ET0D: Evaporación del cultivo de referencia en el dosel; ETMs: Evaporación media del aire) ... 66

Tabla 2.11: Variación promedio de los parámetros morfofenológicos para 5 germoplasmas de Phaseolus vulgaris L bajo sequía y riego normal (n = 4) ... 68

Tabla 2.12: Variación de biomasa seca por hoja, tallos y vainas de cinco germoplasmas de Phaseolus vulgaris L a madurez fisiológica (n = 4) ... 70

Tabla 2.13: Variación del % de peso seco en déficit hídrico respecto al control para cinco germoplasmas de Phaseolus vulgaris L en madurez fisiológica (n = 4) .. 70

Tabla 2.14: Producción de biomasa seca total a madurez fisiológica para cinco germoplasmas de Phaseolus vulgaris L (n = 4) .. 72

Tabla 2.15: Variación de producción de biomasa seca en cinco germoplasmas de Phaseolus vulgaris L ... 72

Tabla 2.16: Componentes del rendimiento (YG) rendimiento en grano; % de reducción del rendimiento (%RYG); e índice de susceptibilidad a la sequía (S) de cinco germoplasmas de Phaseolus vulgaris L, sometidos a dos tratamientos hídricos de riego (1) y sequía (2) (n=4 repeticiones) 75

Tabla 2.17: Variación promedio del % de reducción en componentes del rendimiento y rendimiento en grano de cinco germoplasmas de Phaseolus vulgaris L, sometidos a dos tratamientos hídricos de riego y sequía ... 76

Tabla 2.18: Variación promedio de 4 repeticiones para cinco germoplasmas de Phaseolus vulgaris L, sometidos a riego y sequía, de rendimiento en grano (YG), productividad de biomasa seca e índice de cosecha ... 76

Tabla 2.19: Desempeño frente al déficit hídrico de los 10 germoplasmas en invernadero en relación al rendimiento en grano, susceptibilidad a la sequía y N° de mecanismos de resistencia a la sequía expresados ... 79
Tabla 3.1: Caracterización de los germoplasmas de *Phaseolus vulgaris* L evaluados y su caracterización según el ensayo de campo N° 1 (1992) ... 97

Tabla 3.2: Tratamientos hídricos en el ensayo de campo N° 2. TH (Tratamiento hídrico), DH (déficit hídrico), DDS (Días después de la siembra) ... 98

Tabla 3.3: Cosechas efectuadas sobre los cinco germoplasmas de *Phaseolus vulgaris* L, en los seis tratamientos hídricos ... 100

Tabla 3.4: Análisis de iniciación floral para cinco germoplasmas de *Phaseolus vulgaris* L, sometidos a cinco tratamientos hídricos ... 126

Tabla 3.5: Efecto del déficit hídrico diferencial sobre los parámetros de crecimiento en cinco germoplasmas de *Phaseolus vulgaris* L, sometidos a cinco tratamientos hídricos ... 128

Tabla 3.6: Reducción de la producción de biomasa seca en la 2da cosecha (%PP_{BS}) y porcentaje de variación de la reducción de productividad total (%VRP) para cinco germoplasmas de *Phaseolus vulgaris* L, bajo cinco tratamientos hídricos ... 131

Tabla 3.7: Índice de cosecha (IC) para cinco germoplasmas de *Phaseolus vulgaris* L, sometidos a cinco tratamientos hídricos: n = 3 repeticiones ... 136

Tabla 4.1: Efecto de déficit hídrico sobre la concentración y distribución de N_{T} en órganos y planta de cinco germoplasmas de *Phaseolus vulgaris* L. Los valores son promedios de 4 repeticiones ... 160

Tabla 4.2: %Proteína en órganos y planta de cinco germoplasmas de *Phaseolus vulgaris* L, bajo dos tratamientos hídricos de déficit hídrico y riego. Los valores son promedio de 4 repeticiones ... 162

Tabla 4.3: Efecto del déficit hídrico sobre los niveles de azúcares reductores, azúcares no reductores y azúcares totales en órganos y plantas de cinco germoplasmas de *Phaseolus vulgaris* L. Los valores son el promedio de 4 repeticiones ... 163

Tabla 5.1: Caracterización de germoplasmas de *Phaseolus vulgaris* L, según hábitos de crecimiento (CIAT) y tolerancia a la sequía (BIDYT-CIAT) ... 183

Tabla 5.2: Floración y madurez fisiológica de cinco germoplasmas de *Phaseolus vulgaris* L bajo dos tratamientos hídricos (1) Riego y (2) Sequía en Cali-Palmira (1994). DDS (Días después de la siembra), DDH (Días en déficit hídrico) ... 189
Tabla 5.3: Variación de producción de biomasa seca a madurez fisiológica y % de reducción de madurez fisiológica de cinco germoplasmas de *Phaseolus vulgaris* L., sometidos a dos tratamientos hídricos (1) riego y (2) sequía, en el CIAT-Palmira (1994)

Tabla 5.4: Rendimiento en grano (Y_G: kg/ha), índice de cosecha (IC), % de reducción de (Y_G), e índice de susceptibilidad a la sequía (S) para cinco germoplasmas de *Phaseolus vulgaris* L., sometidos a 2 tratamientos hídricos de (1) riego y (2) sequía en el CIAT-Cali (1994). Los valores son promedio de 4 repeticiones. (RS): Resistente a la sequía y (SS): Sensible a la sequía; DMS: Diferencias mínimas significativas
LISTA DE FIGURAS

Figura 2.1: Climadiagrama de la Estación Experimental del IIAP en San Juan de Lagunillas. Mérida para el año (1992): MARN y observaciones personales.. 44

Figura 2.2: Relación vástago/raíz en 10 germoplasmas de Phaseolus vulgaris L sometidos a dos tratamientos hídricos en el curso de 3 cosechas.. 52

Figura 2.3: Variación de área foliar para 10 germoplasmas de Phaseolus vulgaris L sometidos a dos tratamientos hídrico (10 DDH y controles bien irrigados)... 54

Figura 2.4: Tasa relativa de crecimiento (R): g.g⁻¹ día⁻¹ para raíz, hoja, tallo y planta para 10 germoplasmas de Phaseolus vulgaris L entre la cosecha 3 (30 DDS y 10 DDH) y la cosecha 1 (20 DDS y 0 DDH).. 57

Figura 2.5: Variación de parámetros climáticos en un curso de 6 horas: 1) RT_Dose y RT_suelo, 2) %HR; 3) Ts, Ta y T_D para cultivares de Phaseolus vulgaris L de 20 DDS y 0 DDH; 4) ψ_suelo para suelos de 5 germoplasmas bajo riego, medidos a las 10 am... 62

Figura 2.6: Variación de parámetros climáticos en un curso de 6 horas: 1) RT_D y RT_suelo, 2) %HR; 3) Ts, Ta y T_D para cultivares de Phaseolus vulgaris L de 30 DDS (10 DDH y controles); 4) ψ_suelo para suelos de 5 germoplasmas bajo riego (control) y sequía (DH) a las 10 am.. 63

Figura 2.7: Variación de parámetros climáticos en un curso de 6 horas: 1) RT_D y RT_suelo, 2) %HR; 3) Ts, Ta y T_D para cultivares de Phaseolus vulgaris L de 40 DDS (20 DDH y controles); 4) ψ_suelo para suelos de 5 germoplasmas bajo riego (control) y sequía (DH) a las 10 am.. 64

Figura 2.8: Variación de parámetros climáticos en un curso de 6 horas: 1) RT_D y RT_suelo, 2) %HR; 3) Ts, Ta y T_D para cultivares de Phaseolus vulgaris L de 50 DDS (30 DDH y controles); 4) ψ_suelo para suelos de 5 germoplasmas bajo riego (control) y sequía (DH) a las 10 am.. 65

Figura 2.9: Variación de ET₀, ETₐ y TMₐ para cultivares de Phaseolus vulgaris L para los meses de Junio, Julio y Agosto de 1992 en la Estación Experimental del IIAP en San Juan de Lagunillas, Mérida, según método de la radiación de Grassi (1988).. 66

Figura 3.1a: Esquema de una planta TIPO I: crecimiento determinado arbustivo...................... 102
Figura 3.1b: Esquema de una planta TIPO II: crecimiento indeterminado arbustivo

Figura 3.2: Programación del déficit hídrico y cosechas del TH1=DH1+control: déficit hídrico iniciado a los 20 DDS (entre la última etapa de la fase vegetativa y la 1ra etapa de la fase reproductiva (prefloración) y mantenido por 64 días respecto a controles bien irrigados.

Figura 3.3: Programación del déficit hídrico y cosechas del TH2=DH2+control: déficit hídrico iniciado a los 27 DDS (en la etapa de prefloración) de la fase reproductiva y mantenido por 56 días respecto a controles bien irrigados.

Figura 3.4: Programación del déficit hídrico y cosechas del TH3=DH3+control: déficit hídrico iniciado a los 34 DDS (etapa de floración) de la fase reproductiva y mantenido por 49 días respecto a controles bien irrigados.

Figura 3.5: Programación del déficit hídrico y cosechas del TH4=DH4+control: déficit hídrico iniciado a los 41 DDS (etapa de formación de vainas) de la fase reproductiva y mantenido por 42 días respecto a controles bien irrigados.

Figura 3.6: Programación del déficit hídrico y cosechas del TH5=DH5+control: déficit hídrico iniciado a los 48 DDS (etapa de llenado de vainas) de la fase reproductiva y mantenido por 35 días respecto a controles bien irrigados.

Figura 3.7: Variación de parámetros climáticos de un curso diario de 6 horas, para 3 cosechas en el Th1

Figura 3.8: Variación de parámetros climáticos de un curso diario de 6 horas, para 3 cosechas en el Th2

Figura 3.9: Variación de parámetros climáticos de un curso diario de 6 horas, para 3 cosechas en el Th3

Figura 3.10: Variación de parámetros climáticos de un curso diario de 6 horas, para 3 cosechas en el Th4

Figura 3.11: Variación de parámetros climáticos de un curso diario de 6 horas, para 3 cosechas en el Th5
Figura 3.12: Contenido relativo de humedad (A) y potenciales hídricos (B) en 5 germoplasmas en tres cosechas y en los tratamientos hídricos: Th1 (64 días de déficit hídrico), Th2 (56 días de déficit hídrico), Th3 (49 días de déficit hídrico), Th4 (42 días de déficit hídrico) y Th5 (35 días de déficit hídrico) .. 120

Figura 3.13: Relación entre los Ψ suelo vs Ψ hoja en cinco germoplasmas de Phaseolus vulgaris L, bajo déficit hídrico a través de 3 cosechas en cinco tratamientos hídricos. Cada punto representa media de 4 repeticiones .. 122

Figura 3.14: Relación entre el %CRA vs Ψ hoja en cinco germoplasmas de Phaseolus vulgaris L bajo déficit hídrico a través de 3 cosechas en cinco tratamientos hídricos. Cada punto representa media de 4 repeticiones .. 124

Figura 3.15: Efecto del déficit hídrico diferencial sobre la producción de materia seca en cinco germoplasmas de Phaseolus vulgaris L ... 130

Figura 3.16: Efecto del déficit hídrico sobre A) El rendimiento en grano (RG=Tratamiento - control y B) Indice de susceptibilidad a la sequía de 5 germoplasmas de Phaseolus vulgaris L ... 134

Figura 3.17: 1) Diagrama de desarrollo de los cinco tratamientos hídricos: inicio del déficit hídrico (ih), extensión del déficit hídrico (DDH) y superposición de etapas fenológicas que cubren cada tratamiento hídrico; 2) Variación de X(%RYG)₃₅ por tratamiento hídrico; 3) Variación de X(S)₃₅ por tratamiento hídrico .. 141

Figura 3.18: 1) Variación de %RYG en 5 tratamientos hídricos: germoplasmas de alta resistencia a la sequía (ARS): DOR-227 y EXP-145; resistencia intermedia (RIS): Criolla San Juan y baja resistencia (BRS): EMP-192 e ICA-PIJAO. 2) Variación de (S) en cinco tratamientos hídricos para (ARS, BRS e RIS) .. 143

Figura 4.1: Distribución en (N₇) en órganos respecto a la planta en cinco germoplasmas de Phaseolus vulgaris L bajo dos tratamientos hídricos: Riego (control) y déficit hídrico .. 167

Figura 4.2: Distribución de azúcares totales (AT) en órganos respecto a la planta en cinco germoplasmas de Phaseolus vulgaris L bajo dos tratamientos hídricos: Riego (control) y déficit hídrico .. 168

Figura 4.3: Distribución de azúcares reductores (AR) en órganos respecto a la planta en cinco germoplasmas de Phaseolus vulgaris L bajo dos tratamientos hídricos: Riego (control) y déficit hídrico .. 169
Figura 4.4: Distribución de azúcares no reductores (ANR) en órganos respecto a la planta en cinco germoplasmas de Phaseolus vulgaris L bajo dos tratamientos hídricos: Riego (control) y déficit hídrico.. 170

Figura 5.1: Plano general de siembra del ensayo. CIAT (1994)... 184

Figura 5.2: Esquema de una subparcela (germoplasma) del ensayo. CIAT (1994)................................. 185

Figura 5.3: Esquema de una parcela (tratamiento); cada parcela estará formada por 5 subparcelas (5 germoplasmas). CIAT. (1994)... 185

Figura 5.4: Efecto del déficit hídrico sobre la producción de materia seca en la madurez fisiológica de 5 germoplasmas de Phaseolus vulgaris L... 190

Figura 5.5: Rendimiento en grano (Y_o), índice de cosecha (IC) e índice de susceptibilidad a la sequía (s), con respecto al control, de cinco germoplasmas de Phaseolus vulgaris L, sometidos a déficit hídrico (Los valores de $S*10^{-2}$ y los valores de IC$*10^{-3}$)... 192

Figura 5.6: Curso diario de A) Fotosíntesis neta; B) Conductancia estomática; C) Ψhoja para cinco germoplasmas de Phaseolus vulgaris L bajo riego normal (20 DDS y 0 DDH), en la etapa de prefloración. CIAT (1994)... 194

Figura 5.7: Curso diario de A) Fotosíntesis neta; B) Conductancia estomática; C) Ψhoja, para cinco germoplasmas de Phaseolus vulgaris L bajo dos tratamientos hídricos de riego y déficit hídrico para plantas en la etapa de floración (34 a 38) DDS y (12 a 16) DDH... 195

Figura 5.8: Curso diario de intercambio gaseoso y potenciales hídricos en cinco germoplasmas de Phaseolus vulgaris L, bajo riego y déficit hídrico, en la etapa de madurez fisiológica... 198

Figura 5.9: Tasa de fotosíntesis neta (Pn); Conductancia estomática (Cs) y relaciones hídrica (Ψsuelo y Ψhoja) a las 8:00 a.m., a través de las etapas de prefloración (20 DDS y 0 DDH), floración (34 a 38 DDS) y (12 a 16 DDH) y madurez fisiológica (72 a 77 DDS) y (42 a 46 DDH) para cinco germoplasmas de Phaseolus vulgaris L: BAT-477; Criolla San Juan; San Cristóbal-83; A-70 y BAT-1224... 201

Figura 5.10: Relación entre la tasa de fotosíntesis neta vs rendimiento en grano (Y_o) para cinco germoplasmas de Phaseolus vulgaris L, bajo tratamientos hídricos de riego y déficit hídrico en la etapa de madurez fisiológica (72-77 DDS) y (42-46 DDH)... 203
INTRODUCCION GENERAL

Desde el punto de vista de la nutrición humana, las plantas comprendidas bajo el concepto general de "Leguminosas de grano" forman un grupo de interés particular. La característica primordial de este grupo es su alto contenido de proteínas siendo de enorme importancia para aquellas regiones donde escasean las proteínas para la nutrición humana. El consumo de proteínas provenientes de las leguminosas de grano, se presenta como una alternativa real al déficit de proteína animal en las zonas de mayor crecimiento poblacional que sufren agudos problemas agroalimentarios (FAO, 1972).

De las leguminosas de grano, la carota *Phaseolus vulgaris* L, es la más usada para consumo humano en el mundo. En Latino América se produce alrededor del 32% de la producción mundial y constituye el 10% en peso de la alimentación de la región (Añez y Tavira, 1990). En las zonas tropicales y subtropicales el cultivo de esta leguminosa de grano se realiza en casi un 60% bajo condiciones de agricultura de secano (FAO, 1973), lo cual indica que los cultivares de la especie deben tolerant períodos de sequía, alguna vez durante su ciclo de vida, lo cual puede representar algún costo para el rendimiento de la semilla. El efecto sobre el rendimiento de la semilla dependerá del estado de desarrollo sobre el cual ocurra el acortamiento de agua y de la intensidad y duración de ese acortamiento. *Phaseolus vulgaris* L, es considerada una especie sensible a la sequía, pero el efecto varía según la etapa en la cual se aplique el déficit hídrico, siendo las etapas de prefloración, floración y llenado de grano las
más sensibles (Robins y Domingo, 1956; Dubetz y Mahala, 1969, Flores-Lui, 1982).

En Venezuela son muy pocos los estudios sobre efectos de déficit hídrico sobre este cultivo y en la región de los Andes sólo se conocen los realizados en Lagunillas, del Estado Mérida, en la estación experimental del IIAP-ULA, (Miller, 1971; Solorzano, 1984). Estos estudios se realizaron en condiciones de variación de lámina de riego natural, pero no se conocen estudios a nivel de condiciones controladas y de campo, que utilicen técnicas de déficit hídrico para evaluar la resistencia a la sequía. En nuestro país, las investigaciones en el campo de la Ecofisiología de mecanismos de resistencia a la sequía, se han concentrado en el estudio de plantas de Ecosistemas naturales y muy poca se ha realizado en el campo de plantas cultivadas. La carencia de un volumen apreciable de trabajos de investigación en este campo, es más crítico en las plantas leguminosas, las cuales representan el aporte proteico de más del 80% para la población venezolana. Es muy extraño que dadas las condiciones actuales de falta de alimento proteico en más del 65% de nuestra población, la cual vive en estado de pobreza crítica, no se haya producido un programa de investigación sobre estas plantas en lo atinente a sus respuestas a condiciones de estrés hídrico y la exploración de sus mecanismos de resistencia a la sequía; es apropiado recordar, que las leguminosas se cultivan desde hace milenios en todas las regiones del mundo. Mientras que sus semillas y vainas sirven principalmente para la nutrición humana, las plantas completas también suministran tanto en estado verde (fresco) como en estado seco, valioso forraje para el ganado. Una tercera forma de
aprovechamiento de la misma la constituye el abono verde (Schafer y Hobyt, 1967).

Muchos de los mecanismos propuestos en plantas de ecosistemas naturales y para especies agrícolas de los agroecosistemas, no han sido críticamente investigados (Swindale y Bidinger, 1981). Las condiciones de déficit hídrico evaluadas han sido bajo condiciones artificiales; en las cuales la respuesta de las plantas no es representativa a aquella conseguida en condiciones de campo (Begg y Turner, 1976), y en muy pocos casos, se han realizado estudios comparativos entre condiciones controladas y condiciones de campo, que permitan evaluar las ventajas relativas de cada condición. El uso de las respuestas fisiológicas de las plantas bajo déficit hídrico es un criterio para establecer los mecanismos de resistencia a la sequía y su posterior uso en los programas de mejoramiento genético en condiciones de sequía. Un mejor entendimiento del efecto de la sequía sobre los procesos de crecimiento y desarrollo de las plantas es por lo tanto fundamental.

Mientras el efecto final de la sequía es la limitación del crecimiento y el rendimiento del cultivo, los efectos fisiológicos específicos del déficit hídrico varían dependiendo de la historia previa del cultivo (acclimatación, época de siembra y ciclo de vida del cultivo), y de la intensidad del déficit aplicado. Según lo notó Kramer (1983), la interacción de los factores probablemente explique un gran número de resultados conflictivos provenientes de estudios sobre los efectos de la sequía.
El crecimiento y desarrollo de un cultivo bajo condiciones naturales, no es más que el producto de la interacción entre una serie de factores genéticos y ambientales; así mismo, debemos entender que la formulación y aplicación de prácticas agronómicas para el mejoramiento objetivo de nuevos cultivos, depende del entendimiento de las bases ecofisiológicas de la adaptación de estos cultivos (Lawn, 1980). La mayoría de los aspectos del crecimiento y desarrollo de las plantas son afectadas por el déficit hídrico (Hsiao, 1973; Boyer y McPhearson, 1975; Turner y Kramer, 1980), y las respuestas de las plantas cultivables a períodos de sequía dependen de su adaptación al medio ambiente agrícola.

Mucha investigación científica es necesaria para reducir las pérdidas en productividad y rendimiento de los cultivos debidas a fallas en el suministro de agua. Según Swindale y Bidinger (1981), los programas de investigación en el área de resistencia a la sequía en plantas cultivadas, deben centrar su atención en 3 grandes líneas de trabajo: 1) Reducir las fallas en productividad de los cultivos por falta de agua, mediante el mejoramiento del manejo del cultivo y de los suelos. 2) Desarrollar cultivares resistentes a la sequía. 3) Mejorar el conocimiento de los mecanismos de resistencia a la sequía en plantas cultivadas.

En Venezuela no se conocen estudios en *Phaseolus vulgaris* L, sobre la ecofisiología del cultivo y concretamente sobre las relaciones hídricas y sus interrelaciones con el rendimiento y productividad. Cuantitativamente se conocen los periodos más críticos a la falta de agua en la mayoría de los cultivos (Doorembos y Pruitt, 1975; Millar, 1976). Se hace necesario
cuantificar los rendimientos en función del déficit hídrico aplicado a lo largo del ciclo fenológico, con la finalidad de facilitar información a los mejoradores genéticos sobre la expresión de los mecanismos de resistencia y así poder introducir germoplasmas de *Phaseolus vulgaris* L capaces de mantener altos rendimientos en condiciones de sequía.

Con los programas de resistencia a la sequía desarrollados por el CIAT en Colombia se ha logrado, en los últimos 20 años, crear y mejorar germoplasmas con capacidad de resistencia a la sequía y a partir de ellos se han podido identificar los mecanismos de resistencia a la sequía que luego por vía de la mejora genética, se incorporen a líneas de alto rendimiento para condiciones restringidas de agua (CIAT, 1984, 1985 y 1985a). En general los materiales promisorios, en condiciones de déficit hídrico presentan sistemas radiculares mas desarrollados y con mayor capacidad de penetración, también, potenciales hídricos foliares más negativos y resistencias estomáticas mas bajas. Se ha comprobado que los materiales con resistencia a la sequía, cuando son cultivados en suelos poco profundos no propicios para la expansión y profundización del sistema radical; con pH≤5 y con alta saturación de aluminio, no mantienen las características de resistencia a la sequía (White y Sponchiado, 1985).

Este trabajo evaluará la resistencia a la sequía de cultivares de caraota *Phaseolus vulgaris* L, bajo dos puntos de vista complementarios. Uno ecofisiológico, enfocado a dilucidar la naturaleza de los mecanismos que confieren distintos grados de adaptación a la sequía a los
germplasmas estudiados y otro agronómico, centrado en las variaciones observadas en la productividad y componentes del rendimiento.

Los objetivos específicos son los siguientes:

1. Identificar y evaluar la presencia de mecanismos de resistencia a la sequía en los cultivares analizados.

2. Estudiar las interrelaciones de los mecanismos de resistencia a la sequía identificados.

3. Determinar la variabilidad de los procesos de crecimiento y extracción de agua en cultívares de *Phaseolus vulgaris* L bajo déficit hídrico, en relación con los mecanismos de resistencia identificados.

4. Evaluar los procesos de floración y producción de materia seca, en términos de la interacción de los mecanismos de resistencia a la sequía.

5. Determinar las interrelaciones y correlaciones entre los procesos de rendimiento de semilla y eficiencia en el uso del agua y los procesos metabólicos e intercambio gaseoso.

6. Integrar los mecanismos de resistencia a la sequía encontradas en *Phaseolus vulgaris* L, con las variaciones en el rendimiento en grano, en un cuerpo de conclusiones y recomendaciones que sirvan de guía para la mejora genética de germoplasmas sujetos a períodos de déficit hídrico crítico.
El trabajo se basa en tres hipótesis principales

1. La aplicación diferencial de ciclos de déficit hídrico en las fases de pre-antesis (DH-FV-PA), antesis (DH-FRA) y fases combinadas de pre-antesis y post-antesis, en cultivares de *Phaseolus vulgaris* L de ciclos fenológicos de diferentes longitudes, producirán diferentes respuestas en: crecimiento, productividad de biomasa seca y rendimiento en grano; inducidas por la presencia de mecanismos de resistencia a la sequía. La medida de la mayor o menor resistencia a la sequía dependerá de la presencia del mayor número de estos mecanismos.

2. Cultivares de *Phaseolus vulgaris* L, sometidos a ciclos diferenciales de déficit hídrico, presentarán diferentes estrategias de crecimiento y uso del agua. La medida óptima del crecimiento y uso del agua bajo déficit hídrico de los cultivares estará dada por el mayor número y eficiente uso de los mecanismos de resistencia a la sequía.

3. La integración de los proceso de producción de materia seca y eficiencia en el uso del agua en los cultivares de *Phaseolus vulgaris* L bajo déficit hídrico, se reflejarán en la variación del rendimiento en grano. La mayor resistencia a la sequía en términos intraespecíficos se plantea como un problema de perfeccionamiento de los mecanismos de resistencia a la sequía, que permitan el mayor rendimiento en grano, y su interrelación con los procesos metabólicos e intercambio gaseoso.
CAPITULO 1
REVISION DE LITERATURA

1. Caracterización Botánica y Agroecológica de la Caraota Negra (Phaseolus vulgaris L)

1.1 Descripción botánica de la especie

Solo en las dos últimas décadas, se han establecido bases sólidas universales en la taxonomía de Phaseolus. Este género ha sido bien diferenciado de otros como Vigna y Macroptilium, con los cuales se tenían confusiones respecto a su clasificación. Se le reconoce como exclusivamente americano. Desde el punto de vista taxonómico, esta especie es el prototipo del género Phaseolus y su nombre científico es Phaseolus vulgaris L., asignado por Linneo en 1753. Pertenece a la tribu Phaseoleae de la subfamilia Papilionoideae dentro del orden Rosales.

1.2 Agroecología

Estudios del CIAT (1979, 1979a, 1980a y 1991) han mostrado que aproximadamente el 80% de todas las caraotas producidas en América Latina están en microregiones en las cuales la temperatura promedio, durante la estación de crecimiento, está entre los 17.5 y 25 °C, con la mayor producción en áreas donde la temperatura es alrededor de 21°C (equivalente a una altitud de 1250 m en los trópicos).

La evolución de los sistemas de cultivos, reflejan la adaptación de las especies a la temperatura. En la mayoría de los climas, la floración ocurre
cualquier temperatura está dentro de ±2 °C del óptimo aparente de 21°C para la floración, y con un adecuado suplemento de agua para el crecimiento.

Phaseolus vulgaris L se considera un cultivo con poca tolerancia a déficit hídricos severos. En un análisis de 110 áreas de producción en América Latina, se indica que casi el 60% de los cultivos experimentan de un moderado a severo déficit hídrico después de la floración. En muchas áreas, incluyendo Centro América y Brasil, el cultivo de caraota común se asocia con otros cultivos predominantemente maíz (Zea mays) y otras leguminosas de grano como **Vicia Fabia** L (CIAT, 1980a).

En los trópicos y sub-trópicos las caraotas explotan la última parte de la estación de lluvia, cuando temperatura y precipitación disminuyen (en los sub-trópicos), pero la variabilidad de la precipitación aumenta. La duración de la estación de crecimiento (limitada por lluvia y temperatura) y la fenología determinan el sistema de cultivo. En las tierras altas de los trópicos, el desarrollo tanto de maíz como de caraota es lento y requiere de una larga estación de crecimiento (por encima de 12 meses para maíz y de 6 a 8 meses para caraota, en altitudes por encima de los 2000 m.s.n.m). A menores altitudes en los climas tropicales, el ciclo del cultivo tanto para maíz como para caraota se acorta. La forma del sistema de intercultivo a bajas altitudes depende principalmente de la cantidad y duración de la precipitación. Cuando la estación de lluvia es corta, las caraotas se
siembran temprano durante el período de crecimiento de maíz, por lo tanto la sobreposición del crecimiento de las dos especies es mayor, lo cual determina una competencia más intensa (CIAT, 1985a).

Aunque las caroatas toleran la mayoría de las condiciones ambientales en las zonas tropicales y templadas, en los trópicos muy húmedos la lluvia causa enfermedades y tumba las flores, sin embargo algunas variedades de semilla negra toleran excesos de agua. Por otra parte, en condiciones templadas, el frío mata a las plantas. Las caroatas crecen mejor en suelos bien drenados, arenosos o arcillosos pesados, ricos en contenido orgánico, pero son sensibles a las altas concentraciones de Al, B, Mn y Na. (Howeler, 1972). En relación al pH, el CIAT reporta que la caroata se cultiva en un rango de 4.2-8.7, así el promedio para 144 casos fue de 6.4 (Sartorato et al, 1982). El rango de temperatura para la especie es de 10-35 °C, y es muy sensible a los extremos de temperatura (Benacchio, 1982). Por otra parte, tolera precipitaciones anuales en el rango de 600-2000 mm y requiere de 350-400 mm durante el ciclo (Sartorato et al, 1982 y Benacchio, 1982). El rendimiento de caroata se reduce con cortos periodos de déficit hídrico, como a menudo ocurre en los cultivos dependientes de la lluvia. Dicho déficit es especialmente dañino cuando ocurre durante el período de. Los suelos a capacidad de campo son óptimos para el cultivo, el crecimiento de las plantas se reduce a potenciales de -0.03 Mpa y cesa a -0.5 Mpa, aunque algunos genotipos han sido considerados como resistentes a la sequía (CIAT, 1977).
2. Caracterización Fisiológica de *Phaseolus vulgaris* L

2.1 Fotosíntesis

Desde el punto de vista de su vía de fijación de carbono *Phaseolus vulgaris* L, es una planta tipo C-3 como lo son otras leguminosas de grano. La estimación de la máxima tasa de fotosíntesis foliar (AP) en concentraciones de CO$_2$ ambiental, varía entre 12 mg CO$_2$ dm$^{-2}$.h$^{-1}$ y 35 mg CO$_2$ dm$^{-2}$.h$^{-1}$. Este parámetro varía con la edad de la hoja y las condiciones ambientales. Las hojas incrementan su capacidad fotosintética cuando se expanden, manteniendo un máximo para un período altamente variable, dependiendo del cultivar y de la posición (Fraser y Bidwell, 1974). La disminución de (AP) parece resultar, principalmente de la pérdida de la capacidad fotosintética, pero también puede deberse a un incremento de la resistencia estomática. Tanaka y Fujita (1979) detectaron una correlación positiva muy significativa, entre el contenido de nitrógeno y (AP) en hojas maduras y de edades avanzadas, lo cual sugiere que la pérdida de la capacidad fotosintética está relacionada a la removilización del nitrógeno.

Las máximas tasas de fotosíntesis en caraota se alcanzaban a irradiaciones de 300 w.m$^{-2}$, el mismo nivel reportado para soya (Shibles et al, 1975). Burga (1978) encontró evidencias de que (AP) varía con la posición de la hoja dentro del follaje, pero alcanza su máximo al tiempo del inicio de llenado de las vainas. Existen diferencias de (AP) al variar la temperatura de 21°C a 31°C. Hesse y Lenz (1982), no encontraron efectos
del déficit de presión de vapor de agua (VPD) sobre (AP), al usar 50 KLX de iluminación a 22°C, pero EL-Sharxawy et al (1984) encontraron en carota un nivel intermedio de sensibilidad en relación a otros cultivos. Louwerse y Zwcerde (1977) encontraron que el máximo valor de (AP) se obtenía con altos regímenes de radiación y que estaba positivamente correlacionada con el espesor foliar, peso específico de la hoja y el número de cloroplastos, pero no con el contenido de clorofila. Diferentes fuentes de nitrógeno influencian la tasa de (AP), aparentemente, actuando sobre las fotoreacciones, las cuales afectan el metabolismo de nitrógeno (Marques et al, 1983).

En condiciones de altas concentraciones de O₂, en el mesófilo, tal como ocurre cuando los estomas están cerrados bajo altas intensidades lumínicas pero limitada disponibilidad de agua, el O₂ compite con el CO₂ en la reacción con la Rubisco, con la importante diferencia de que la energía química se consume y se produce CO₂, este proceso se conoce como fotosrespiración. Este es un proceso de desgaste o pérdida metabólica o como también se ha propuesto es un proceso de producción de compuestos esenciales para el crecimiento de la planta. White (1991) considera que la fotosrespiración sirve para disipar energía lumínica cuando la fotosíntesis se bloquea debido a las bajas concentraciones de CO₂ (Tolbert, 1980) o para mantener los niveles de CO₂ relativamente constantes dentro del tejido del mesófilo. Burga (1978) encontró una correlación negativa muy significativa entre el plano normal y el ángulo
foliar, esto refleja la habilidad de las plantas de caraota a orientar sus hojas con la posición del sol en el ciclo para lograr aumentar la intersección de luz en el dosel.

2.2 Metabolismo de Nitrógeno

El alto contenido de proteínas en las semillas de las leguminosas de grano indica la importancia del metabolismo de nitrógeno en la fisiología de estas plantas. Un contenido del 20% a 24% de proteínas implica un contenido de nitrógeno de aproximadamente un 4%, lo cual a su vez significa que por cada 1000 kg producidos se necesitan 40 kg de N, sin incluir las cantidades necesarias para reemplazar las pérdidas causadas por el lavado o nitrógeno residual en otros tejidos. Se ha encontrado que más del 80% del nitrógeno foliar es retranslocado a otras partes de la planta antes de que ocurra la abscisión (Izquierdo, 1981). Se debe recordar que el contenido de nitrógeno de las hojas es alto; varía con la ontogenia y puede mostrar una correlación directa con (AP).

2.3 Fenología

Los Genotipos de Phaseolus vulgaris son plantas de días neutros o días cortos (Salisbury y Ross, 1992). La respuesta al fotoperíodo puede ser cuantitativa o en algunos casos cualitativa (Wallace, 1985). Los genotipos con una respuesta cualitativa a una duración crítica del día menor de 12 horas no florecen en el trópico (Verbelen y Greef, 1979). La temperatura tiene un marcado efecto sobre la respuesta fotoperiódica. En
los cultivares de días neutro completos, al aumentar la temperatura se presenta una disminución del número de días de floración. En carota, las temperaturas altas aceleran la floración pero sólo en días cortos (Enríquez, 1975), mientras que en días largos, la retarda. Los estudios realizados utilizando fotoperíodos con 2 rangos de temperatura y dos altitudes, indican que el tipo más común de respuesta, encontrada en los germoplasmas tropicales, es la misma encontrada por Enríquez, (1975). Ejemplos de cultivares de días neutros que se vuelven fotoperiódicos sensitivos a altas o bajas temperaturas son raros. Esas observaciones sugieren que aunque esas inusuales respuestas puedan existir, ellas ocurren tan infrecuentemente, que los mejoradores genéticos no las trabajan en bajas latitudes. Se han realizado pocos intentos por predecir los patrones del desarrollo fenológico en Phaseolus vulgaris, probablemente debido a la complejidad de la respuesta fotoperíodo-temperatura. Se ha realizado un intento de incluir la respuesta fotoperiódica en un modelo de tiempo inverso (CIAT, 1981 y 1981a), en el cual se calculó un índice de tendencia de floración (el inverso del tiempo de floración en días) cada día a partir de la longitud del día y la temperatura.

Muy poco trabajo se ha realizado sobre la fenología de los estados de post-floración, pero es evidente que ellos están bajo control fotoperiódico y de temperatura. La duración de la producción de flores depende del hábito de crecimiento. Aunque los tipos indeterminados producen flores sobre un largo período, sin embargo, en la mayor parte de
los cultivares, las vainas alcanzan la madurez al mismo tiempo. Esto contrasta con la maduración de las vainas de la mayoría de los cultivares de las especies de “vigna” (CIAT, 1981a). Efectos directos del fotoperíodo sobre la abscisión de las flores después de la iniciación son poco conocidos para la mayoría de las especies de cultivos, aunque ellas se han descrito para soya (Jones y Laing, 1977). Ojehomon et al, (1968) encontraron que aún en tipos I (hábito de crecimiento determinado arbustivo. CIAT, 1985) de días neutros, la abscisión se presenta en días largos. Factores ambientales diferentes al fotoperíodo y a temperatura pueden también afectar la fenología de post-floración por ejemplo el déficit hídrico.

2.4 Procesos de desarrollo

1. Crecimiento

El análisis del crecimiento, requiere aproximaciones inherentes a la acumulación y distribución en peso seco, así como la suma de varios procesos de crecimiento y desarrollo. Tales estudios han probado ser útiles en análisis de la respuesta de un cultivo a los efectos del medio ambiente y para describir las diferencias entre cultivares.

Después del establecimiento de las plántulas, los cultivos de caraota bajo condiciones de riego normal, generalmente siguen una fase de crecimiento exponencial hasta el final del rápido crecimiento de las vainas. El máximo valor para la tasa de crecimiento del cultivo (TCC), en caraotitas arbustivas está en el rango de 14 a 18 gm⁻² por día. (Sale, 1975),
y para las variedades tipo trepadora se han alcanzado tasas de 21 gm⁻² por día. (Funjul et al 1982), estas tasas superiores reflejan, presumiblemente, una mejor estructura del follaje y una baja inversión en tejidos de soporte; sin embargo estos valores son menos de la mitad de los señalados para otros cultivos C-3 (Monteith, 1969).

La tasa de asimilación neta (TAN), calculada como el cociente TCC/IAF: Tasa de asimilación de crecimiento del cultivo/Índice de área foliar, usualmente desciende con la edad del cultivo. Al momento de la floración los valores típicos son de 4 a 7 gm⁻² día⁻¹ (White, 1991). Los altos valores en TAN pueden reflejar compensación para área foliar restringida (por ejemplo, debido a un hábito de crecimiento determinado) más bien que una alta eficiencia fotosintética ya que la TAN durante la floración y DAF (duración de área foliar), a partir de la emergencia al final de la floración pueden estar negativamente correlacionados entre los diferentes cultivares (White, 1981).

El IAF (Índice de área foliar), incrementa con el crecimiento del cultivo y, como en TCC, a menudo alcanza un pico alrededor de la finalización del rápido crecimiento de las vainas. El detenimiento de la producción foliar presumiblemente, refleja un incremento en la demanda de nitrógeno para el crecimiento de las vainas. La mayoría de los cultivares de caraota presentan senescencia foliar casi completa antes de la madurez, pero algunos cultivares no sensitivos a una senescencia
completa, presentan una producción muy pobre de vainas y semillas; así la falta de senescencia puede reflejar débil demanda de la fuente. En regiones templadas, un patrón similar puede presentarse como un problema de adaptación fotoperíodo-temperatura, particularmente una disminución del crecimiento por bajas temperaturas (Wallace, 1985; White, 1991).

El área foliar específica (AFE), la cual es el cociente entre AF/PSH: área foliar/peso seco de la hoja, usualmente comienza baja, se incrementa a un máximo alrededor de la floración y luego descende hacia la madurez. Las variedades determinadas a menudo tienen una AFE comparativamente alta, lo cual refleja una compensación por restricción del IAF. La iniciación floral se ha detectado tan temprano como a los 10 días después de la siembra (Monteith, 1978; Wallace, 1985; White, 1981; White y Castillo, 1988).

2.5 Rendimiento del cultivo

1. Los máximos rendimientos para caraotas arbustivas Phaseolus vulgaris L están en el orden de 3.7 a 5.5 Tha\(^{-1}\) (Tabla 1.1).

Las variedades de Phaseolus vulgaris L trepadoras, tienen rendimiento de 8 T.ha\(^{-1}\) (Fanjul et al, 1982), pero las comparaciones con las caraotas arbustivas tienen poco significado ya que los soportes de ayuda al trepamiento eliminan las caídas y doblamiento, lo cual reduce la
<table>
<thead>
<tr>
<th>Año</th>
<th>Localidad</th>
<th>Variedad</th>
<th>Rendimiento kg/ha</th>
<th>Duración del cultivo (días)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1976</td>
<td>Santiago, Chile</td>
<td>Puebla 158</td>
<td>3705</td>
<td>113</td>
</tr>
<tr>
<td>1977</td>
<td>Graneros, Chile</td>
<td>Pinto Dorado</td>
<td>5500</td>
<td>94</td>
</tr>
<tr>
<td>1978</td>
<td>Graneros, Chile</td>
<td>ICA-PIJAO</td>
<td>4400</td>
<td>95</td>
</tr>
<tr>
<td>1979</td>
<td>Palmira, Colombia</td>
<td>BAT-85</td>
<td>4600</td>
<td>75</td>
</tr>
<tr>
<td>1980</td>
<td>Graneros, Chile</td>
<td>Jamapa</td>
<td>4400</td>
<td>n.d.</td>
</tr>
<tr>
<td>1981</td>
<td>Graneros, Chile</td>
<td>BAT-58</td>
<td>5100</td>
<td>101</td>
</tr>
<tr>
<td>1982</td>
<td>Graneros, Chile</td>
<td>Jamapa</td>
<td>4900</td>
<td>90</td>
</tr>
<tr>
<td>1983</td>
<td>Graneros, Chile</td>
<td>XAN-109</td>
<td>5000</td>
<td>93</td>
</tr>
<tr>
<td>1984</td>
<td>Popayan, Colombia</td>
<td>ZAN-8306</td>
<td>5100</td>
<td>108</td>
</tr>
</tbody>
</table>

La necesidad de localización de asimilados en los tejidos para el soporte mecánico. Un rendimiento de 3.7 a 5.5 T.ha⁻¹ es altamente imprevisible (más de 10 veces el rendimiento promedio en América Latina) y se puede obtener sólo en óptimas condiciones de investigación, las cuales maximizan los rendimientos y no en condiciones normales de cultivo por los productores. El rendimiento potencial de un cultivo es, en esencia, la meta de todo productor, el cual puede obtenerse optimizando las prácticas agronómicas, minimizando los factores de estrés y controlando los entes bióticos. Los rendimientos máximos de otras leguminosas de grano, son de un orden similar al de Phaseolus vulgaris L.; esto contrasta con el rendimiento potencial de otros cultivos, como los cereales, tubérculos y caña de azúcar, los cuales pueden ser hasta 7 veces mayores que el de caraota (ver tabla 1.2).
TABLA 1.2: Rendimiento potencial de leguminosas de granos y otros cultivos (White, 1991)

<table>
<thead>
<tr>
<th>Cultivo</th>
<th>Rendimiento kg/ha</th>
<th>Duración del cultivo (Días)</th>
<th>Fuente</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leguminosa de grano</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Garbanzo</td>
<td>4000</td>
<td>n.d.</td>
<td>Saxena, 1984</td>
</tr>
<tr>
<td>Frijol</td>
<td>4200</td>
<td>n.d.</td>
<td>Wien y Summerfield, 1984</td>
</tr>
<tr>
<td>Maní</td>
<td>5900</td>
<td>n.d.</td>
<td>Ashley, 1984</td>
</tr>
<tr>
<td>Quinchoncho</td>
<td>4500</td>
<td>110</td>
<td>Sheldrake, 1984</td>
</tr>
<tr>
<td>Soya</td>
<td>5600</td>
<td>n.d.</td>
<td>Shibles et al, 1975</td>
</tr>
<tr>
<td>No leguminosa</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maíz</td>
<td>12000</td>
<td>132</td>
<td>Milthorpe and Moorby, 1979</td>
</tr>
<tr>
<td>Arroz</td>
<td>12000</td>
<td>190</td>
<td>Milthorpe and Moorby, 1979</td>
</tr>
<tr>
<td>Sorgo</td>
<td>7300</td>
<td>n.d.</td>
<td>Miller and Kebede, 1984</td>
</tr>
<tr>
<td>Trigo</td>
<td>14000</td>
<td>n.d.</td>
<td>Evans et al, 1975</td>
</tr>
<tr>
<td>Papa</td>
<td>19000</td>
<td>n.d.</td>
<td>Milthorpe and Moorby, 1979</td>
</tr>
<tr>
<td>Remolacha azucarera</td>
<td>29000</td>
<td>300</td>
<td>Milthorpe and Moorby, 1979</td>
</tr>
</tbody>
</table>

n.d. = no hay datos disponibles

2. **Componentes del Rendimiento**

El rendimiento, se expresa en función de sus componentes, los cuales forman un todo integral en la distribución final de la materia seca producida por el cultivo. Desde el punto de vista económico, en *Phaseolus vulgaris* L, el rendimiento final es el grano, el cual es la expresión del producto de sus componentes (N° de plantas, peso promedio de 100 semillas; N° de vainas/planta y N° de granos/vaina).
Muchos estudios en *Phaseolus vulgaris* y en otros cultivos, han explorado la posibilidad de seleccionar un solo componente de manera de aumentar el rendimiento, pero en general han fracasado debido al fenómeno de compensación de componentes (Adams, 1967): al aumentar un componente los demás se reducen (White y Sponchiado, 1985). Esto también se detecta cuando se comparan diferentes líneas donde la variación en componentes, muestra frecuentemente que existe una relación muy estrecha entre ellos. El efecto de la compensación de componentes, se atribuye al crecimiento compensatorio cuando la distribución de algunos recursos que limitan el rendimiento en granos son afectados por factores genéticos y ambientales. La principal aplicación de este efecto compensatorio es la alta selección para un componente que pueda aumentar el rendimiento (White y Montes, 1993).

2.6 Resistencia a la sequía

El estudio de las respuestas de las plantas a situaciones de sequía es objeto, actualmente, de numerosas investigaciones, justificándose éstas en su esfuerzo por encontrar las vías de aumentar la productividad y el rendimiento de plantas cultivadas en áreas del mundo, donde hay restricciones del suministro de agua.

Resistencia a la sequía es el término genérico usado para cubrir un variado rango de mecanismos, presentes en un amplio espectro de plantas sometidas a condiciones de déficit hídrico o sequía (Paleg y Aspinall,
1981). El término se usa extensamente con referencia a la habilidad de las plantas a sobrevivir a la sequía, sin embargo, resulta insatisfactorio y a menudo ambiguo. Stoker (1961), utilizó el término para referirse a la resistencia del protoplasma a la sequía estrictamente, hablando. Kramer (1980), prefiere usar el término tolerancia a la sequía, englobando en éste todos los mecanismos y Levitt (1980), usa los términos de escape, evasión y tolerancia como mecanismos parciales de un proceso general de resistencia a la sequía; este criterio lo comparten Turner (1979) y Jones et al (1981), con la diferencia de que consideran la evasión como un proceso de tolerancia con altos potenciales hídricos y la tolerancia a la sequía como un proceso real de tolerancia a bajos potenciales.

En este trabajo usaremos el concepto aceptado por agroecólogos y fisiólogos de cultivos, el cual define la resistencia a la sequía como la habilidad de las plantas cultivadas para crecer y rendir satisfactoriamente en áreas sujetas a períodos de déficit hídrico (Levit, 1972 y White, 1991).

Se han hecho muchos intentos para clasificar las plantas de acuerdo a su resistencia a la sequía (May y Milthorpe, 1962; Parker, 1968; Levitt, 1972 y 1980; Arnon, 1975; Jones et al, 1981; Turner, 1979). La clasificación de estos dos últimos autores es la más simple, y evita la confusión que se origina al considerar como sinónimos los términos sequía y déficit hídrico en la planta; y utilizan el término "sequía" como un término meteorológico, esto es, correspondiente a un período sin una
precipitación significativa. Ellos identificaron tres tipos de resistencia a la sequía:

1. **Escape a la sequía**: La habilidad de las plantas de completar su ciclo de vida, antes de que se desarrolle un déficit hídrico severo.

2. **Tolerancia a la sequía con altos potenciales hídricos de los tejidos**: Las plantas soportan períodos de déficit de precipitación manteniendo un alto potencial hídrico. Por conveniencia este tipo de resistencia, es algunas veces referido como "**evasión a la sequía**" (Levitt. 1972) aunque se debe puntualizar que las plantas con este mecanismo, no evitan la sequía, sino evitan la deshidratación de los tejidos.

3. **Tolerancia a la sequía con bajos potenciales hídricos**: Las plantas soportan períodos de déficit de precipitación con bajo potencial hídrico.

Dentro de estos tres tipos de resistencia a la sequía, hay variedades de mecanismos, (Turner, 1979; Levitt, 1972, 1980; Jones et al, 1981), los cuales se muestran en la tabla 1.3; la cual resume los mecanismos de resistencia a la sequía y su influencia sobre la fotosíntesis y el rendimiento. En los más importantes cultivos agrícolas, la semilla es el rendimiento económico, y, los mecanismos que mantienen la productividad y su eficiencia productiva bajo sequía serán importantes. En contraste a esto, en los sistemas pastorales forrajeros, los mecanismos que mantienen la producción foliar, a través de períodos de precipitación serán más importantes.
TABLA 1.3: Mecanismos de resistencia a la sequía e impacto sobre los procesos de productividad de cultivos, según Turner (1979) y Jones et al (1981)

<table>
<thead>
<tr>
<th>Mecanismo de Resistencia a la sequía</th>
<th>Efectos sobre los procesos de Productividad en cultivos</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Escape a la sequía</td>
<td></td>
</tr>
<tr>
<td>1.1 Rápido desarrollo fenológico</td>
<td>No</td>
</tr>
<tr>
<td>1.2 Desarrollo de la plasticidad</td>
<td>No</td>
</tr>
<tr>
<td>2. Tolerancia a la sequía a altos potenciales hídricos (Evasión de la sequía)</td>
<td></td>
</tr>
<tr>
<td>2.1 Reducción de la pérdida de agua</td>
<td></td>
</tr>
<tr>
<td>a) Incremento en la resistencia epidérmica y estomática</td>
<td>Si</td>
</tr>
<tr>
<td>b) Reducción de la absorción de radiación</td>
<td>Si</td>
</tr>
<tr>
<td>c) Reducción en área foliar</td>
<td></td>
</tr>
<tr>
<td>2.2 Mantenimiento de la absorción de agua</td>
<td></td>
</tr>
<tr>
<td>a) Incremento en la densidad y profundidad radicular</td>
<td>No</td>
</tr>
<tr>
<td>b) Incremento de la conductividad de la fase líquida</td>
<td>No</td>
</tr>
<tr>
<td>3. Tolerancia a la sequía a bajos potenciales hídricos</td>
<td></td>
</tr>
<tr>
<td>3.1 Mantenimiento del turgor</td>
<td></td>
</tr>
<tr>
<td>a) Ajuste osmótico</td>
<td>No</td>
</tr>
<tr>
<td>b) Incremento en elasticidad</td>
<td>No</td>
</tr>
<tr>
<td>c) Decrecimiento en tamaño celular</td>
<td>No</td>
</tr>
<tr>
<td>3.2 Tolerancia a la desecación</td>
<td></td>
</tr>
<tr>
<td>a) Tolerancia protoplasmática</td>
<td>Si</td>
</tr>
</tbody>
</table>

White (1991) considera, en su revisión, que los efectos de la sequía sobre el crecimiento pueden ser diversos, de un rango muy amplio que puede ir desde efectos casi instantáneos a efectos de larga duración.
La rápida aplicación de una sequía causa interrupciones en los niveles de fotosíntesis y de expansión celular. Los efectos sobre la fotosíntesis pueden ser adscritos a dos componentes (O’Toole et al 1977):

1) **Reducción del intercambio de CO₂ a consecuencia del cierre estomático.** En caraota, un cierre total se puede alcanzar en pocos minutos después de la aplicación del déficit hídrico. Con los estomas cerrados la incorporación del CO₂ es mínima y el O₂ se acumula, causando la disminución de la fijación del CO₂, y un incremento de la fotorespiración (Powles y Osmond, 1979). Diferentes argumentos, relacionan el inicio del cierre estomático con el aumento de los niveles de ácido abscisico (ABA) bajo sequía (Aspinal, 1980), sin embargo, en caraota se ha detectado cierre antes del aumento de ABA (Walton, et al, 1977). El cierre estomático, también se ha correlacionado con un descenso del potencial hídrico de la hoja (Ψ_h) y un aumento de la temperatura foliar. En caraota, como sucede en otros cultivos, las rápidas respuestas, en condiciones de campo pueden reflejar sensibilidad a una disminución de la humedad atmosférica, establecida como un incremento del déficit de presión de vapor. La caraota parece ser intermedio en su sensibilidad estomática a la humedad, lo cual sugiere una estrategia de conservación del agua intermedia (Evasión a la sequía).

Pérdida de eficiencia en el proceso fotosintético, reflejado como un incremento en la resistencia del mesófilo (rm). Bajo regímenes de desecación similares a las condiciones de campo, tales efectos ocurren únicamente a bajos potenciales hídricos.
El estrés de la sequía puede afectar la expansión de los tejidos por reducción de la expansión y división celular. Aunque la reducción de la presión de turgor no es la primera causa de la disminución de la expansión del tejido bajo sequía. (Hsiao y Acevedo, 1974). Si el estrés continúa hay un descenso de los potenciales hídricos, lo cual refleja un efecto combinado sobre la presión de turgor y el potencial osmótico, cuando el agua se está perdiendo. Una extrema reducción en la presión de turgor resulta en marchitamiento, incluyendo la pérdida de la habilidad de orientar las hojas. En Phaseolus vulgaris L se ha detectado la acumulación de ABA y prolina como consecuencia, de situaciones de estrés por sequía. La acumulación de prolina y de iones NO$_3^-$ y NH$_4^+$, puede contribuir al ajuste osmótico y refleja la inhibición de la síntesis de proteínas (Stewart y Hanson, 1980).

Los efectos del déficit hídrico por sequía, resultan en cambios mayores en el crecimiento de las plantas de carota como un todo. La reducción del crecimiento se detecta rápidamente después del inicio del déficit hídrico, con reducción del área foliar. Cuando el déficit hídrico se aplica antes de la floración y es sostenido hasta la madurez la biomasa final y la duración de área foliar (DAF) se reducen en un nivel del 50% en contraste con las plantas de las parcelas controles (Sponchiado, 1985), aunque la reducción del rendimiento fue aproximadamente del 40% y 80%
para las líneas resistentes y susceptibles a la sequía respectivamente (White, 1991) (ver tabla 1.4)

En Phaseolus vulgaris L., el déficit hídrico usualmente, se asocia con una aceleración de la madurez, aunque recuperaciones tardías en la última parte de la estación de crecimiento podrían producir, también un incremento del crecimiento y un retardo en la madurez. Las respuestas a la sequía de otras leguminosas de grano, varían ampliamente. Dentro del género Phaseolus, Phaseolus acutifolius, parece ser más tolerante a la sequía que Phaseolus vulgaris (Cory y Webster, 1984).

TABLA 1.4: Parámetros del crecimiento de germoplasmas tolerantes y susceptibles a la sequía, creciendo en el CIAT, Palmira, Colombia. Sometidos a los tratamientos (D y C) (Sponchiado, 1985)

<table>
<thead>
<tr>
<th>Parámetro Evaluado</th>
<th>Tratamiento¹</th>
<th>Tolerantes²</th>
<th>Susceptibles²</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BAT-85</td>
<td>BAT-477</td>
<td>BAT-1224</td>
</tr>
<tr>
<td>Rendimiento (kg/ha)</td>
<td>D</td>
<td>1460<sub>a</sub></td>
<td>1460<sub>a</sub></td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>2520<sub>a</sub></td>
<td>2540<sub>b</sub></td>
</tr>
<tr>
<td>Biomasa (kg/ha)</td>
<td>D</td>
<td>2600</td>
<td>2500</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>5200</td>
<td>5300</td>
</tr>
<tr>
<td>DAF (días)</td>
<td>D</td>
<td>92<sub>a</sub></td>
<td>83<sub>b</sub></td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>17<sub>b</sub></td>
<td>161<sub>b</sub></td>
</tr>
<tr>
<td>%IC</td>
<td>D</td>
<td>55<sub>a</sub></td>
<td>58<sub>a</sub></td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>48<sub>a</sub></td>
<td>48<sub>a</sub></td>
</tr>
</tbody>
</table>

D= Tratamiento de sequía;
C= Tratamiento de riego;
IC= Índice de cosecha;
DAF = Duración de área foliar. Valores seguidos por la misma letra dentro de la fila no son diferentes significativamente a p>0.05 nivel de la prueba de medias de Duncan.
En especies de *Vigna*, algunos cultivares responden a sequías extremas a través de un cierre estomático extremo y una restricción de la pérdida de agua (Shackel y Hall, 1979). En un trabajo clásico, Pandey et al, (1984) encontraron que cowpea (frijol de ojo), soya y maní tenían diferentes grados de resistencia a la sequía comparados con caraota. Cowpea y soya, muestran patrones de resistencia a la sequía similares que *Phaseolus vulgaris* (caraota), pero maní era más resistente.

En el sentido agronómico, un material es tolerante si este produce un buen rendimiento comparado a otros bajo condiciones que involucran déficit hídrico (White, 1991).

1. Escape a la Sequía

Los cultivares de *Phaseolus vulgaris* L., pueden escapar o al menos reducir el estrés por sequía ya sea por una madurez temprana o retardando la madurez hasta que el estrés por sequía haya pasado. La última de estas estrategias se denomina "recuperación". La utilidad de las dos estrategias varía con el tiempo e intensidad del estrés. Estreses severos que se presentan tardiamente en el ciclo de crecimiento, favorecen la precocidad o desarrollo temprano, mientras que estrés suave relativamente temprano, puede favorecer la maduración de líneas con capacidad para la recuperación del crecimiento. En el CIAT, se han considerado dos mecanismos de escape a la sequía. El más convencional es simplemente que un genotipo crezca cuando la humedad del suelo es todavía adecuada
y madura la planta antes que el estrés comience a ser más severo. La segunda alternativa es que aunque un genotipo muestre una madurez normal bajo condiciones de irrigación, sus fechas de madurez muestran plasticidad tal que la sequía causa una aceleración muy alta de la madurez en otros genotipos. Evidencias de escape a la sequía a través de la precocidad, pueden obtenerse al comparar el rendimiento en sequía, con los días de la maduración, el rendimiento frecuentemente muestra una correlación negativa con la madurez. Correlaciones positivas se encuentran cuando diferencias en patrones temporales de estrés hídrico podrían afectar la importancia de la precocidad. Un estrés severo al final de la estación podría favorecer la maduración de las líneas tempranas, mientras que lluvias después de la floración podrían beneficiar los materiales tardíos.

2. Tolerancia a la Sequía

En Phaseolus vulgaris L se presentan varios mecanismos de tolerancia a la sequía. Estos incluyen aquellos que permiten una mayor absorción y los que reducen la pérdida de agua. Como en otros cultivos, la tolerancia a la sequía en Phaseolus ha sido asociada con un mayor crecimiento de la raíz, en suelos fértiles con buena penetración (Sponchiado, 1985). Las diferencias en crecimiento radicular y el rendimiento están asociadas con una mayor explotación de la humedad disponible en el suelo en las líneas tolerantes.
Una alternativa para un cultivo, es que sea capaz de tolerar bajos potenciales hídricos en la raíz y así extraer agua mantenida a bajos potenciales en el suelo, este es básicamente un mecanismo de tolerancia a la desecación. Otra alternativa es que las raíces tengan una gran conductancia hidráulica ya sea axial: por transporte a lo largo del xilema o radial: por absorción desde el suelo al xilema (Taylor, 1980; Passiura, 1983).

Además del incremento de la absorción del agua, un cultivo puede tener adaptaciones, las cuales reducen la pérdida de agua. Desafortunadamente, la reducción del flujo de vapor de agua usualmente implica la reducción de la difusión de CO₂ hacia la hoja y causa limitaciones en la fotosíntesis. La sequía causa marcadas reducciones en IAF (índice de área foliar), pero no hay evidencias de que las líneas tolerantes tengan una reducción mucho mayor que las líneas susceptibles. La reducción de área foliar puede ser compensada a través de un incremento del área superficial del mesófilo por unidad de área foliar (Nobel, 1980), esto ocurre mediante el incremento del espesor foliar y/o reducción del tamaño celular.

Cuando el déficit hídrico es severo, las células de las plantas acumulan solutos, los cuales disminuyen el potencial osmótico (Ψ's) de las células, así al menos mantienen parcialmente la presión de turgor. Los potenciales osmóticos pueden ser regulados a través de cambios en
concentración de K⁺, azúcares, aminoácidos y ácidos orgánicos (Turner y Jones, 1980). Markharnt (1985) comparando el ajuste osmótico entre Phaseolus vulgaris L y Phaseolus acuntifolius L creciendo en recipientes, no detectó diferencias pero Jara (1985), encontró diferencias para P<0.05 al tiempo de floración entre las dos especies creciendo en condiciones de campo, pero no en otros estados del desarrollo de los cultivos.

A potenciales hídricos muy bajos, los procesos fisiológicos pueden ser seriamente afectados. Según White (1991), aparentemente, los efectos de desecación pueden ser divididos entre aquellos que afectan las funciones de la membrana celular y aquellos que afectan la función de las proteínas. Bajo desecación, las membranas celulares aparentemente pierden integración y la eficiencia en los procesos que requieren de membranas se reducen (Leopold et al, 1981).

Los estudios sobre la removilización de los carbohidratos bajo condiciones de sequía sugieren que los cultivares tolerantes son más eficientes en la removilización durante el llenado de grano (Hernández, 1984; Samper, 1984).

3. Conservación de la humedad

Los genotipos son capaces de conservar la humedad a través de movimientos de las hojas, efectos del tamaño de las hojas o reflectividad de la temperatura de la hoja o comportamiento estomático, el cual
conserva agua sin reducir la fotosíntesis, también puede mostrar altos rendimientos bajo estrés hídrico. Recientes trabajos, usando discriminación de isótopos de CO₂, para evaluar la eficiencia en el uso del agua, indican la existencia de grandes diferencias entre genotipos de *Phaseolus vulgaris* L (Ehleringer 1991; Farquar, et al, 1989; White y Castillo, 1988).

Intentos para cuantificar el movimiento de las hojas en relación al movimiento del sol señalaron diferencias en genotipos. White y Castillo (1988), pero no se pudo demostrar relación con el rendimiento. Así mismo, el autor sospecha que tal relación es muy difícil de detectar. La mayoría de los cultivares de carota muestran una marcada habilidad para la localización solar y diferencias cuantitativas muy sutiles pueden ser difíciles de evaluar y confundir, por diferencias en niveles de déficit hídrico como un todo.

4. Integración de mecanismos con otros factores

De los resultados arriba expuestos, mecanismos como *escape y evasión a la sequía* no son una panacea, la cual se deba incorporar ciegamente en todos los germoplasmas para regiones secas. Mas bien parece ser que los conjuntos de mecanismos, deberán ser desarrollados para cada sitio y que la planificación del mejoramiento debe tomar en cuenta la estación y la variación de estaciones, y si es posible los efectos de diferentes prácticas culturales. Una solución empírica consiste en evaluar series de ensayos
sobre diferentes genotipos en periodos variables y en diferentes medios ambientales. En la actualidad, la predicción de la respuesta experimental se realiza mediante el uso de los modelos de simulación de crecimiento tales como Beangro (Hoogenboom, et al, 1990) para producir efectos integrados de diferentes mecanismos, en el contexto de condiciones climáticas variables y de diferentes prácticas agronómicas. Trabajos similares con soya, usando modelos de simulación, ya han demostrado que la importancia relativa del crecimiento de la raíz, el ajuste osmótico y la resistencia estomática, pueden variar con la textura del suelo (Jones y Zur, 1984).
CAPÍTULO 2

RESISTENCIA A LA SEQUÍA EN CULTIVARES DE PHASEOLUS VULGARIS L EN CONDICIONES DE INVERNADERO Y CAMPO

Introducción
Las plantas pueden resistir la sequía a través de un conjunto de mecanismos para escapar, evadir o tolerar el proceso de deshidratación (Turner, 1979; Jones y Turner, 1981; Turner 1986 y Schulze, 1986). Estos mecanismos incluyen los de escape por rápido desarrollo fenológico e incremento de la plasticidad, los de evasión por reducción de la pérdida de agua a través de: 1) un incremento de la resistencia estomática, reducción de la radiación absorbida por cambios en la orientación foliar o reducción del área foliar; 2) incremento de la captación de agua por el desarrollo de largos y profundos sistemas radiculares y por un aumento de la conductividad hidráulica en el continuum suelo-planta-atmósfera. Los mecanismos que tienden a promover tolerancia a la sequía por un mantenimiento de la turgencia, incluyen el ajuste osmótico, un incremento en la elasticidad de la pared celular, o una disminución en el tamaño celular (Schulze, 1986).

Phaseolus vulgaris L puede "escabar" la sequía mediante un rápido desarrollo fenológico (maduración temprana); por retardo de la
maduración hasta que el estrés por sequía haya cesado (llamado recuperación por algunos autores) y por incremento de la plasticidad (Kramer, 1983; White, 1991). Pajarito et al (1989) evaluaron cinco cultivares de *Phaseolus vulgaris* L, en Durango (México), y encontraron que, en general, los genotipos que “escapan” la sequía mediante rápido desarrollo fenológico produjeron un rendimiento 21% más alto. Esta respuesta fue más notable en los genotipos de ciclo intermedio y tardío. No hubo diferencias entre genotipos de ciclo precoz con y sin el mecanismo de escape.

En las plantas leguminosas de grano, las etapas de prefloración, floración y llenado de grano, son las más sensibles a la sequía, en *Phaseolus vulgaris* L está excelentemente demostrado en los trabajos de Robins y Domingo (1956); Flores-Lui (1982); White (1991). El área foliar se reducirá debido a la reducción de la expansión foliar y a la senescencia prematura; este proceso actúa como un mecanismo de resistencia a la sequía; ya que reduce la tasa de uso de agua y demora la caída de las hojas en déficits hídricos severos, pero es un proceso irreversible (Gallegos y Shibata, 1989).

Las respuestas del crecimiento de la caraota al déficit hídrico y la identificación de los mecanismos de resistencia a la sequía, solo han sido estudiados por algunos autores, donde se destaca que el déficit hídrico produce una reducción del área foliar y del rendimiento de la materia seca,
como consecuencia de una reducción del agua del suelo (Hostalacio y Valio, 1984; Couto, 1979; Resende et al, 1981).

Los objetivos de este trabajo fueron:

1) Realizar una evaluación y diagnóstico preliminar de resistencia a la sequía en germoplasmas de *Phaseolus vulgaris* L, bajo la aplicación de un ciclo de déficit hídrico respecto a plantas controles bien irrigadas, en condiciones de invernadero. La presencia o no de mecanismos de resistencia a la sequía se determinó en función de variaciones en los procesos de crecimiento (parámetros morfo-fenológicos, dinámica diferencial de biomasa seca y rendimiento en grano). 2) Determinar mediante un ensayo de campo las respuestas al déficit hídrico de germoplasmas de *Phaseolus vulgaris* L, seleccionados del ensayo de invernadero; mediante el análisis del crecimiento (parámetros morfo-fenológicos y dinámica de biomasa seca), producción de biomasa seca y rendimiento en grano. 3) Identificar y evaluar los mecanismos de resistencia a la sequía presentes en germoplasmas de *Phaseolus vulgaris* L. 4) Determinar la susceptibilidad a la sequía de los germoplasmas evaluados en condiciones de agricultura de secano, respecto a la agricultura de regadío. 5) Establecer los criterios para diseñar un ensayo de riego selectivo que evalúe la resistencia a la sequía en *Phaseolus vulgaris* L, mediante la aplicación de diferentes tratamientos de déficit hídrico a lo largo del ciclo de vida.
2.1 Materiales y métodos

En esta sección del capítulo expondremos la Metodología empleada en el desarrollo de la fase de Exploración Experimental; durante los años 1991 y 1992. En esta fase se realizaron los siguientes ensayos:
2. Ensayo de campo: En la Estación Experimental (IIAP-ULA), San Juan de Lagunillas, Mérida (1992).

Previa a la puesta en marcha, de estos ensayos, se procedió a la búsqueda, selección y caracterización de germoplasmas de *Phaseolus vulgaris* L. Este trabajo se realizó mediante el establecimiento, de tres tipos de germoplasmas

Tipo N° 1: CL – \(\frac{FD}{F_{ind}} \) – AR – ARS

Ciclo largo - floración indeterminada ó indiferente, alto rendimiento y alta resistencia a la sequía

Tipo N° 2: CC-FD-AR-ARS

Ciclo corto-floración determinada, alto rendimiento y alta resistencia a la sequía.

Tipo N° 3: Cultivares regionales, seleccionados por los campesinos de Mérida y Trujillo con criterio de selección estacional del tipo N° 2 (CC-FD-AR-ARS) y tipo N° 1 (CL – \(\frac{FD}{F_{ind}} \) – AR – ARS).
De acuerdo a lo teóricamente establecido, la aplicación de periodos de déficit hídrico por sequía estacional o por acortamiento del riego, debe producir en estos germoplasmas, cambios en las características de los ciclos de vida, en especial tiempo de floración, madurez fisiológica; rendimiento en grano y resistencia a la sequía.

La respuesta preliminar a la sequía se analizó en 10 germoplasmas de Phaseolus vulgaris L (tabla 2.1), mediante un ensayo que se llevó a cabo en condiciones de invernadero en la Estación Experimental del IIAP en Santa Rosa, Mérida, situada a 1900 m.s.n.m. Se aplicó un diseño experimental completamente al azar, para dos tratamientos, uno de déficit hídrico y otro de riego normal.

TABLA 2.1: Procedencia origen, características y tipos de los germoplasmas de Phaseolus vulgaris L utilizados

<table>
<thead>
<tr>
<th>Germoplasma</th>
<th>Procedencia</th>
<th>Origen</th>
<th>Tipos de crecimiento</th>
<th>Tipo del Germoplasma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hr DOR-227</td>
<td>FONAIAP (Mérida)</td>
<td>Guatemala</td>
<td>Arbusto (Erecta)</td>
<td>Tipo 2</td>
</tr>
<tr>
<td>Hr NAG-46</td>
<td>Venezuela</td>
<td>Guatemala</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hr EXP-145</td>
<td>FONAIAP (Trujillo)</td>
<td>ICA-Colombia</td>
<td>Arbusto (Erecta)</td>
<td>Tipo 1</td>
</tr>
<tr>
<td>Hr EMP-192</td>
<td>Venezuela</td>
<td>"</td>
<td>"</td>
<td>Tipo 1</td>
</tr>
<tr>
<td>Hr EMP-199</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>Tipo 1</td>
</tr>
<tr>
<td>Hr EMP-191</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>Tipo 1</td>
</tr>
<tr>
<td>Hr ICA-PIJAO</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>Tipo 2</td>
</tr>
<tr>
<td>Hr AMP-158</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>Tipo 2</td>
</tr>
<tr>
<td>Hr AMP-166</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>Tipo 3</td>
</tr>
<tr>
<td>Vr. Criolla</td>
<td>IIAP ((ULA)</td>
<td>San Juan de Lagunillas</td>
<td>Arbusto (Erecta)</td>
<td>Tipo 3</td>
</tr>
<tr>
<td>San Juan</td>
<td>Venezuela</td>
<td>(Mérida)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

37
El esquema de los cambios producidos sobre los tres tipos de germoplasmas al aplicar el déficit hídrico serían:

Cambios Producidos

- **Tipo 1**: \(CL - \left(\frac{F_{ID}}{F_{Ind}} \right) - AR-ARS \rightarrow CC-FD-AR-ARS \)
 * Expresión de mecanismos de resistencia a la sequía

- **Tipo 2**: \(CL - \frac{F_{ID}}{F_{Ind}} - AR-ARS \rightarrow CC-FD-AR-ARS \)
 ** Expresión, refuerzo y convalidación de mecanismos de resistencia a la sequía

- **Tipo 3**: \(CL - \left(\frac{F_{ID}}{F_{Ind}} \right) - AR-ARS \rightarrow CC-FD-AR-ARS \)
 *** Expresión y mantenimiento de mecanismos de resistencia a la sequía

La identificación y valoración de los mecanismos de resistencia a la sequía, se realizó mediante el estudio de la respuesta en los procesos de crecimiento y rendimiento en grano al aplicar, durante 89 días (mayo a julio de 1991), un déficit hídrico a partir del día 20 después de la siembra y mantenido por 10 días. La respuesta de los germoplasmas bajo déficit hídrico se contrastó con plantas controles bien irrigadas.

Material vegetal

Las características de los 10 germoplasmas se encuentran en la tabla 2.2. Todos los germoplasmas seleccionados fueron de alto rendimiento en grano, pero variaban en relación a la sensibilidad a la sequía.
<table>
<thead>
<tr>
<th>Germoplasma Seleccionado</th>
<th>Clave de Identificación</th>
<th>Tipo</th>
<th>Referencias sobre Yr(g) y Rs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vr Criolla San Juan</td>
<td>“A”</td>
<td>3</td>
<td>YrR(+)YrS(I)Rs(I)</td>
</tr>
<tr>
<td>Hr DOR-227</td>
<td>“B”</td>
<td>2</td>
<td>YrR(+)YrS(+)Rs(+)</td>
</tr>
<tr>
<td>Hr NAG-46</td>
<td>“C”</td>
<td>2</td>
<td>YrR(+)YrS(-)Rs(-)</td>
</tr>
<tr>
<td>Hr EXP-145</td>
<td>“D”</td>
<td>1</td>
<td>YrR(+)YrS(+)Rs(+)</td>
</tr>
<tr>
<td>Hr EMP-192</td>
<td>“E”</td>
<td>1</td>
<td>YrR(+)YrS(+)Rs(+)</td>
</tr>
<tr>
<td>Hr EMP-199</td>
<td>“F”</td>
<td>1</td>
<td>YrR(+)YrS(-)Rs(-)</td>
</tr>
<tr>
<td>Hr EMP-191</td>
<td>“G”</td>
<td>1</td>
<td>YrR(+)YrS(+)Rs(+)</td>
</tr>
<tr>
<td>Hr ICA-PIJAO</td>
<td>“H”</td>
<td>2</td>
<td>Yr(+)+YrS(-)Rs(-)</td>
</tr>
<tr>
<td>Hr AMP-158</td>
<td>“I”</td>
<td>2</td>
<td>YrR(+)YrS(-)Rs(-)</td>
</tr>
<tr>
<td>Hr AMP-166</td>
<td>“J”</td>
<td>2</td>
<td>YrS(+)+YrS(-)Rs(-)</td>
</tr>
</tbody>
</table>

YrR: Rendimiento real bajo riego: (+) Alto; YrS: Rendimiento real en secano: (+) Alto, (-) Bajo, (I) Intermedio; RS: Resistencia a la sequía: (+) Alta, (-) Baja, (I) Intermedio. Fuente (Tabla 2.1).

2.1.1 Diseño experimental en invernadero

Las semillas de los germoplasmas seleccionados, probados en el laboratorio para evaluar su germinabilidad y viabilidad, se sembraron en potes plásticos de 5 kg de capacidad y se regaron diariamente hasta la fase juvenil: fase definida entre la etapa (V4) de la fase vegetativa y la etapa (R5) de la fase reproductiva; la cual se alcanzó el día 20 después de la siembra cuando las plantas presentan 3 nudos en el tallo principal y empiezan a aparecer ramas secundarias (Añez y Tabira, 1990). En esta fecha cada bloque de germoplasma se dividió en dos subpoblaciones, a una se le suprimió el riego, aplicándole un tratamiento de déficit hídrico por 10 días, y la otra se mantuvo en riego normal (50% de la capacidad de
campo). Después de los 10 días se reinició el riego en todos los bloques, el cual se mantuvo hasta la cosecha final. Durante el desarrollo del ensayo se mantuvieron en el invernadero las condiciones climáticas promedios de la Estación de San Juan de Lagunillas: temperatura (28 °C día / 16 °C noche); humedad relativa (40% día / 65% noche) y 450 µmol.m⁻².s⁻¹ de PAR, para los meses de mayo, junio y julio. El sustrato utilizado fue suelo de la Estación Experimental, sin agregar fertilizantes, cuyas condiciones edáficas naturales se pueden observar en la tabla 2.3. Se realizaron 3 cosechas del material vegetal: Cosecha 1: efectuada 20 días después de la siembra (20 DDS) en plantas del tratamiento hídrico N° 2 (control): Th2. Cosecha 2: efectuada 30 días después de la siembra (30 DDS) en plantas del tratamiento hídrico N° 1 (déficit hídrico): Th1 y plantas del tratamiento hídrico N° 2 (control): Th2. Cosecha 3: efectuada 89 días después de la siembra (89 DDS) en plantas Th1 + Riego y plantas Th2. En cada cosecha se analizó el desarrollo fenológico, floración, acumulación diferencial de biomasa y rendimiento en grano. En la última cosecha se determinó la producción de grano por planta y algunos componentes del rendimiento, para luego establecer y analizar la producción total de la población de cada germoplasma. En resumen, para este ensayo se realizaron 4 determinaciones (tabla 2.4).

El número de plantas cosechadas en cada cosecha para cada germoplasma, los análisis efectuados y el N° total de plantas cosechadas, se especifican en la tabla 2.5.
TABLA 2.3: Características del Suelo a una profundidad de 30 cm de la Estación Experimental del IIAP en San Juan de Lagunillas, Mérida. Análisis realizado en el Laboratorio de Suelo del IIAP, para n=4 (muestras)

<table>
<thead>
<tr>
<th>Clase</th>
<th>Esqueleto</th>
<th>Textura</th>
<th>pH</th>
<th>CO</th>
<th>N</th>
<th>C/N</th>
<th>P</th>
<th>K</th>
<th>Mg</th>
<th>Ca</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>grueso> 2mm</td>
<td>a</td>
<td>L</td>
<td>A</td>
<td>1:2</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>ppm</td>
<td>ppm</td>
</tr>
<tr>
<td>Faa</td>
<td>53.38</td>
<td>59.20</td>
<td>21.30</td>
<td>19.50</td>
<td>6.91</td>
<td>0.875</td>
<td>0.085</td>
<td>11.20</td>
<td>18.25</td>
<td>208.5</td>
</tr>
</tbody>
</table>

TABLA 2.4: Características medidas, cosecha y el tiempo de cosecha

<table>
<thead>
<tr>
<th>Tipo</th>
<th>Análisis</th>
<th>Parámetro</th>
<th>Nº Cosecha Evaluada</th>
<th>Tiempo de las cosechas (DDS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N° 1</td>
<td>Fenología</td>
<td>Altura de la planta, profundidad radicular, área foliar, floración</td>
<td>1, 2 y 3</td>
<td>1 (20 DDS) 2 (30 DDS) 3 (89 DDS)</td>
</tr>
<tr>
<td>N° 2</td>
<td>Biomasa Seca</td>
<td>Peso seco (raíz) Peso seco (hoja) Peso seco (tallo) Peso seco (planta)</td>
<td>1, 2 y 3</td>
<td>1 (20 DDS) 2 (30 DDS) 3 (89 DDS)</td>
</tr>
<tr>
<td>N° 3</td>
<td>Crecimiento</td>
<td>Raíz R: Talle g g día⁻¹ Hoja Planta</td>
<td>1, 2 y 3</td>
<td>1 (20 DDS) 2 (30 DDS) 3 (89 DDS)</td>
</tr>
<tr>
<td>N° 4</td>
<td>Rendimiento en grano (Y₀) y componentes del rendimiento</td>
<td>Nº vainas/planta Nº granos/vaina peso granos/vaina peso total grano/planta</td>
<td>3</td>
<td>3 (89 DDS)</td>
</tr>
</tbody>
</table>

DDS: Días después de la siembra
R: Tasa relativa de crecimiento
TABLA 2.5: N° de plantas cosechadas y análisis efectuados

<table>
<thead>
<tr>
<th>N° Cosecha</th>
<th>N° Plantas/germplasma</th>
<th>Análisis Efectuado/Cosecha</th>
<th>N° Total plantas cosechadas</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TH₁(DH)</td>
<td>TH₂ control</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>--</td>
<td>5</td>
<td>1, 2, 3 y 4</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>5</td>
<td>1, 2 y 3</td>
</tr>
<tr>
<td>3</td>
<td>--</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>TH₁(DH)</td>
<td>TH₁(DH) + R</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>25</td>
<td></td>
</tr>
</tbody>
</table>

El grado de resistencia a la sequía se caracterizó mediante el índice de susceptibilidad a la sequía (S) descrito por Fisher y Mauree (1978).

\[
S = 1 - \frac{R_s}{R_r} \\
\]

\(R_s = \) Rendimiento en grano para secano de cada cultivar: Kg/ha
\(R_r = \) Rendimiento en grano para riego de cada cultivar: Kg/ha
\(D = \) Intensidad de la sequía, representa la reducción media del rendimiento en grano producida por la sequía.

Los resultados se analizaron estadísticamente a través del paquete SAS (Anonymous, 1982), aplicado a los datos experimentales mediante un análisis de varianza múltiple.

2.1.2 Ensayo de campo: Se realizó entre los meses de junio a agosto de 1992. Se desarrolló en la Estación Experimental del IIAP en San Juan de Lagunillas, Mérida. El objetivo fue identificar y analizar la resistencia a la sequía en condiciones de campo, de los cinco germoplasmas que fueron seleccionados de acuerdo a sus potencialidades como tolerantes o susceptibles a la sequía en el ensayo de invernadero. Tuvo una duración efectiva de 89 días. Los cultivares se dejaron en déficit hídrico a partir del día 20 después de la siembra y se mantuvo por 60 días.
Área de estudio

El trabajo de campo se realizó en la estación experimental del IIAP-ULA en San Juan de Lagunillas, Estado Mérida (08°31'N, 71°21'W), altitud 1104 m.s.n.m, precipitación promedio de 528 mm anuales y temperatura media anual de 22°C. Sarmiento et al (1971) y Ochoa y Malagon (1979), describen la zona como de clima BSwh, zona de vida bosque seco premontano, sub-tropical, vegetación hortícola bajo riego y selva estacional montaña. Suelo, cambortid típico, franco fino, micaceo, isohipertérmico. La Fig. 2.1 muestra el climadiagrama para el año (1992) realizado a partir de datos climáticos provenientes del MARN para la estación meteorológica de San Juan de Lagunillas y de datos y cálculos obtenidos por el autor durante el ensayo de campo.

La evaporación anual acumulada supera ampliamente la precipitación anual acumulada. Se observan dos períodos de máxima evaporación comprendidos entre diciembre y marzo, así como entre julio y agosto. Se eligió el periodo entre junio y agosto por presentar históricamente una precipitación media entre la muy baja de enero a marzo y la muy alta entre octubre y noviembre.

En las tablas (2.6 y 2.7), se presentan los resultados del análisis de suelo practicado a muestras, tomadas previamente a la realización del ensayo, los valores de retención de humedad para estratos de (0-10 cm) y (10-21cm). El suelo se caracteriza por ser muy superficial a subsuperficial limitado por capas de fragmentos gruesos que aparecen
FIGURA 2.1: Climadiagrama de la Estación Experimental del IIAP en San Juan de Lagunillas, Mérida, para el año (1992): MARN y observaciones personales

<table>
<thead>
<tr>
<th>N° RL</th>
<th>Profundidad (cm)</th>
<th>Esqueleto grueso > 2mm</th>
<th>Textura</th>
<th>Clase textural</th>
<th>pH 1:2</th>
<th>CO %</th>
<th>N %</th>
<th>C/N</th>
<th>P ppm</th>
<th>K ppm</th>
<th>Mg ppm</th>
<th>Ca ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>25.266 0-30</td>
<td>50.72</td>
<td>56.8</td>
<td>21.2</td>
<td>22.0</td>
<td>FAa</td>
<td>6.80</td>
<td>1.02</td>
<td>0.098</td>
<td>14.4</td>
<td>30</td>
<td>360</td>
<td>130</td>
</tr>
<tr>
<td>25.267 0-30</td>
<td>53.97</td>
<td>61.6</td>
<td>22.4</td>
<td>16.0</td>
<td>Fa</td>
<td>6.90</td>
<td>0.62</td>
<td>0.072</td>
<td>8.6</td>
<td>4</td>
<td>104</td>
<td>120</td>
</tr>
<tr>
<td>0-30 0-30</td>
<td>52.34</td>
<td>58.0</td>
<td>20.0</td>
<td>22.0</td>
<td>FAa</td>
<td>7.00</td>
<td>0.91</td>
<td>0.084</td>
<td>10.8</td>
<td>8</td>
<td>140</td>
<td>120</td>
</tr>
<tr>
<td>25.269 0-30</td>
<td>56.48</td>
<td>60.4</td>
<td>21.6</td>
<td>18.0</td>
<td>Fa</td>
<td>6.95</td>
<td>0.95</td>
<td>0.086</td>
<td>11.0</td>
<td>31</td>
<td>230</td>
<td>120</td>
</tr>
<tr>
<td>X 0-30</td>
<td>53.38</td>
<td>59.20</td>
<td>21.30</td>
<td>19.50</td>
<td>FAa</td>
<td>6.91</td>
<td>0.88</td>
<td>0.085</td>
<td>11.20</td>
<td>18.25</td>
<td>208.5</td>
<td>122.5</td>
</tr>
</tbody>
</table>

N° RL = N° de registro de laboratorio
TABLA 2.7: Valores de retención de humedad W, en %, a diferentes succiones S, en atm. Laboratorio de Suelo del IIAP-ULA (n=2).

<table>
<thead>
<tr>
<th>Muestra</th>
<th>Estrato, cm</th>
<th>Succión S, atm</th>
<th>Humedad W, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0 - 10</td>
<td>1/3</td>
<td>27.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>22.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>16.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td>14.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>13.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15</td>
<td>12.5</td>
</tr>
<tr>
<td>2</td>
<td>10 - 21</td>
<td>1/3</td>
<td>25.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>21.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>14.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td>12.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>12.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15</td>
<td>11.7</td>
</tr>
</tbody>
</table>

Valores Promedio de humedad, W%

<table>
<thead>
<tr>
<th>Succión atm</th>
<th>1/3</th>
<th>1</th>
<th>4</th>
<th>7</th>
<th>10</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>26.6</td>
<td>22.0</td>
<td>15.1</td>
<td>13.3</td>
<td>12.6</td>
<td>12.1</td>
</tr>
</tbody>
</table>

... con menor frecuencia a lo largo del perfil y en la superficie, el horizonte A siempre delgado, descansa sobre un B de alteración (Bs) y este sobre un horizonte. Las texturas varían desde gruesas en la superficie a medias en la profundidad.

Material vegetal

Se evaluaron cinco germoplasmas seleccionados del ensayo de invernadero previo (1991) y que presentaron las siguientes características: Hr DOR-227: rendimiento en sequía (intermedio) y resistencia a la sequía (baja) por alto índice (S); Hr EXP-145: rendimiento en sequía (intermedio)
y resistencia a la sequía (baja) por alto índice (S); Hr ICA-PIJAO: rendimiento en sequía (baja) y resistencia a la sequía (baja) por alto índice (S); Hr EMP-192: rendimiento en sequía (intermedio) y resistencia a la sequía (baja) por alto índice (S); Vr Criolla San Juan: rendimiento en sequía (alto) y resistencia a la sequía (intermedia) por índice (S) intermedio. Adicionalmente estos germoplasmas mostraron en el invernadero una mayor resistencia al ataque de plagas.

Se utilizó un diseño estadístico experimental en bloques al azar, con arreglo factorial de parcelas divididas, con dos tratamientos hídricos (sequía y riego) aplicado para las parcelas principales, a cinco germoplasmas (subparcelas) con cuatro repeticiones.

En un área de 200 m² de una parcela de 1500 m², se sembraron los cinco (05) germoplasmas en parcelas con riego y sin riego. Cada parcela estuvo subdividida en cinco (05) sub-parcelas, cada bloque se repitió 4 veces. Cada sub-parcela se estableció en un área de 4m², con 5 hileras de 2 m de largo cada una, con 40 cm de separación entre hilera y 20 cm entre cada planta; se utilizó un solo nivel de riego, con una sola frecuencia (aplicación de riego cada 72 horas) y la técnica empleada fue la de riego por surco por derivación del riego central. Luego de la preparación agronómica del terreno, la cual incluyó mecanización del mismo, se procedió al replanteo de las parcelas y sub-parcelas, se instaló el sistema de riego, se tomaron muestras de suelo para efectuar los análisis
físico-químicos de fertilidad y la correspondiente curva de retención de humedad. Se procedió a la saturación hídrica de todo el área del ensayo, realizándose un riego por aspersión de saturación total, que se mantuvo por 4 días consecutivos y luego de 24 horas de haber sido suspendido, se sembraron las semillas de los cinco germoplasmas (10-06-92). Se efectuó una fertilización previa al ensayo con un fertilizante granulado comercial del tipo (15\textsubscript{N}, 15\textsubscript{P}, 15\textsubscript{K}), aplicando a cada sub-parcela una dosis equivalente a 40 Kg/ha (16 g/4m2), se volvió a fertilizar a los 15 días después de la siembra, con la misma dosis por planta (Añez, 1976).

Las parcelas con riego, recibieron agua en forma de riego hasta el final del ensayo, mientras que las parcelas sin riego (agricultura de secano) no se les suministró agua desde el día 21 después de la siembra hasta la cosecha final (31-08-92). La única fuente de agua en estas parcelas, fue la aportada por las precipitaciones, las cuales fueron muy escasas durante el desarrollo del ensayo (Fig. 2.1), en promedio se considera que las plantas sin riego se mantuvieron en un estado de "déficit hídrico" relativo de 60 días. La cosecha final de todo el material vegetal se efectuó a los 110 DDS (31-08-92). Todos los germoplasmas habían terminado su ciclo ontogenético, con las fase de llenado de grano y maduración de vainas, en un promedio de 89 días, pero se espera a que las plantas que permanecían vegetativamente activas, complementarán su senescencia y lograr así que todas las vainas estuvieran secas. Se procedió
a cosechar todo el material vegetal y la necromasa de cada sub-parcela para obtener la producción total de biomasa seca y rendimiento en grano.

En este ensayo, se determinaron los siguientes parámetros climáticos. Temperatura del aire, dosel y suelo, humedad relativa del aire, radiación total, PAR y radiación del suelo. Se realizaron cursos diarios de 8 am a 6 pm, cada 2 horas en las fechas de evaluación de los 10, 20 y 30 DDH, para las lecturas de los tensiómetros de suelo. Los datos de precipitación y evaporación, se obtuvieron a partir de la estación meteorológica del MARN en San Juan de Lagunillas, Estado Mérida. Con los valores de temperatura, humedad relativa, precipitación y evaporación, se estimaron los valores de ETo para los meses de julio, agosto y septiembre de 1992. Utilizando una modificación de la fórmula de Grassi, (1988) para la evaporación y combinándola para los registros de temperatura del dosel, se estimaron ETreal, ETcultivo y ETmáxima para el día en un curso diario y para valores mensuales. Además se determinaron dos parámetros del estado hídrico:

1. Potenciales hídricos del suelo (Ψsuelo)

Se utilizaron tensiómetros de succión de agua en el suelo, con columna de mercurio como elemento sensible, los cuales se instalaron en subparcelas (Germoplasma) de cada tratamiento hídrico (riego y sequía) y se realizaron medidas a las 10 a.m. a los 10, 20 y 30 días de déficit hídrico.
2. Evapotranspiración real y máxima del cultivo (ET₀ y ETₘ)

Se eligió la fórmula de Grassi (1988), para la radiación y se estimaron estos parámetros para el mismo curso diario.

\[E_t = 0.537 R_s C_T C_{Cr} F \]

Rs: Radiación solar, promedio del período correspondiente, expresada en altura equivalente de agua evaporada en mm/día.

Cₜ: Coeficiente de temperatura, siendo T la temperatura media

Cₜₐ: Coeficiente de cubrimiento del terreno por el cultivo (tamaño del cultivo)

Cₜₐ = Cᵥ: Coeficiente de duración relativa del ciclo vegetativo expresada en porcentaje: C=0.513

F: Factor de cultivo (caraota = 1.00)

Respuestas de las plantas

a) Morfo-fenología: Tiempo de iniciación floral, Tiempo de prolongación de la floración, Tiempo de iniciación de la fructificación; Prolongación de fructificación; Altura de las plantas al inicio de la floración; Longitud de las raíces al inicio de la floración; Altura y Profundidad radical de las plantas cosechadas. Estos parámetros se evaluaron como parte de un análisis de crecimiento efectuado, conjuntamente, con el análisis de dinámica de Biomasa seca.

b) Biomasa: Se determinaron la biomasa seca y necromasa al tiempo de la madurez fisiológica, para lo cual se fraccionó la biomasa y se secó en la
estufa. Se determinó la producción total de biomasa seca (kg/ha), que con el rendimiento en grano sirvió para calcular el índice de cosecha (IC). Se estableció la contribución de los órganos respeto al peso seco total/planta.

Análisis del rendimiento en grano

En la cosecha final (rendimiento), se recolectaron las vainas en cada sub-parcela (germplasma) de cada tratamiento hídrico (parcelas) se efectuó un análisis del rendimiento (Y), evaluándose los siguientes componentes:

1) Número de plantas cosechadas/sub-parcela; 2) Número de plantas censadas/sub-parcela a los 15 DDS; 3) Número de semillas/vaina; y, 4) Peso total de semillas/planta

El rendimiento en grano Y_G, se calculó mediante la ecuación siguiente:

$$Y_G = A.B.C.D$$

A: N° de plantas cosechadas/área de sub-parcela
B: N° (\bar{X}) de vainas/ planta
C: N°(\bar{X}) de semillas/vaina
D: (\bar{X}) de peso de 100 gramos

A fin de caracterizar el grado de resistencia a la sequía de los distintos cultívares (germplasmas), en condiciones de campo se utilizaron el índice de susceptibilidad a la sequía (S, Fisher y Maurer, 1978), y el índice de cosecha (IC), el cual se calculó mediante la siguiente ecuación:
IC = \frac{\text{Rendimiento económico}}{\text{Rendimiento biológico}}

Rendimiento económico = (Y_{rea}) \times \text{kg/ha}

Rendimiento biológico = \text{Biomasa seca + rendimiento en grano total} \times \text{Kg/ha}

Con este índice se pueden determinar los efectos de la sequía sobre el rendimiento del cultivo, en forma independiente de los efectos que se ejercen sobre la acumulación del material vegetal.

2.2 Resultados

2.2.1 Condiciones de invernadero

Los parámetros morfofenológicos (altura de la planta y profundidad radicular), se presentan en la figura 2.2 como variación de la relación vástago/raíz.

La relación vástago/raíz en los 10 germoplasmas en la cosecha I varió en un rango de 1.1 a 2.4, con valores máximos para DOR-227 (2.3); EMP-191 (2.4) y AMP-158 (2.4), donde se observa la máxima profundidad radicular (figura 2.2.1). No se encontraron diferencias significativas (prueba de Duncan) entre los 10 germoplasmas. Para la cosecha II (30 DDS) se encontraron variaciones entre los tratamientos de riego y de déficit hídrico; observándose que hubo un aumento de la relación bajo déficit hídrico respecto al control, para todos los germoplasmas excepto en DOR-227 que presenta un descenso (figura 2.2.2). La prueba de Duncan, mostró diferencias significativas (p<0.05 y p<0.01) para Criolla San Juan, NAG-46, EXP-145, EMP-199 y EMP-191, por disminución de la profundidad radicular, y para DOR-227 (p<0.05) por aumento de la profundidad radicular.
FIGURA 2.2: Relación vástago/raíz en 10 germoplasmas de Phaseolus vulgaris L sometidos a 2 tratamientos hídricos en el curso de tres cosechas: 1) Cosecha I: 20 DDS 2) Cosecha II (30 DDS) 3) Cosecha III (89 DDS)
En la figura 2.2.3, la relación vástago/raíz, entre los 10 germoplasmas la cosecha III (89 DDS) varió comparativamente entre los tratamientos hídricos de riego y de (déficit hídrico + control). Se observan dos grupos; uno con ligera disminución de la relación en los germoplasmas bajo (déficit hídrico + recuperación) respecto al control: (Criolla San Juan, DOR-227, NAG-46, EXP-145 y EMP-192) y otro donde aumentó o se mantuvo igual para el resto de los germoplasmas. La prueba de Duncan mostró diferencias significativas (p<0.05) para todos los germoplasmas en las dos condiciones.

La Fig. 2.3 presenta los resultados de la variación del área foliar para los 10 germoplasmas estudiados. En los controles, el área foliar, aumentó en las cosechas 1 y 2 y disminuyó en 3. El déficit hídrico produjo un descenso respecto a los controles, excepto en la Vr Criolla San Juan donde se observó un ligero aumento de área foliar. En la cosecha 3 el área foliar mostró una caída pronunciada para ambos tratamientos de déficit hídrico+Recuperación y el control bajo riego normal. Los valores de área foliar en la cosecha 3 fueron los más bajos del ensayo y no presentaron diferencias entre los dos tratamientos. La prueba de Duncan aplicada a la variación de área foliar en la 1ra cosecha, no reveló diferencias significativas. En la 2da cosecha, no hubo diferencias significativas solamente para Criolla San Juan y EXP-145 y en la 3ra cosecha no hubo diferencias significativas en la variación de área foliar para ninguno de los 10 germoplasmas.
FIGURA 2.3: Variación de área foliar para 10 germoplasmas de Phaseolus vulgaris L, sometidos a dos tratamientos hídricos (10 DDH y controles bien irrigados); DMS (Diferencias mínimas significativas); NS (No significativas) A (Cosecha 1: 20 DDS, 0 DDH); B (Cosecha 2: 30 DDS, 10 DDH); C (Cosecha 3: 89 DDS, 10 DDH+R)
Las plantas bajo déficit hídrico, mostraron una tendencia a adelantar la fecha de iniciación floral, respecto a los controles (tabla 2.8). Destacan los germoplasmas DOR-227, EXP-145 y Criolla San Juan con 6, 5 y 4 días de adelanto de la floración. Los germoplasmas en déficit hídrico mostraron diferencias mínimas significativas respecto a los controles en referencia al inicio de floración.

El análisis estadístico de las variables: altura de la planta, profundidad radicular, área foliar, peso seco total, peso seco de la raíz, área foliar específica, relación tallo/raíz del inicio de floración de los 10 germoplasmas en la 2da cosecha se realizó a partir de un análisis de varianza para cada parámetro; el conjunto de datos se analizó mediante el paquete estadístico SAS (Anonymous, 1982) (ver Anexo N° 1). Las altas diferencias significativas a p<0.05 y p<0.01, se debieron a diferencias mínimas significativas para la fuente de variación (modelo estadístico aplicado); germoplasmas, tratamientos hídricos e interacción germoplasma x tratamiento hídrico.

La tasa relativa de crecimiento (\tilde{R}) calculada para órganos y planta completa, en el intervalo entre las cosechas 2 y 1, se presenta en la figura 2.4. El déficit hídrico, en general, afectó el crecimiento a nivel de la planta completa, produciendo una reducción del tamaño. Los germoplasmas más afectados fueron NAG-46, EMP-158 y AMP-199 ya que presentaron los valores más altos de % de reducción de \tilde{R} (33.18; 27.37 y 26.34

55
TABLA 2.8: Análisis de Floración para 10 Germoplasmas de *Phaseolus vulgaris*, sometidos a 2 Tratamientos (Riego y Déficit hídrico) bajo Condiciones de Invernadero: DDH = Días en déficit hídrico; R = Riego; DH = Déficit hídrico; DDS = Días después de la siembra; a y b = Diferencia mínima significativa a p<0.05 y p<0.01 respectivamente (prueba Duncan); c = No significativa; n = 5 repeticiones

<table>
<thead>
<tr>
<th>Germoplasma Evaluado</th>
<th>Tratamiento Hídrico</th>
<th>Tiempo de la iniciación Floral (DDS)</th>
<th>Tiempo en DH (DDH)</th>
<th>$\Delta T_{if} = T_{ifDH} - T_{ifC}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>"A" Criolla San Juan</td>
<td>R</td>
<td>48</td>
<td>0</td>
<td>4 días de adelanto</td>
</tr>
<tr>
<td>B DOR-227</td>
<td>R</td>
<td>48</td>
<td>0</td>
<td>6 días de adelanto</td>
</tr>
<tr>
<td>"C"</td>
<td>DH</td>
<td>42 ab</td>
<td>10 DDH</td>
<td>Igual floración</td>
</tr>
<tr>
<td>NAG-46</td>
<td>R</td>
<td>47</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>"D"</td>
<td>R</td>
<td>48</td>
<td>0</td>
<td>5 días de adelanto</td>
</tr>
<tr>
<td>EXP-145</td>
<td>DH</td>
<td>43 ab</td>
<td>10 DDH</td>
<td>1 día de adelanto</td>
</tr>
<tr>
<td>"E"</td>
<td>R</td>
<td>47</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>EMP-192</td>
<td>DH</td>
<td>48 ab</td>
<td>10 DDH</td>
<td></td>
</tr>
<tr>
<td>"F"</td>
<td>R</td>
<td>48</td>
<td>0</td>
<td>Igual floración</td>
</tr>
<tr>
<td>EMP-199</td>
<td>DH</td>
<td>48 c</td>
<td>10 DDH</td>
<td></td>
</tr>
<tr>
<td>"G"</td>
<td>R</td>
<td>50</td>
<td>0</td>
<td>1 día de adelanto</td>
</tr>
<tr>
<td>EMP-191</td>
<td>DH</td>
<td>50 ab</td>
<td>10 DDH</td>
<td></td>
</tr>
<tr>
<td>"H"</td>
<td>R</td>
<td>49</td>
<td>0</td>
<td>1 día de adelanto</td>
</tr>
<tr>
<td>ICA-PJJAO</td>
<td>DH</td>
<td>50 ab</td>
<td>10 DDH</td>
<td></td>
</tr>
<tr>
<td>"I"</td>
<td>R</td>
<td>49</td>
<td>0</td>
<td>Igual floración</td>
</tr>
<tr>
<td>AMP-158</td>
<td>DH</td>
<td>49 c</td>
<td>10 DDH</td>
<td></td>
</tr>
<tr>
<td>"J"</td>
<td>R</td>
<td>50</td>
<td>0</td>
<td>1 día de adelanto</td>
</tr>
<tr>
<td>AMP-166</td>
<td>DH</td>
<td>51 ab</td>
<td>10 DDH</td>
<td></td>
</tr>
<tr>
<td>X (10G)</td>
<td>R</td>
<td>48.0</td>
<td>0</td>
<td>igual tiempo de floración</td>
</tr>
<tr>
<td></td>
<td>DH</td>
<td>47.6 c</td>
<td>10 DDH</td>
<td></td>
</tr>
</tbody>
</table>

ΔT_{if}: Variación del tiempo de iniciación floral
T_{ifDH}: Tiempo de iniciación floral en déficit hídrico
T_{ifC}: Tiempo de iniciación floral en control
FIGURA 2.4: Tasa relativa de crecimiento (\bar{R}):g.g$^{-1}$.día$^{-1}$ para raíz, hoja, tallo y planta para 10 germoplasmas de Phaseolus vulgaris L entre la cosecha 2 (30 DDS y 10 DDH) y la cosecha 1 (20 DDS y 0 DDH). a = Diferencias mínimas significativas (DMS). c = No significativo (NS), mediante prueba de Duncan
respectivamente) en tanto que el menos afectado fue DOR-227 con un valor de 5.74%. La reducción del crecimiento total se refleja indudablemente a nivel de cada órgano en particular que con alguna excepciones también disminuyeron su crecimiento en déficit hídrico. Los germoplasmas en los cuales el DH no afectó el crecimiento fueron los siguientes: Criolla San Juan (raíz), EXP-145 (raíz y tallo), DOR-227 (hoja). Por otra parte los que presentaron la mayor reducción fueron: NAG-46 (raíz y tallo) y AMP-166 (hoja).

2.2.2 Rendimiento en grano e índice de susceptibilidad a la sequía

El rendimiento en grano y el índice de susceptibilidad a la sequía (S), se calcularon a partir de la producción en grano en la cosecha N° 3 (89 DDS y 10 DDH+R). En la tabla 2.9 observamos la variación promedio de los componentes del rendimiento y el rendimiento en grano de 10 germoplasmas con 10 días de déficit hídrico respecto a los controles. El N° de vainas/planta es similar en los dos tratamientos hídricos en Criolla San Juan, NAG-46 y EMP-192; se hace menor en (DOR-227, EXP-145 e ICA-PIJAO) y aumenta para EMP-199, AMP-158 y AMP-196.

El componente N°semillas/vainas permanece igual en Criolla San Juan e ICA-PIJAO, disminuyó en DOR-227, NAG-46, EXP-145, EMP-92, EMP-199 y AMP-196 y aumentó en EMP-191 y AMP-158. En el (peso seco \bar{X} de 100 semillas), hubo un ligero aumento bajo déficit hídrico.
TABLA 2.9: Variación promedio de componentes del rendimiento y rendimiento para 10 germoplasmas de Phaseolus vulgaris L., \%\textsubscript{DH}\textsubscript{Yc} \% reducción del rendimiento, S índice de susceptibilidad a la sequía. n = 5; G = Germoplasma; Entre control y déficit hídrico a=DMS (p<0.05), b=DMS (p<0.01), C=No significativo, para la prueba de Duncan; Y.

<table>
<thead>
<tr>
<th>G</th>
<th>Th</th>
<th>Componentes del rendimiento</th>
<th>Y\textsubscript{G}=g/planta</th>
<th>%\textsubscript{DH}\textsubscript{Yc}</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>No vainas planta</td>
<td>No semillas vainas</td>
<td>Peso seco del X (100 semillas)</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>R</td>
<td>3.20</td>
<td>3.56</td>
<td>0.150</td>
<td>42.72</td>
</tr>
<tr>
<td></td>
<td>DH</td>
<td>3.24 c</td>
<td>3.52 c</td>
<td>0.175 c</td>
<td>49.89 c</td>
</tr>
<tr>
<td>B</td>
<td>R</td>
<td>3.36</td>
<td>3.76</td>
<td>0.190</td>
<td>60.01</td>
</tr>
<tr>
<td></td>
<td>DH</td>
<td>2.44 ab</td>
<td>2.96 ab</td>
<td>0.200 c</td>
<td>36.11 a</td>
</tr>
<tr>
<td>C</td>
<td>R</td>
<td>2.56</td>
<td>3.20</td>
<td>0.150</td>
<td>28.30</td>
</tr>
<tr>
<td></td>
<td>DH</td>
<td>2.52 c</td>
<td>2.68 ab</td>
<td>0.165 c</td>
<td>27.86 c</td>
</tr>
<tr>
<td>D</td>
<td>R</td>
<td>3.28</td>
<td>3.68</td>
<td>0.160</td>
<td>48.28</td>
</tr>
<tr>
<td></td>
<td>DH</td>
<td>2.24 ab</td>
<td>2.56 ab</td>
<td>0.198 c</td>
<td>28.39 a</td>
</tr>
<tr>
<td>E</td>
<td>R</td>
<td>2.68</td>
<td>3.64</td>
<td>0.168</td>
<td>40.97</td>
</tr>
<tr>
<td></td>
<td>DH</td>
<td>2.12 ab</td>
<td>2.29 ab</td>
<td>0.192 c</td>
<td>29.30 c</td>
</tr>
<tr>
<td>F</td>
<td>R</td>
<td>1.88</td>
<td>5.24</td>
<td>0.160</td>
<td>39.41</td>
</tr>
<tr>
<td></td>
<td>DH</td>
<td>2.04 c</td>
<td>3.36 ab</td>
<td>0.190 c</td>
<td>32.56 c</td>
</tr>
<tr>
<td>G</td>
<td>R</td>
<td>3.60</td>
<td>5.60</td>
<td>0.175</td>
<td>17.64</td>
</tr>
<tr>
<td></td>
<td>DH</td>
<td>2.60 ab</td>
<td>5.80 c</td>
<td>0.180 c</td>
<td>13.52 c</td>
</tr>
<tr>
<td>H</td>
<td>R</td>
<td>4.60</td>
<td>4.60</td>
<td>0.160</td>
<td>16.93</td>
</tr>
<tr>
<td></td>
<td>DH</td>
<td>2.60 ab</td>
<td>4.60 c</td>
<td>0.165 c</td>
<td>9.87 c</td>
</tr>
<tr>
<td>I</td>
<td>R</td>
<td>3.00</td>
<td>4.20</td>
<td>0.158</td>
<td>9.95</td>
</tr>
<tr>
<td></td>
<td>DH</td>
<td>4.60 c</td>
<td>4.60 c</td>
<td>0.165 c</td>
<td>17.46 c</td>
</tr>
<tr>
<td>J</td>
<td>R</td>
<td>3.40</td>
<td>5.00</td>
<td>0.160</td>
<td>13.60</td>
</tr>
<tr>
<td></td>
<td>DH</td>
<td>4.00 c</td>
<td>4.60 ab</td>
<td>0.170 c</td>
<td>15.64 c</td>
</tr>
<tr>
<td>X\textsubscript{50}</td>
<td>R</td>
<td>3.16</td>
<td>4.25</td>
<td>0.163</td>
<td>31.78</td>
</tr>
<tr>
<td></td>
<td>DH</td>
<td>2.84 ab</td>
<td>3.69 ab</td>
<td>0.180</td>
<td>26.06</td>
</tr>
</tbody>
</table>

Th = Tratamiento hídrico; DH = déficit hídrico; R = riego; A = Vr Criolla San Juan; B = Hr DOR-227; C = Hr NAG-46; D = Hr EXP-145; E = Hr EMP-192; F = EMP-199; G = Hr EMP-191; H = Hr ICA-PIJAO; I = Hr AMP-158; J = Hr AMP-196
en 9 de los 10 germoplasmas. En resumen podemos establecer que el N° de semillas/vaina fue el componente del rendimiento más afectado por el déficit hídrico. Por otra parte el déficit hídrico redujo el rendimiento en grano (Y_G) en 6 de los 10 germoplasmas, observándose un ligero aumento en Criolla San Juan, AMP-158 y AMP-196.

En promedio, los 10 germoplasmas presentaron una disminución del rendimiento por efecto del déficit hídrico de un 10.08% con un índice de susceptibilidad a la sequía de 0.23 (tabla 2.9). Este índice se considera bajo con respecto a los obtenidos para algunos germoplasmas como EXP-145 y EMP-192 con 0.69 y 0.75 respectivamente.

El análisis de varianza de los componentes del rendimiento y el rendimiento en grano de los 10 germoplasmas de *Phaseolus vulgaris* L. en la 3ra cosecha, no mostró diferencias significativas entre sí para $p>0.05$ y $p>0.1$ pues $F_{calculated}<F_{table}$ (Anexo 2); aunque, en general, los componentes del rendimiento y el rendimiento en grano de los germoplasmas bajo déficit hídrico presentaron reducción de sus valores respecto a los controles.
2.2.3 Condiciones de campo

Parámetros climáticos y del estado hídrico

Los resultados de los parámetros climáticos (R_{Tdosel} y R_{Tsuelo}; $\%HR_{aire}$ y T_{aire}, T_{dosel} y T_{suelo}) a lo largo del ensayo, pueden observarse en las secciones 1, 2 y 3 y las variaciones de los Ψ_{suelo} en la sección 4 de las figuras (2.5, 2.6, 2.7 y 2.8). Las estimaciones para la evapotranspiración real del cultivo (ETo) y evapotranspiración máxima del cultivo (ET$_{Ma}$), pueden observarse en la tabla 2.10 y la variación de ETo y ET$_{Ma}$ y temperatura del aire en el curso del ensayo, puede observarse en la figura 2.9. Usando una modificación de la metodología de Grassi (1988) para el cálculo de ETo y ET$_{M}$ del aire y la temperatura del dosel para plantas bajo déficit hídrico y riego, estimamos la ET$_{OD}$ y ET$_{Ma}$. En forma general las ET$_{OD}$ y ET$_{Ma}$ en sequía superaron los respectivos valores diarios y mensuales. En promedio las ET$_{OD}$ y ET$_{Ma}$, bajo déficit hídrico superaron las respectivas evapotranspiraciones en riego para las estimaciones diarias. Los resultados para los meses de junio, julio y agosto de 1992 (figura 2.9), muestran que la ETo es, en general, mayor que la ET$_{M}$, presentando una diferencia muy alta al final del ensayo, lo cual determina que el poder evapotranspirante de un déficit hídrico mantenido por 60 días, hasta la fecha de la cosecha final, pudo causar variaciones importantes en la productividad y rendimiento de los 5 cultivares de Phaseolus vulgaris L.
FIGURA 2.5: Variación de parámetros climáticos en un curso de 6 horas: 1) R_{T_D} y R_{T_S}; 2) %HR; 3) T_s, T_a y T_d, para cultivares de Phaseolus vulgaris L. de 20 DDS y 0 DDH. 4) Ψ suelo para suelos de 5 germoplasmas bajo riego, medidos a las 10 a.m.
FIGURA 2.6: Variación de parámetros climáticos en un curso de 6 horas: 1) RT_D y RT_S, 2) %HR, 3) T_s, T_s y T_D, para cultivares de Phaseolus vulgaris L de 30 DDS (10 DDH y controles). 4) ψ_suelo para suelos de 5 germoplasmas bajo riego (control) y sequía (D.H) a las 10 a.m.
FIGURA 2.7: Variación de parámetros climáticos en un curso de 6 horas: 1) R_{T_D} y R_{T_S}; 2) %HR; 3) T_S, T_a y T_D, para cultivares de *Phaseolus vulgaris* L de 40 DDS (20 DDH y controles). 4) Ψ_{suelo} para suelos de 5 germoplasmas bajo riego (control) y sequía (DH) a las 10 a.m.
FIGURA 2.8: Variación de parámetros climáticos en un curso de 6 horas: 1) R_{T_D} y R_{T_S}; 2) %HR; 3) T_S, T_a y T_D, para cultivares de *Phaseolus vulgaris* L de 50 DDS (30 DDH y controles). 4) Ψ suelo para suelos de 5 germoplasmas bajo riego (control) y sequía (DH) a las 10 a.m.
TABLA 2.10: Estimaciones teóricas para ET₀ᵩ: mm/día y mm/mes; ETₕᵩ: mm/día y mm/mes para cultivos de Phaseolus vulgaris L, creciendo a 20, 30, 40 y 50 de DDS y para 0, 10, 20 y 30 DDH. (ET₀ᵩ: Evapotranspiración del cultivo de referencia en el dosel; ETₕᵩ: Evapotranspiración media del aire)

<table>
<thead>
<tr>
<th>Fecha de la evaluación</th>
<th>T.h</th>
<th>Edad del cultivo (DDS)</th>
<th>Tiempo en déficit hídrico (DDH)</th>
<th>ET₀ᵩ mm/día</th>
<th>ET₀ᵩ mm/mes</th>
<th>ETₕᵩ mm/día</th>
<th>ETₕᵩ mm/mes</th>
</tr>
</thead>
<tbody>
<tr>
<td>01-06-92 (10 a.m.)</td>
<td>R:Control</td>
<td>20</td>
<td>0</td>
<td>2.19</td>
<td>65.70</td>
<td>2.08</td>
<td>62.42</td>
</tr>
<tr>
<td>10-07-92 (10 a.m.)</td>
<td>R:Control</td>
<td>30</td>
<td>0</td>
<td>2.10</td>
<td>63.0</td>
<td>1.58</td>
<td>47.25</td>
</tr>
<tr>
<td></td>
<td>DH:Sequia</td>
<td>30</td>
<td>0</td>
<td>2.22</td>
<td>66.6</td>
<td>1.67</td>
<td>49.95</td>
</tr>
<tr>
<td>20-07-92 (10 a.m.)</td>
<td>R:Control</td>
<td>40</td>
<td>0</td>
<td>2.08</td>
<td>62.40</td>
<td>2.18</td>
<td>65.52</td>
</tr>
<tr>
<td></td>
<td>DH:Sequia</td>
<td>40</td>
<td>20</td>
<td>2.11</td>
<td>63.30</td>
<td>2.22</td>
<td>66.47</td>
</tr>
<tr>
<td>30-07-92 (10 a.m.)</td>
<td>R:Control</td>
<td>50</td>
<td>0</td>
<td>3.04</td>
<td>91.20</td>
<td>2.89</td>
<td>86.64</td>
</tr>
<tr>
<td></td>
<td>DH:Sequia</td>
<td>50</td>
<td>30</td>
<td>3.15</td>
<td>94.50</td>
<td>2.99</td>
<td>89.78</td>
</tr>
<tr>
<td>X</td>
<td>R:Control</td>
<td>X:30</td>
<td>0</td>
<td>2.35</td>
<td>70.58</td>
<td>2.18</td>
<td>65.46</td>
</tr>
<tr>
<td>4 evaluaciones</td>
<td>DH:Sequia</td>
<td>30</td>
<td>0</td>
<td>2.49</td>
<td>74.80</td>
<td>2.29</td>
<td>68.73</td>
</tr>
</tbody>
</table>

Cálculos según Grassi (1988)

FIGURA 2.9: Variación de ET₀, ET₀ᵦ y Tₕᵦ para germplasmas de Phaseolus vulgaris L en los meses de Junio, julio y agosto de 1.992 en la Estación Experimental del IIAD en San Juan de Lagunillas, Mérida, según método de la radiación de Grassi (1988)

ET₀ᵦ = Kc - ET₀
2.2.4 Crecimiento

El crecimiento de los cinco germoplasmas ensayados en el campo, se analizó a través de los parámetro morfo-fenológicos (altura de la planta, profundidad radicular, iniciación de la floración e iniciación de fructificación), y con un análisis de dinámica de biomasa seca, realizado en la madurez fisiológica (variación de peso seco por órgano y planta y % de variación de peso en déficit hídrico respecto a los controles).

a) Parámetros morfofenológicos

El déficit hídrico aplicado a los 20 días y mantenido por un período de 60 días, afectó diferencialmente los parámetros del análisis morfo-fenológico de los cinco germoplasmas (tabla 2.11), los cuales se resumen a continuación:

Criolla San Juan: adelantó el inicio de la floración y de la fructificación (5 días) disminuyó la altura de la planta en un 5% y aumentó la profundidad radicular.

DOR-227: adelantó el inicio de la floración y de la fructificación (7 días) disminuyó la altura de la planta en un 4% y aumentó la profundidad radicular.

EXP-145: adelantó el inicio de la floración (3 días) y de la fructificación (4 días) disminuyó la altura de la planta en un 8% y aumentó la profundidad radicular.
TABLA 2.11: Variación promedio de los parámetros morfo-fenológicos para 5 germoplasmas de *Phaseolus vulgaris* L bajo sequía y riego normal (n=4).

<table>
<thead>
<tr>
<th>Germoplasma Evaluado</th>
<th>T.h.</th>
<th>Inicio de Floración</th>
<th>Inicio de fructificación</th>
<th>Altura de la planta (1 floración) (cm)</th>
<th>Profundidad radicular (1 floración) (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>“A”</td>
<td>Control</td>
<td>36</td>
<td>39</td>
<td>50.99</td>
<td>18.51</td>
</tr>
<tr>
<td>Criolla San Juan</td>
<td>DH</td>
<td>31 a,b</td>
<td>34 a,b</td>
<td>48.22 a,b</td>
<td>30.25 c</td>
</tr>
<tr>
<td>B</td>
<td>Control</td>
<td>32</td>
<td>37</td>
<td>52.67</td>
<td>18.51</td>
</tr>
<tr>
<td>DOR-227</td>
<td>DH</td>
<td>25 a,b</td>
<td>30 a,b</td>
<td>50.18 a,b</td>
<td>24.66 c</td>
</tr>
<tr>
<td>“D”</td>
<td>Control</td>
<td>33</td>
<td>37</td>
<td>46.20</td>
<td>17.36</td>
</tr>
<tr>
<td>EXP-145</td>
<td>DH</td>
<td>30 a,b</td>
<td>33 a,b</td>
<td>42.28 a,b</td>
<td>20.97 c</td>
</tr>
<tr>
<td>“E”</td>
<td>Control</td>
<td>34</td>
<td>37</td>
<td>46.39</td>
<td>18.41</td>
</tr>
<tr>
<td>EMP-192</td>
<td>DH</td>
<td>38 c</td>
<td>42 c</td>
<td>45.63 a,b</td>
<td>12.22 a,b</td>
</tr>
<tr>
<td>“H”</td>
<td>Control</td>
<td>34</td>
<td>37</td>
<td>49.59</td>
<td>18.23</td>
</tr>
<tr>
<td>ICA-PIJAO</td>
<td>DH</td>
<td>37 c</td>
<td>42 c</td>
<td>49.37 c</td>
<td>12.80 a,b</td>
</tr>
</tbody>
</table>

Entre control y déficit hídrico
a = DHS (p<0.05)
b = DHS (p<0.01)
c = NS
Mediante prueba de Duncan

EMP-192: retrasó el inicio de la floración (4 días) y de la fructificación (5 días), disminuyó la altura de la planta en un 2% y disminuyó la profundidad radicular.

ICA-PIJAO: retrasó el inicio de la floración (3 días) y de la fructificación (5 días) la altura de la planta permaneció igual y disminuyó la profundidad radicular.

El análisis de varianza para estos parámetros puede verse en el anexo 3. En iniciación de floración y fructificación hubo diferencias altamente significativas para p <0.05 y p<0.01 debido a (DMS) para el diseño estadístico, entre los germoplasmas y la interacción germoplasma x tratamiento hídrico; esto evidenció que el déficit hídrico afectó la iniciación de fructificación al afectar previamente la iniciación floral. Para
significativas (DAS**) para los cinco germoplasmas, para p<0.05 y p<0.01. Las DMS establecieron que la altura de la planta es un parámetro morfo-fenológico afectado por el déficit hídrico y su plasticidad se evidencia en algunos germoplasmas como mecanismo de resistencia a la sequía (Anexo 3). También se presentaron diferencias estadísticas altamente significativas (DAS**), entre las profundidades radiculares de los cinco germoplasmas de *Phaseolus vulgaris* L bajo un déficit hídrico de 60 días, para p<0.05 y p<0.01 (Anexo 3).

b) Dinámica de la biomasa seca

Se observó que los germoplasmas adelantaron la madurez fisiológica respecto a los controles, en especial los germoplasmas Criolla San Juan, y DOR-227 de 4 y 6 días respectivamente, mientras que el adelanto es nulo o de solo 1 ó 2 días para los germoplasmas EXP-145, EMP-192 e ICA-PIJAO (ver tabla 2.12).

El déficit hídrico afectó, en general la dinámica de biomasa seca de los cinco germoplasmas respecto a los controles, disminuyéndola en hoja, tallo, vainas y por lo tanto en la planta. La variación del % de peso seco en déficit hídrico respecto al peso seco de los controles (tabla 2.13) indica una reducción del peso seco de vainas y de plantas de 38.77% y 29.75%, respectivamente. Los germoplasmas DOR-227 y Criolla San Juan presentaron, por una parte, menores valores en % de reducción de vainas (21.59% y 29.84% respectivamente); y por la otra los valores más altos de adelanto de la madurez fisiológica (4 y 6 días respectivamente).
TABLA 2.12: Variación de biomasa seca por hoja, tallos y vainas de cinco germoplasmas de *Phaseolus vulgaris* L, a madurez fisiológica (n=4)

<table>
<thead>
<tr>
<th>Germoplasma</th>
<th>T.h.</th>
<th>Madurez fisiológica</th>
<th>Peso seco hojas g/planta</th>
<th>Peso seco tallos g/planta</th>
<th>Peso seco vainas g/planta</th>
<th>Peso seco plantas g/planta</th>
</tr>
</thead>
<tbody>
<tr>
<td>“A” Criolla San Juan</td>
<td>Riego</td>
<td>76/0</td>
<td>7.36</td>
<td>5.02</td>
<td>6.10</td>
<td>18.48</td>
</tr>
<tr>
<td></td>
<td>Sequía</td>
<td>72/52</td>
<td>5.22 ab</td>
<td>3.10 a</td>
<td>4.28 a</td>
<td>12.60 ab</td>
</tr>
<tr>
<td>B</td>
<td>Riego</td>
<td>77/0</td>
<td>7.48</td>
<td>5.32</td>
<td>6.25</td>
<td>19.05</td>
</tr>
<tr>
<td></td>
<td>Sequía</td>
<td>71/51</td>
<td>5.53 ab</td>
<td>3.40 a</td>
<td>5.14 c</td>
<td>14.07 ab</td>
</tr>
<tr>
<td>“D” EXP-145</td>
<td>Riego</td>
<td>75/0</td>
<td>6.98</td>
<td>5.52</td>
<td>6.32</td>
<td>18.82</td>
</tr>
<tr>
<td></td>
<td>Sequía</td>
<td>75/55</td>
<td>5.72 ab</td>
<td>4.41 a</td>
<td>2.02 a</td>
<td>12.15 ab</td>
</tr>
<tr>
<td>“E” EMP-192</td>
<td>Riego</td>
<td>77/0</td>
<td>6.36</td>
<td>4.98</td>
<td>5.36</td>
<td>16.70</td>
</tr>
<tr>
<td></td>
<td>Sequía</td>
<td>76/56</td>
<td>5.22 ab</td>
<td>4.34 c</td>
<td>3.08 a</td>
<td>12.64 ab</td>
</tr>
<tr>
<td>“H” ICA-PIJAO</td>
<td>Riego</td>
<td>77/0</td>
<td>6.37</td>
<td>3.36</td>
<td>5.12</td>
<td>14.85</td>
</tr>
<tr>
<td></td>
<td>Sequía</td>
<td>75/55</td>
<td>4.08 ab</td>
<td>2.88 a</td>
<td>3.33 a</td>
<td>10.29 ab</td>
</tr>
<tr>
<td>X 5G</td>
<td>Riego</td>
<td>76.4/0</td>
<td>6.91</td>
<td>4.84</td>
<td>5.83</td>
<td>17.58</td>
</tr>
<tr>
<td></td>
<td>Sequía</td>
<td>73.8/53.8</td>
<td>5.15 ab</td>
<td>3.62 c</td>
<td>3.57 a</td>
<td>12.35 ab</td>
</tr>
</tbody>
</table>

Entre control y déficit hídrico
a: DMS (p<0.05)
b: DMS (p<0.01)
Mediante prueba de Duncan

TABLA 2.13: Variación del % de peso seco en déficit hídrico respecto al control para cinco germoplasmas de *Phaseolus vulgaris* L en madurez fisiológica (n=4)

<table>
<thead>
<tr>
<th>Germoplasma</th>
<th>% variación del peso seco de hoja en DH respecto al control</th>
<th>% variación del peso seco de tallo en DH respecto al control</th>
<th>% variación del peso seco de vainas en DH respecto al control</th>
<th>% de variación del peso seco de plantas de DH respecto al control</th>
</tr>
</thead>
<tbody>
<tr>
<td>“A” Criolla San Juan</td>
<td>29.08</td>
<td>38.25</td>
<td>29.84</td>
<td>31.82</td>
</tr>
<tr>
<td>“D” EXP-145</td>
<td>18.05</td>
<td>20.11</td>
<td>68.04</td>
<td>35.44</td>
</tr>
<tr>
<td>“E” EMP-192</td>
<td>17.92</td>
<td>12.85</td>
<td>42.54</td>
<td>24.31</td>
</tr>
<tr>
<td>“H” ICA-PIJAO</td>
<td>35.94</td>
<td>14.28</td>
<td>34.96</td>
<td>30.70</td>
</tr>
<tr>
<td>X 5G</td>
<td>25.47</td>
<td>25.21</td>
<td>38.77</td>
<td>29.75</td>
</tr>
</tbody>
</table>
La tabla 2.14 indica que la productividad a madurez fisiológica se redujo por efecto del déficit hídrico en los cinco germoplasmas. En promedio, éstos presentaron una variación porcentual de 33.98% para un déficit hídrico promedio de 53.8 días al suprimir el riego en la fecha de la madurez fisiológica (tabla 2.15). La reducción porcentual individual fue la siguiente: EMP-192 (45.42), ICA-PIJAO (38.53), DOR-227 (27.36), EXP-145 (27.69) y Criolla San Juan (30.88).

2.2.5 Dinámica del rendimiento

En la tabla 2.16 se observa que todos los componentes del rendimiento disminuyeron bajo efecto del déficit hídrico, pero hubo respuesta diferencial para cada germoplasma. En Criolla San Juan todos los componentes se redujeron con (DMS) para \(p<0.05 \) y \(p<0.01 \). En DOR-227 se reducen el \(N^o \) semillas/vaina y el peso \(\bar{X} \) semillas con DMS para \(p<0.05 \) y \(p<0.01 \), pero no hay diferencias significativas para el \(N^o \) de plantas cosechadas y el \(N^o \) de vainas/planta. Un comportamiento contrastante se encuentra en EXP-145, donde disminuyen (\(N^o \)vainas/planta, \(N^o \)semillas/vainas y peso \(\bar{X} \) semillas) con (DMS) para \(p<0.05 \) y \(p<0.01 \) y no hubo diferencias significativas para el \(N^o \) de plantas cosechadas. En AMP-192 e ICA-PIJAO hubo reducción en la mayoría de los componentes (con DMS para \(p<0.05 \) y \(p<0.01 \)) exceptuando el peso (\(\bar{X} \)) semillas donde no hubo diferencias significativas. El rendimiento en grano mostró DMS (\(p<0.05 \) y \(p<0.01 \)) en EMP-192 e ICA-PIJAO y para \(p>0.05 \) en Criolla San Juan y EXP-145. Los resultados en DOR-227 no mostraron DMS entre control y déficit hídrico.
TABLA 2.14: Producción de biomasa seca total a madurez fisiológica para cinco germoplasmas, de *Phaseolus vulgaris* L (n=4)

<table>
<thead>
<tr>
<th>Germoplasma</th>
<th>T.h.</th>
<th>Biomasa seca g/planta</th>
<th>N° plantas cosechadas</th>
<th>Productividad kg/4m²</th>
<th>Productividad kg/ha</th>
</tr>
</thead>
<tbody>
<tr>
<td>“A” Criolla San Juan</td>
<td>Control</td>
<td>18.48</td>
<td>73</td>
<td>1.350</td>
<td>3372.6</td>
</tr>
<tr>
<td>DH</td>
<td>12.60</td>
<td>74</td>
<td>0.932</td>
<td>2331.0 ab</td>
<td></td>
</tr>
<tr>
<td>“B” DOR-227</td>
<td>Control</td>
<td>19.05</td>
<td>68</td>
<td>1.300</td>
<td>3238.5</td>
</tr>
<tr>
<td>DH</td>
<td>14.09</td>
<td>69</td>
<td>0.971</td>
<td>2427.08 ab</td>
<td></td>
</tr>
<tr>
<td>“D” EXP-145</td>
<td>Control</td>
<td>18.82</td>
<td>50</td>
<td>0.941</td>
<td>2352.5</td>
</tr>
<tr>
<td>DH</td>
<td>12.15</td>
<td>56</td>
<td>0.680</td>
<td>1701.1 ab</td>
<td></td>
</tr>
<tr>
<td>“E” EMP-192</td>
<td>Control</td>
<td>16.70</td>
<td>70</td>
<td>1.169</td>
<td>2922.5</td>
</tr>
<tr>
<td>DH</td>
<td>12.64</td>
<td>51</td>
<td>0.645</td>
<td>1611.6 ab</td>
<td></td>
</tr>
<tr>
<td>“H” ICA-PIJAO</td>
<td>Control</td>
<td>14.85</td>
<td>62</td>
<td>0.921</td>
<td>2301.75</td>
</tr>
<tr>
<td>DH</td>
<td>10.29</td>
<td>55</td>
<td>0.566</td>
<td>1414.88 ab</td>
<td></td>
</tr>
</tbody>
</table>

Entre déficit hídrico y control
a: DMS (p<0.05)
b: DMS (p<0.01)
Mediante prueba de Duncan

TABLA 2.15: Variación de producción de biomasa seca total, en cinco germoplasmas de *Phaseolus vulgaris* L (n=4)

<table>
<thead>
<tr>
<th>Germoplasma Evaluado</th>
<th>% Variación productividad en biomasa seca en déficit hídrico respecto a los controles</th>
<th>Madurez fisiológica DDS</th>
<th>Déficit Hídrico DDH a (MF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>“A” Criolla San Juan</td>
<td>30.88%</td>
<td>Riego: 76</td>
<td>0</td>
</tr>
<tr>
<td>D.H: 72</td>
<td></td>
<td></td>
<td>52</td>
</tr>
<tr>
<td>“B” DOR-227</td>
<td>27.36%</td>
<td>Riego: 77</td>
<td>0</td>
</tr>
<tr>
<td>D.H: 71</td>
<td></td>
<td></td>
<td>51</td>
</tr>
<tr>
<td>“D” EXP-145</td>
<td>27.69%</td>
<td>Riego: 75</td>
<td>0</td>
</tr>
<tr>
<td>D.H: 75</td>
<td></td>
<td></td>
<td>55</td>
</tr>
<tr>
<td>“E” EMP-192</td>
<td>45.42%</td>
<td>Riego: 77</td>
<td>0</td>
</tr>
<tr>
<td>D.H: 76</td>
<td></td>
<td></td>
<td>56</td>
</tr>
<tr>
<td>“H” ICA-PIJAO</td>
<td>38.53%</td>
<td>Riego: 77</td>
<td>0</td>
</tr>
<tr>
<td>D.H: 75</td>
<td></td>
<td></td>
<td>55</td>
</tr>
</tbody>
</table>
En relación a la reducción de los componentes del rendimiento en grano (tabla 2.16) y del porcentaje de reducción del rendimiento la secuencia fue la siguiente:

ICA-PIJAO > EMP-192 > Criolla San Juan > EXP-145 > DOR-227
61.82% 46.79% 46.39% 43.21% 2.58%

El índice de susceptibilidad a la sequía (S) (tabla 2.16) nos permite analizar el impacto del déficit hídrico sobre el rendimiento en grano de un cultivo, pues permite comparar el cociente entre el rendimiento bajo sequía y bajo riego (Y_s/Y_r) respecto a la reducción media del rendimiento (D), el cual es a su vez función de la duración del déficit hídrico. Si (S) es mayor que 1, indica que el rendimiento en grano del germoplasma respectivo, ha sido fuertemente afectado por el déficit hídrico y por lo tanto tiene una alta susceptibilidad a la sequía. Los valores de $S\leq1$ indican que el rendimiento en grano bajo sequía fue más alto que en los controles (estos casos pueden indicarnos la posible existencia de mecanismos de resistencia a la sequía). Mientras mas bajo sea S, menor será la susceptibilidad al déficit hídrico. Cuando comparamos los índices de susceptibilidad a la sequía (S), encontramos la siguiente secuencia de mayor a menor susceptibilidad:

ICA-PIJAO > EMP-192 > Criolla San Juan > EXP-145 > DOR-227
1.70 1.45 0.90 0.79 0.10
El análisis estadístico (anexos 4 y 5) indica que hubo diferencias significativas para S y porcentaje de reducción del rendimiento a los niveles de $p<0.1$ y $p<0.05$. Estas diferencias están a nivel de los germoplasmas ya que no existen diferencias entre las repeticiones.

La variación del índice de cosecha (IC) para los tratamientos hídricos, en los cinco germoplasmas para el tratamiento control, es de 0.51 y para el tratamiento de sequía es de 0.44 (tabla 2.18). Claramente se puede notar que, en general, el déficit hídrico disminuyó el IC pues afecta mayormente el rendimiento en grano (Y_0), más que el efecto ejercido sobre la biomasa seca. Entre el control y el déficit hídrico se encontraron (DMS) para ($p<0.05$ y $p<0.01$) en todos los germoplasmas, donde observamos que el (IC) se redujo, con valores menores por debajo del rango normal (0.5-0.6) según el CIAT para 4 de los 5 germoplasmas. DOR-227 presentó en déficit hídrico un IC dentro del límite y EXP-145 un valor cercano al límite.

En el anexo 6 se presenta el análisis de varianza para el índice de cosecha (IC), se observaron diferencias altamente significativas (DAS**) en las fuentes de variación (modelo estadístico, tratamiento hídrico, germoplasma e interacción GxTH) para $p<0.05$ y $p<0.01$. Estas (DAS**) se debieron a la existencia de (DMS) entre las (IC) de los cinco germoplasmas bajo déficit hídrico respecto a los controles.
TABLA 2.16: Componentes del rendimiento, \((Y_G) \) rendimiento en grano, % reducción del rendimiento \((%R_Y_G) \) e índice de susceptibilidad a la sequía \((S) \) de cinco germoplasmas de *Phaseolus vulgaris* L sometidos a dos tratamientos hídricos de riego (1) y sequía (2). n=4 (repeticiones)

<table>
<thead>
<tr>
<th>G</th>
<th>Th</th>
<th>Componentes del rendimiento</th>
<th>(Y_G)</th>
<th>% Reducción de ((Y_G))</th>
<th>Índice de susceptibilidad a la sequía (S)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>N° plantas cosechadas</td>
<td>N° ((X)) vainas planta</td>
<td>N° ((X)) vainas</td>
<td>Peso (X) de 100 semillas</td>
</tr>
<tr>
<td>A</td>
<td>1</td>
<td>80.5</td>
<td>8.25</td>
<td>3.82</td>
<td>0.186</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>66.0 ab</td>
<td>6.89 ab</td>
<td>3.68 ab</td>
<td>0.154 ab</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>67.8</td>
<td>11.62</td>
<td>3.38</td>
<td>0.219</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>69.3* c</td>
<td>13.41* c</td>
<td>3.19 ab</td>
<td>0.194 ab</td>
</tr>
<tr>
<td>D</td>
<td>1</td>
<td>50.2</td>
<td>9.28</td>
<td>5.78</td>
<td>0.206</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>55.5* c</td>
<td>8.51 ab</td>
<td>4.06 ab</td>
<td>0.166 ab</td>
</tr>
<tr>
<td>E</td>
<td>1</td>
<td>62.0</td>
<td>11.39</td>
<td>4.16</td>
<td>0.206</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>55.25 ab</td>
<td>7.84 ab</td>
<td>3.07 ab</td>
<td>0.204 c</td>
</tr>
</tbody>
</table>

\(A = Vr\) Criolla San Juan; \(B = Hr\) DOR-227; \(D = Hr\) EXP-145; \(E = Hr\) EMP-192; \(H = Hr\) ICA-PIJAO

Entre control y déficit hídrico

a = DMS (p<0.05)
b = DMS (p<0.01)
c = NS

* Déficit hídrico > control
Para prueba de Duncan
* Déficit hídrico > control
TABLA 2.17: Variación promedio del % de reducción en componentes del rendimiento y rendimiento en grano de cinco germoplasmas de Phaseolus vulgaris, sometidos a dos tratamientos hídricos de riego y sequía.

<table>
<thead>
<tr>
<th>Germoplasma</th>
<th>Componentes del Rendimiento</th>
<th>% Reducción</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Nº plantas cosechadas</td>
<td>Nº (X) vajas</td>
</tr>
<tr>
<td></td>
<td>% Reducción</td>
<td>planta</td>
</tr>
<tr>
<td></td>
<td></td>
<td>% Reducción</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>“A” Criolla San Juan</td>
<td>Δ: 14.5</td>
<td>Δ: 1.357</td>
</tr>
<tr>
<td></td>
<td>18.01</td>
<td>16.45%</td>
</tr>
<tr>
<td>“B” DOR-227</td>
<td>Δ: -1.5</td>
<td>Δ: -1.79</td>
</tr>
<tr>
<td></td>
<td>-2.21</td>
<td>-15.40%</td>
</tr>
<tr>
<td>“D” EXP-145</td>
<td>Δ: -5.3</td>
<td>Δ: 0.776</td>
</tr>
<tr>
<td></td>
<td>-10.49</td>
<td>8.36%</td>
</tr>
<tr>
<td>“E” EMP-192</td>
<td>Δ: 67.5</td>
<td>Δ: 3.554</td>
</tr>
<tr>
<td></td>
<td>10.89</td>
<td>31.20%</td>
</tr>
<tr>
<td>“H” ICA-PIJAO</td>
<td>Δ: 19.0</td>
<td>Δ: 2.823</td>
</tr>
<tr>
<td></td>
<td>27.14</td>
<td>24.69%</td>
</tr>
</tbody>
</table>

TABLA 2.18: Variación promedio de 4 repeticiones para cinco germoplasmas de Phaseolus vulgaris L, sometidos a riego y sequía de rendimiento en grano (Y_G), productividad de biomasa seca e índice de cosecha.

<table>
<thead>
<tr>
<th>Germoplasma</th>
<th>T.h.</th>
<th>Rendimiento en grano Y_G: kg/ha</th>
<th>Productividad biomasa seca P_B: kg/ha</th>
<th>$I_c = \frac{Y_G}{P_B}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>“A” Criolla San Juan</td>
<td>Riego</td>
<td>1176.5</td>
<td>3372.6</td>
<td>0.35</td>
</tr>
<tr>
<td></td>
<td>Sequía</td>
<td>634.6 a</td>
<td>2331.0 ab</td>
<td>0.27 ab</td>
</tr>
<tr>
<td>“B” DOR-227</td>
<td>Riego</td>
<td>1455.5</td>
<td>3238.5</td>
<td>0.45</td>
</tr>
<tr>
<td></td>
<td>Sequía</td>
<td>1398.7 c</td>
<td>2478.08 ab</td>
<td>0.58 ab</td>
</tr>
<tr>
<td>“D” EXP-145</td>
<td>Riego</td>
<td>1386.4</td>
<td>2352.5</td>
<td>0.59</td>
</tr>
<tr>
<td></td>
<td>Sequía</td>
<td>793.0 a</td>
<td>1701.0 ab</td>
<td>0.47 ab</td>
</tr>
<tr>
<td>“E” EMP-192</td>
<td>Riego</td>
<td>1518.7</td>
<td>2952.5</td>
<td>0.51</td>
</tr>
<tr>
<td></td>
<td>Sequía</td>
<td>676.25 ab</td>
<td>1611.6 ab</td>
<td>0.42 ab</td>
</tr>
<tr>
<td>“H” ICA-PIJAO</td>
<td>Riego</td>
<td>1679.87</td>
<td>2301.75</td>
<td>0.72</td>
</tr>
<tr>
<td></td>
<td>Sequía</td>
<td>626.4 ab</td>
<td>1414.88 ab</td>
<td>0.44 ab</td>
</tr>
<tr>
<td>X_{50}</td>
<td>Riego</td>
<td>1443.39</td>
<td>2843.57</td>
<td>0.51</td>
</tr>
<tr>
<td></td>
<td>Sequía</td>
<td>825.79 ab</td>
<td>1907.31 ab</td>
<td>0.44 ab</td>
</tr>
</tbody>
</table>

Entre déficit hídrico y control
a: DMS (p<0.05)
b: DMS (p<0.01)
Mediante prueba de Duncan
2.3 Discusión

2.3.1 Ensayo de invernadero

Los resultados de los parámetros morfofenológicos indican que el efecto del déficit hídrico se evidencia en la cosecha N° 2 (30 DDS y 10 DDH) a través de una variación diferencial entre ellos; así Altura/Planta y Área Foliar/Planta presentan, en general, reducciones respecto al control, mientras que Profundidad Radicular, Relación Vástago/Raíz y Tiempo de Iniciación Floral, pueden aumentar o disminuir dependiendo del germoplasma.

Se proponen los siguientes posibles mecanismos de resistencia a la sequía; en los germoplasmas analizados.

1. Escape a la sequía

En general, los cultivares de Phaseolus vulgaris L., pueden escapar, o al menos reducir el estrés por sequía, ya sea por a) una madurez temprana o retardando la madurez hasta que el estrés por sequía haya pasado y b) aumento de la plasticidad en el crecimiento y/o desarrollo de los órganos vegetales (White, 1984; Izquierdo, 1981 y Kramer, 1983). Los germoplasmas DOR-227, EXP-145 y Criolla San Juan, presentaron un rápido desarrollo fenológico por acortamiento del tiempo de floración; además de aumento del desarrollo de la plasticidad evidenciado por aumento de las tasas relativas de crecimiento en déficit hídrico ($\overline{R_{DH}}$) y el % de variación en la raíz de Criolla San Juan y EXP-145, en la hoja de 77

2. Tolerancia a la sequía a altos potenciales hídricos (evasión de la sequía)

La tolerancia a la sequía en *Phaseolus vulgaris* L ha sido asociada con un mayor crecimiento de la raíz bajo condiciones de déficit hídrico, esto permite una mayor explotación de la humedad disponible en el suelo. En condiciones de invernadero este mecanismo se evidenció en la disminución de la relación Vástago/Raíz en DOR-227, la cual se explica por el aumento de la profundidad radicular por efecto del déficit hídrico en la cosecha No 2 (30 DDS y 10 DDH), a diferencia del aumento de la relación Vástago/Raíz en los otros germoplasmas estudiados explicable por una fuerte reducción del crecimiento radicular por efecto del déficit hídrico. El aumento de la eficiencia de las raíces en la extracción de la humedad del suelo también resulta en mayor absorción de agua (Sponchiado, 1985 y White, 1981).

En todos los germoplasmas hubo reducción del área foliar, lo cual, aunque evita la pérdida de agua, puede reducir también la productividad del cultivo (Izquierdo, 1981); siendo la excepción Vr Criolla San Juan, que presentó un ligero aumento.
Analizando cada uno de los germoplasmas en base al rendimiento en grano en déficit hídrico \((Y_{DH})\) respecto al rendimiento del control \((Y_c)\) y al índice de susceptibilidad a la sequía, encontramos que podemos dividir los 10 germoplasmas en tres grupos: Grupo 1 (resistentes a la sequía); Grupo 2 (no resistentes a la sequía) y Grupo 3 (resistencia intermedia a la sequía).

En la tabla 2.19 se sintetizan los resultados para los 10 germoplasmas de *Phaseolus vulgaris* L en el ensayo de invernadero.

TABLA 2.19: Desempeño frente al déficit hídrico de los 10 germoplasmas en invernadero en relación al rendimiento en grano, susceptibilidad a la sequía y N° de mecanismos de resistencia a la sequía expresados

<table>
<thead>
<tr>
<th>Rendimiento en sequía (g/planta)</th>
<th>Alto</th>
<th>Intermedio</th>
<th>Bajo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Criolla San Juan</td>
<td>DOR-227 (36.11)</td>
<td>EMP-199 (32.56)</td>
<td>ICA-PIJAO (9.87)</td>
</tr>
<tr>
<td></td>
<td>EMP-145 (28.39)</td>
<td>NAG-46 (27.86)</td>
<td>EMP-191 (13.52)</td>
</tr>
<tr>
<td></td>
<td>EMP-192 (23.30)</td>
<td></td>
<td>AMP-196 (15.66)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>AMP-158 (17.76)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Índice de susceptibilidad</th>
<th>Alto</th>
<th>Intermedio</th>
<th>Bajo</th>
</tr>
</thead>
<tbody>
<tr>
<td>EMP-192 (0.75)</td>
<td>EMP-199 (0.20)</td>
<td>Criolla San Juan (-0.17)</td>
<td></td>
</tr>
<tr>
<td>ICA-PIJAO (0.72)</td>
<td>EMP-191 (0.29)</td>
<td>AMP-158 (-0.69)</td>
<td></td>
</tr>
<tr>
<td>EXP-145 (0.69)</td>
<td></td>
<td>AMP-196 (-0.13)</td>
<td></td>
</tr>
<tr>
<td>DOR-227 (0.66)</td>
<td></td>
<td>NAG-46 (0.02)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mecanismos de resistencia a la sequía expresados</th>
</tr>
</thead>
<tbody>
<tr>
<td>Criolla San Juan</td>
</tr>
<tr>
<td>DOR-227</td>
</tr>
<tr>
<td>ICA-PIJAO</td>
</tr>
<tr>
<td>NAG-46</td>
</tr>
<tr>
<td>EMP-199</td>
</tr>
<tr>
<td>EMP-192</td>
</tr>
<tr>
<td>EMP-191</td>
</tr>
<tr>
<td>AMP-166</td>
</tr>
<tr>
<td>AMP-158</td>
</tr>
<tr>
<td>EXP-145</td>
</tr>
</tbody>
</table>

79
- Criolla San Juan resulta un germoplasma con alto rendimiento bajo sequía, lo cual puede explicarse por su baja susceptibilidad a la sequía, esto es una consecuencia de su alto número (3) de mecanismos de resistencia a la sequía. Puede ser considerado como resistente a la sequía.

- DOR-227 aunque presenta un número alto de mecanismos de resistencia a la sequía. Su rendimiento no es tan alto como por ejemplo Criolla San Juan, lo cual se debe a su alta susceptibilidad. Sin embargo esta alta susceptibilidad contradice el alto número de mecanismos encontrados. Puede ser considerado como de resistencia intermedia a la sequía.

- ICA-PIJAO presenta alta susceptibilidad y, ningún mecanismo, lo cual explica su bajo rendimiento. Baja resistencia a la sequía.

- NAG-46: rendimiento intermedio, no presenta mecanismos de resistencia pero tiene baja susceptibilidad. Resistencia intermedia a la sequía.

- EMP-199: rendimiento intermedio, no presenta mecanismos de resistencia a la sequía y susceptibilidad a la sequía intermedia; se le puede considerar como de resistencia intermedia a la sequía.

- EMP-192: alta resistencia a la sequía y un solo mecanismo de resistencia, por lo cual se explica su rendimiento intermedio. Resistencia intermedia a la sequía.

- EMP-191: rendimiento bajo, no presenta mecanismos de resistencia a la sequía y susceptibilidad a la sequía intermedia.
- AMP-166: rendimiento bajo aunque muy baja susceptibilidad a la sequía aunque sin mecanismos de resistencia. Resistencia intermedia.
- AMP-158: rendimiento bajo y susceptibilidad a la sequía intermedia, sin mecanismos de resistencia a la sequía. Resistencia intermedia.
- EXP-145: alta susceptibilidad a la sequía y alto número de mecanismos y con rendimiento intermedio. Se considera como resistente a la sequía

Los germoplasmas EMP-192, NAG-46, EMP-191, AMP-166 y AMP-158, presentaron en condiciones de invernadero fuerte ataque de hongos.

En síntesis, los 10 germoplasmas pueden ser divididos en tres grupos de acuerdo a su resistencia a la sequía:

Grupo 1: Resistentes a la sequía: Criolla San Juan y EXP-145

Grupo 2: Baja resistencia a la sequía: ICA-PIJAO y EMP-191

Grupo 3: Resistencia intermedia: DOR-227, NAG-46, EMP-199, EMP-192, AMP-166 y AMP-158

Los valores negativos en el índice de susceptibilidad a la sequía, se explican por que el rendimiento en grano en déficit hídrico es mayor que el rendimiento control en riego.
2.3.B Respuestas en condiciones de campo

En condiciones de campo los diferentes germoplasmas evaluados, según su referencia de origen fueron divididos en tres grupos:

Grupo 1: CL-F_{II}/F_{ind}-AR-ARS (ciclo largo, floración indeterminada o indefinida, alto rendimiento y alta resistencia a la sequía), en este grupo ubicamos a ICA-PIJAO, EMP-192 y EXP-145. Se observa que bajo déficit hídrico hubo un comportamiento diferencial de los tres germoplasmas respecto a reducción en los tiempos de iniciación floral, fructificación y madurez fisiológica, lo cual hace que el germoplasma EXP-145 acorte la longitud del ciclo fenológico y cambie de floración indeterminada a floración determinada. Los germoplasmas EMP-192 e ICA-PIJAO aunque mantuvieron la longitud del ciclo fenológico presentaron retrasos en el inicio de la floración. ICA-PIJAO y EMP-192 alto % de reducción del rendimiento y alto índice (S), mientras que EXP-145 presentó % de reducción del rendimiento intermedio y bajo índice (S).

Grupo 2: CC-FD-AR-ARS (ciclo corto, floración determinada, alto rendimiento y alta resistencia a la sequía), en este grupo encontramos a DOR-227. Se observa que bajo déficit hídrico la longitud del ciclo fenológico se acorta, debido a la reducción del inicio de floración, de fructificación y madurez fisiológica, lo cual se expresa en bajo % de reducción del rendimiento y bajo índice (S).
Grupo 3: CL-F_{II}/F_{ind}-AR-ARS (ciclo largo, floración indeterminada, alto rendimiento y alta resistencia a la sequía). En este grupo encontramos a Criolla San Juan, un germoplasma regional proveniente de San Juan de Lagunillas. Se determinó que bajo déficit hídrico sus características cambiaron; se acortó su ciclo fenológico y su floración pasó de indeterminada a determinada, lo cual se expresa en % de reducción del rendimiento e índice (S) intermedios.

El déficit hídrico afectó los germoplasmas de los tres grupos; fundamentalmente en cuanto a la modificación de la longitud del ciclo fenológico y el tipo de floración, modificaciones que indujeron a, posteriori, la variación del rendimiento en grano y también afectó en forma diferencial la producción en biomasa seca, observándose que el menor % de variación se encontró en los germoplasmas DOR-227, EXP-145 y Criolla San Juan (ver tabla 2.15).

Los bajos % de reducción del peso seco de las vainas podría relacionarse a los menores % de variación de producción total de biomasa seca, al menos en los germoplasmas DOR-227 y Criolla San Juan (tablas 2.18 y 2.19). Preliminarmente, concluimos que el déficit hídrico afectó más a los germoplasmas EMP-192 e ICA-PIJAO y en menor grado a Criolla San Juan, DOR-227 y EXP-145. Esto puede ser considerado como un mecanismo de evasión a la sequía por incremento de la plasticidad.
Los germoplasmas DOR-227, EXP-145 y Criolla San Juan, muestran bajos % de reducción de la productividad de biomasa seca en déficit hídrico, y muy cercanos entre sí. Esto podría estar relacionado a sus bajos % de reducción de biomasa seca en las vainas, al menos en los germoplasmas DOR-227 y Criolla San Juan.

El rendimiento en grano bajo déficit hídrico es alto en DOR-227 y EXP-145. Los menores rendimientos se encuentran en aquellos germoplasmas que no presentaron mecanismos de resistencia a la sequía como en ICA-PIJAO o solo parcialmente como en EMP-192. Por otra parte el germoplasma regional (Criolla San Juan), aunque presentó varios mecanismos de resistencia a la sequía, lo cual hacía predecir un alto rendimiento después de 60 días de déficit hídrico, sin embargo ocupó una posición intermedia. Este germoplasma mantiene sus límites de rendimiento en las condiciones ecológicas de San Juan y a las que esta adaptado mientras que ICA-PIJAO y EMP-192 son de baja resistencia a la sequía y en las condiciones extremas de San Juan, se encuentran ecológicamente limitados.

En ICA-PIJAO y EMP-192, la alta reducción del rendimiento es una consecuencia de la reducción de los componentes: número de vainas/plantas y número semillas/vaina. El peso de la semilla aumenta ligeramente en ICA-PIJAO pero disminuye en EMP-192, sin embargo, este componente parece no influir en el rendimiento.
En **Criolla San Juan**, la reducción del rendimiento se debió probablemente, al efecto del déficit hídrico sobre los componentes N° vainas/planta y peso de semillas, ya que el N° semillas/vaina presenta poca reducción. El alto rendimiento bajo déficit hídrico de los germoplasmas **DOR-227** y **EXP-145**, puede explicarse en el primero por el DOR-227 al aumento del N° de vainas/planta y el N° de plantas cosechadas. En EXP-145 el déficit hídrico no afectó el N° de plantas cosechadas y solo ligeramente el N° de vainas/planta.

La variación en el rendimiento en grano \(Y_G \) y específicamente la variación de los componentes del rendimiento, por efecto del déficit hídrico es un hecho que está comprobado, pero no completamente entendido (Kramer, 1983). En **Phaseolus vulgaris** L, un cultivo de ciclo corto, tradicionalmente se consideran como susceptible a moderadamente susceptible a la sequía (White, 1991), aunque los resultados de investigadores como Robins y Domingo (1956) y Flores-Lui (1982), son controversiales, pues presentan la respuesta de resistencia a la sequía en la especie, entre moderada a resistente.

En este trabajo, encontramos que el poder evaporativo del medio ambiente y el déficit hídrico afectan directamente los procesos de iniciación floral, iniciación de fructificación, madurez fisiológica, área foliar y profundidad radicular. La dinámica de biomasa depende
indirectamente del déficit hídrico, pues su magnitud va a depender del efecto que este ejerza sobre las tasas de fotosíntesis y respiración (Hsiao, et al, 1976). Sin embargo, los mecanismos encontrados en los cinco germoplasmas se detectaron en los caracteres morfo-anatómicos y en la dinámica de biomasa seca. La producción y rendimiento en grano son procesos ecológicos más complejos y el déficit hídrico los afecta fundamentalmente a través del reparto de los asimilados. Por lo tanto se hace evidente que los mecanismos de resistencia a la sequía no se pueden identificar directamente, sino a través de algunos índices como el índice de cosecha (IC) y de susceptibilidad a la sequía (S).

Los germoplasmas DOR-227 y EXP-145 presentan los índices (S) menores, lo cual explica la menor reducción del rendimiento en grano. Los valores más altos de S se encuentran en ICA-PIJAO y EMP-192, los cuales a su vez también presentan los valores más altos de % de reducción del rendimiento.

El índice de cosecha, es la medida más comúnmente usada para determinar la distribución de la materia seca, pues siendo el cociente entre el rendimiento en grano \(Y_G \) y el peso seco total o producción de biomasa seca, permite determinar el destino y distribución de asimilados en las plantas de un determinado cultivar. Según White (1985), en Phaseolus vulgaris L. los valores están en un rango de 0.5 a 0.6. Los índices < 0.5-0.6 pueden indicar pobre formación de vainas o disminución en el peso seco.
de las semillas en relación al desarrollo vegetativo del cultivo. Los valores obtenidos en el ensayo bajo riego, nos permiten establecer, claramente, que los germoplasmas Criolla San Juan y DOR-227, presentan IC<0.5-0.6, lo cual indica que su rendimiento en grano \((Y_G)\) está, por debajo de los valores máximos de su rendimiento potencial \((Y_p)\) o máximo rendimiento en condiciones ideales, lo que nos indica que la frecuencia de riego (cada 3 días) y la cantidad de agua usada en San Juan de Lagunillas, en los controles estuvo por debajo de las exigencias normales del cultivo; también puede indicar que la biomasa seca total o producción total, fue menos afectada o que el reparto de asimilados hacia el llenado de grano no fue óptimo, lo cual traería como consecuencia disminución en los niveles de \(Y_G\). Los germoplasmas EXP-145, EMP-192 e ICA-PIJAO, presentaron IC de 0.51, 0.59 y 0.72 respectivamente, estos valores evidencian que el potencial genético de su máximo rendimiento o rendimiento potencial fue alcanzado bajo las condiciones de riego usadas en San Juan de Lagunillas.

Para los cinco germoplasmas bajo déficit hídrico, el IC de 4 de ellos está claramente por debajo de los controles: Criolla San Juan, EXP-145, EMP-192 e ICA-PIJAO, lo cual demuestra que el déficit hídrico afectó principalmente el rendimiento en grano \((Y_G)\). DOR-227 es la excepción, pues el IC bajo déficit hídrico supera el IC de las plantas controles; esto se debe a que presenta un alto rendimiento bajo déficit hídrico muy cercano al control y alta productividad de biomasa seca.
Los componentes del rendimiento en grano, en general, disminuyen por efecto del déficit hídrico. La baja reducción de N° de vainas/planta y N° semillas/vainas en DOR-227, EXP-145 y Criolla San Juan, serían agronómicamente responsables de que el rendimiento sea similar al del control; mientras que la alta reducción de estos componentes en EMP-192 e ICA-PIJAO determinan una alta reducción del rendimiento. En general, el peso de semilla experimentó el menor % de reducción y el que contribuyó en menor porcentaje a la disminución del rendimiento. En relación al % de reducción del rendimiento en grano (Y_G); los germoplasmas más afectados por el déficit hídrico fueron ICA-PIJAO y EXP-145, por presentar los mayores % de reducción. Los germoplasmas menos afectados fueron DOR-227 y EXP-145, por presentar los % de reducción del rendimiento mas bajo, nuevamente Criolla San Juan ocupa una posición intermedia.

2.4 Conclusiones

De la evaluación de resistencia a la sequía en cultivares de *Phaseolus vulgaris* L en condiciones de invernadero y de campo, podemos obtener las siguientes conclusiones.

1) La respuesta a la sequía de los diferentes germoplasmas de *Phaseolus vulgaris* L, se puede sintetizar así:

 a) Acortamiento del tiempo de floración en Criolla San Juan y DOR-227

 b) Incremento de altura de la planta; crecimiento de la raíz, hoja y tallo de los germoplasmas EXP-145, EMP-192 y DOR-227
c) Incremento en la profundidad radicular de los germoplasmas Criolla San Juan y DOR-227

d) Reducción del área foliar (todos los germoplasmas)

2) **Los mayores rendimientos bajo sequía** la presentaron Criolla San Juan y DOR-227, en los cuales se identificaron los 3 tipos de mecanismos de resistencia a la sequía. Los germoplasmas con menor rendimiento bajo sequía y alto % de reducción del rendimiento, fueron ICA-PIJAO y EMP-192.

3) En el ensayo de invernadero, el análisis de cada germoplasma, en base al rendimiento en déficit hídrico (Y_{DH}) y al índice de susceptibilidad a la sequía (S), sugiere que se puede dividir los 10 germoplasmas en tres grupos: **Grupo 1** (resistente a la sequía): NAG-46, Criolla San Juan, AMP-158 y AMP-166. **Grupo 2** (no resistente a la sequía): DOR-227, EXP-145, EMP-192 e ICA-PIJAO, y el **Grupo 3** (resistencia intermedia a la sequía): EMP-199 y EMP-191. Los resultados encontrados en este ensayo se tomaron como un diagnóstico exploratorio, que revelaron la posible existencia de mecanismos de resistencia a la sequía.

4) En condiciones de campo, los adelantos de la fecha de inicio de floración, fructificación y madurez fisiológica representan mecanismos de escape a la sequía por rápido desarrollo fenológico, identificados en DOR-227; EXP-145 y Criolla San Juan.
5) La variación en altura de las plantas de los cinco germoplasmas representa un mecanismo de escape a la sequía por aumento de la plasticidad. El aumento de la profundidad de la raíz, es un mecanismo de evasión a la sequía que se aumenta en DOR-227, EXP-145 y Criolla San Juan y ha sido reportado en ensayos del CIAT (Sponchiado, 1985). Finalmente la reducción del área foliar se presenta en todos los germoplasmas.

6) En condiciones de campo los diferentes germoplasmas evaluados, según su referencia de origen, fueron divididos en tres grupos:

Grupo 1: Ciclo largo, floración indeterminada o indiferente, resistentes a la sequía y con alto rendimiento. Aquí ubicamos a ICA-PIJAO, EMP-192 y EXP-145.

Grupo 2: Ciclo corto, floración determinada, alto rendimiento y resistente a la sequía. Aquí encontramos a DOR-227.

Grupo 3: Ciclo largo, floración indeterminada, alto rendimiento y alta resistencia a la sequía. Aquí encontramos al germoplasma regional Criolla San Juan proveniente de San Juan de Lagunillas, Mérida.

7) El déficit hídrico afecta, en general, la dinámica de biomasa seca de los cinco germoplasmas, respecto a los controles, causando disminución de biomasa seca en (hoja, tallo, vainas y en la planta). DOR-227 y Criolla San Juan fueron los menos afectados y EMP-192 e ICA-PIJAO los más afectados.
8) El déficit hídrico afectó principalmente el rendimiento en grano (Y_G). El germoplasma DOR-227 es la excepción, pues el IC bajo déficit hídrico supera el IC de las plantas controles.

9) El comportamiento agronómico en sequía, de los cinco germoplasmas, concuerda con los mecanismos de resistencia a la sequía, identificados y evaluados en el ensayo de campo para DOR-227 y parcialmente para EXP-145. Criolla San Juan presenta concordancia entre su comportamiento agronómico (rendimiento intermedio en sequía) y la presencia de los mecanismos de resistencia encontrados. ICA-PIJAO y EMP-192 presentaron los rendimientos en grano más bajos como consecuencia de no expresar mecanismos de resistencia a la sequía. En general, el comportamiento agronómico de los cinco germoplasmas tuvo concordancia con su comportamiento ecofisiológico y su referencia de origen, a excepción de EMP-192.
CAPITULO 3

RESISTENCIA A LA SEQUÍA EN CINCO GERMOPLASMAS DE PHASEOLUS VULGARIS L., BAJO DEFICIT HÍDRICO DIFERENCIAL

Introducción

En las leguminosas, la floración y el desarrollo de las vainas, son las etapas más sensibles a la sequía. La aplicación del déficit hídrico durante la floración incrementa marcadamente el porcentaje de caída de las estructuras reproductivas, reduce el número de vainas cosechables y así limita el rendimiento de estos cultivos; lo anterior ha sido ampliamente comprobado para soya Glycine max (L.) Merr (Doss et. al, 1974; Sionit y Kramer, 1977); Cowpea o Caupi (Vigna sinensis (L.) (Hiler et al, 1972; Turk, 1980); guisantes (Pisum sativum (L.) (Salter y Goode, 1977); en caraota (Phaseolus vulgaris (L.) (Robins y Domingo, 1956; Dubertz y Mahala, 1969; Stoker, 1961; Flores-Lui, 1982).

El efecto del déficit hídrico en diferentes períodos del ciclo fenológico de la mayoría de los cultivos, ha sido documentado por diferentes autores, Doorebos y Pruitt, (1975), Millar, (1976); Salter y Goode, (1967); Fischer, (1973); Sionit et al, (1982); Orgaz et al, (1991); sin embargo, hay escasa información sobre el efecto del déficit hídrico, impuesto en forma continua en los períodos fenológicos de mayor
respuesta sensitiva a la falta de agua en los cultivos. Este tipo de información es básica para definir: a) el grado de tolerancia a la sequía; b) la presencia y repercusión de mecanismos de resistencia a la sequía sobre la producción y rendimiento de los cultivos, y c) la posibilidad de producción potencial en zonas con sequía; en vista de que la mayoría de las tierras agrícolas del mundo se encuentran en las regiones semiáridas, donde la deficiencia de los recursos hídricos es el principal factor limitante para aumentar la producción agrícola (Swindale y Bidinger, 1981).

Para independizar la producción de leguminosa de grano, de los factores climáticos, especialmente en los cultivos tropicales (caraota y frijol) y en la soya (Schafer y Hoby, 1967); es preciso introducir variedades más adaptadas y tolerantes a la sequía con la máxima eficiencia del uso de los recursos hídricos. Desde el punto de vista agroecofisiológico, el conocimiento del ciclo fenológico en los períodos de mayor respuesta al déficit hídrico, así como de los mecanismos de resistencia a la sequía, es esencial para el mejoramiento de los cultivos en condiciones de sequía (Millar, (1976 y 1977); Salter y Goode, (1977)).

En plantas cultivadas el efecto que produce un déficit de agua sobre el crecimiento, producción de biomasa seca y rendimiento de cultivo, es consecuencia del grado y la etapa de desarrollo en la cual se presente. Si el estrés de agua ocurre durante la etapa de floración, este puede disminuir la intensidad de la fuente principal (hojas), produciendo caídas del
potencial hídrico foliar y cierre estomático, lo cual causa el bloqueo de la fotosíntesis. El tamaño de la demanda (floración) se puede reducir por una falta o mala polinización y fertilización; combinado con todo esto, hay una aceleración de la senescencia de las hojas, teniéndose un período muy pequeño de duración de la fuente principal (hojas) y un mal llenado de los frutos, que disminuye el rendimiento (Hsiao et al, 1976).

El cultivo de caraota (Phaseolus vulgaris L), es sensible al déficit hídrico en todas sus etapas de crecimiento, sin embargo, el rendimiento se ve más afectado cuando el déficit de agua se presenta durante la floración y el llenado de vainas (Salter y Goode, 1967)

Las respuestas del crecimiento de Phaseolus vulgaris L, al exceso de agua y al déficit hídrico, son opuestas de acuerdo a la disponibilidad de agua presente en el suelo (Hostalacio y Valio, 1984). Se ha verificado una reducción del área foliar, y del rendimiento en materia seca como producto de la disminución del agua del suelo (Couto, 1979; Resende et al, 1981). Como observaron Gunton y Evenson (1980), el índice de área foliar y la tasa de producción de materia seca estarían altamente relacionadas con el rendimiento en grano (Y_G) de Phaseolus vulgaris L, mediante un aumento en el uso del agua. Este rendimiento está relacionado a su vez con el índice de duración del área foliar. Stone et al, (1988), al estudiar los efectos de tres tratamientos de riego sobre Phaseolus vulgaris L encontraron que el índice de área foliar (L); duración
del área foliar (D), producción de materia seca (Wt), tasa de crecimiento relativo de cultivo (Ct); tasa relativa de crecimiento (Rw) y tasa de asimilación neta (Ea) disminuyeron cuando se eliminó la irrigación a altas tensiones de agua en el suelo. Este trabajo evidenció que las funciones de medida del análisis de crecimiento (L, D, Wt, Ct y Ea) están directamente relacionadas con mecanismos que evitan la pérdida de agua (reducción del área foliar) y con un uso diferencial del agua (Wallace, 1985; Brandes et al, 1971).

Magalhanes y Millar (1978), estudiando el efecto del déficit hídrico sobre el rendimiento y sus componentes en *Phaseolus vulgaris* L, encontraron una disminución sobre el rendimiento, cuando el cultivo estuvo 14 días sin irrigación, durante la floración. Después de 17 a 20 días sin irrigación, la reducción de los rendimientos fue de 30% y 52%, permaneciendo casi constante al final de los 29 días de déficit hídrico.

El presente trabajo tuvo como objetivos: 1) Analizar la susceptibilidad a la sequía de cinco (05) germoplasmas de caraota negra *Phaseolus vulgaris* L, sometidos a diferentes tratamientos de déficit hídrico, aplicado en diferentes fases del ciclo de desarrollo fenológico; 2) Identificar y analizar mecanismos de resistencia a la sequía en los cinco germoplasmas; 3) Establecer la relación entre los mecanismos de resistencia a la sequía y los procesos fenológicos del cultivo, eficiencia en el uso del agua y rendimiento del cultivo.
3.1 Materiales y métodos

Para valorar los mecanismos de resistencia a la sequía, presentes en cinco germoplasmas de Phaseolus vulgaris L (1992) (Capítulo 2), se diseñó un ensayo de campo con la aplicación de seis tratamientos hídricos. El material vegetal se sometió a ciclos de déficit hídrico de diferente duración y aplicados diferencialmente a través de las etapas del ciclo de desarrollo respecto a un tratamiento control con riego normal. Los mecanismos de resistencia a la sequía fueron determinados a través del impacto que tuvieron los diferentes tratamientos hídricos, sobre los procesos de crecimiento, dinámica en la producción de biomasa seca total y rendimiento en grano del cultivo. Además se evaluó la susceptibilidad a la sequía de los cinco (05) germoplasmas de Phaseolus vulgaris L.

3.1.1 Descripción del material vegetal

Los cinco germoplasmas utilizados presentan las características que se resumen en la tabla 3.1
TABLA 3.1: Caracterización de los germoplasmas de *Phaseolus vulgaris* L. según el ensayo de campo N° 1 (1992)

<table>
<thead>
<tr>
<th>Germoplasma</th>
<th>Procedencia</th>
<th>Características</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vr Criolla San Juan (A)</td>
<td>Venezuela (IIAP)</td>
<td>Tipo 3 (CC-FDₙ) Rendimiento en grano (intermedio) Resistencia a la sequía (intermedia)</td>
</tr>
<tr>
<td>Hr DOR-227 (B)</td>
<td>Guatemala Mérida (FONAIAP)</td>
<td>Tipo 2 (CC-Fₑ/Fₘₙₑ₁) Rendimiento en grano (alto) Resistencia a la sequía (alta)</td>
</tr>
<tr>
<td>Hr EXP-145 (D)</td>
<td>Colombia (ICA-FONAIAP-Trujillo)</td>
<td>Tipo 1 (CL-Fₑ/Fₘₙₑ₁) Rendimiento en grano (alto) Resistencia a la sequía (alta)</td>
</tr>
<tr>
<td>Hr EMP-192 (E)</td>
<td>Colombia (ICA-FONAIAP-Trujillo)</td>
<td>Rendimiento en grano (bajo) Resistencia a la sequía (baja) Tipo 1 (CL-Fₑ/Fₘₙₑ₁)</td>
</tr>
<tr>
<td>Hr ICA-PJAO (H)</td>
<td>Colombia (ICA-FONAIAP-Trujillo)</td>
<td>Rendimiento en grano (bajo) Resistencia a la sequía (baja) Tipo 1 (CL-Fₑ/Fₘₙₑ₁)</td>
</tr>
</tbody>
</table>

3.1.2 Diseño experimental

Se estableció un diseño estadístico en bloques al azar, de arreglo factorial de parcelas divididas para los cinco germoplasmas sometidos a seis tratamientos hídricos (cinco tratamientos hídricos de déficit hídrico diferencial) respecto a un tratamiento hídrico control con riego normal, con tres repeticiones. Los tratamientos hídricos representan las parcelas y los germoplasmas de *Phaseolus vulgaris* L. serán las subparcelas. La tabla 3.2 muestra la descripción de los tratamientos hídricos.
TABLA 3.2: Tratamientos hídricos en el ensayo de campo N° 2. TH (Tratamiento hídrico), DH (déficit hídrico), DDS (Días después de la siembra)

<table>
<thead>
<tr>
<th>N° tratamiento hídrico</th>
<th>Tratamiento hídrico</th>
<th>Descripción del riego diferencial</th>
<th>Tiempo de duración del déficit hídrico (días)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TH1</td>
<td>DH aplicado 20 DDS</td>
<td>Sin riego hasta la cosecha final</td>
<td>64</td>
</tr>
<tr>
<td>TH2</td>
<td>DH aplicado 27 DDS</td>
<td>" " " "</td>
<td>56</td>
</tr>
<tr>
<td>TH3</td>
<td>DH aplicado 34 DDS</td>
<td>" " " "</td>
<td>49</td>
</tr>
<tr>
<td>TH4</td>
<td>DH aplicado 41 DDS</td>
<td>" " " "</td>
<td>42</td>
</tr>
<tr>
<td>TH5</td>
<td>DH aplicado 48 DDS</td>
<td>" " " "</td>
<td>35</td>
</tr>
<tr>
<td>TH_control</td>
<td>Sin déficit hídrico</td>
<td>Riego aplicado hasta la cosecha final</td>
<td>0</td>
</tr>
</tbody>
</table>

Se utilizaron semillas de *Phaseolus vulgaris* L., producidas en las plantas bajo déficit hídrico provenientes del ensayo de campo, realizado en 1992 en San Juan de Lagunillas y descrito en el capítulo 2. El ensayo se estableció en 600 m², en la Estación Experimental San Juan de Lagunillas, Mérida, en los meses de Julio a Septiembre de 1993. La subparcela o unidad experimental de 4 m², consistió en 5 hileras de 5 m de largo, con 40 cm entre hileras y 20 cm entre plantas, para una densidad de siembra de 200.000 plantas/ha. El sistema de riego operó en todas las parcelas y subparcelas, regándose los primeros 10 días, con frecuencia diaria y luego se aplicó una frecuencia cada 3 días; aunque las críticas condiciones de suministro de agua de la Estación Experimental no garantizaron el cumplimiento estricto de los turnos de riego por
necesidades de otros usuarios y por características del bombeo en la estación experimental. Se aplicó una fertilización química previa a la siembra, con una dosis de 40 kg/ha de fertilizantes granulado, del tipo $15\text{N}, 15\text{P}$ y 15K, correspondiendo a 16 g/m2. Se repitió la fertilización a los 15 DDS, pero agregando 5 g/planta. La emergencia ocurrió en forma normal, en todos los germoplasmas de cada subparcela, a los 6 DDS. Las plantas se mantuvieron bajo riego normal, hasta el día 20 DDS, fecha en que se inició el déficit hídrico del TH1. El déficit hídrico fue aplicado secuencialmente a los tratamientos TH2, TH3, TH4 y TH5, a los 27, 34, 41 y 48 DDS, respectivamente; todos los tratamientos hídricos en déficit hídrico se evaluaron respecto al tratamiento hídrico control con riego normal. Para todos los tratamientos hídricos se efectuaron conjuntamente tres cosechas de material vegetal, las cuales se llevaron a cabo al inicio del ciclo de déficit hídrico, a la mitad del ciclo de desarrollo y en la cosecha final de rendimiento en grano (Tabla 3.3).

Se programó el déficit hídrico y las cosechas sobre un cultivo ideal de hábitos de crecimiento intermedio entre los tipos I y II, según (CIAT): Tipo I (determinado arbustivo) y Tipo II (indeterminado arbustivo) (Fig. 3.1).
<table>
<thead>
<tr>
<th>N° tratamiento hídrico</th>
<th>N° cosechas</th>
<th>Tiempo de la cosecha (DDS)</th>
<th>Duración del déficit hídrico (días)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TH1</td>
<td>1°</td>
<td>20</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2°</td>
<td>55</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>3°</td>
<td>84</td>
<td>64</td>
</tr>
<tr>
<td>TH2</td>
<td>1°</td>
<td>27</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2°</td>
<td>60</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>3°</td>
<td>84</td>
<td>56</td>
</tr>
<tr>
<td>TH3</td>
<td>1°</td>
<td>34</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2°</td>
<td>64</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>3°</td>
<td>84</td>
<td>49</td>
</tr>
<tr>
<td>TH4</td>
<td>1°</td>
<td>41</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2°</td>
<td>69</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>3°</td>
<td>84</td>
<td>42</td>
</tr>
<tr>
<td>TH5</td>
<td>1°</td>
<td>48</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2°</td>
<td>72</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>3°</td>
<td>84</td>
<td>35</td>
</tr>
</tbody>
</table>

THcontrol	1° TH1; 1° TH2; 1° TH3; 1° TH4; 1° TH5; 2 TH1; 2 TH2; 2 TH3; 2 TH4; 2 TH5; 3 TH1; 3 TH2; 3 TH3; 3 TH4; 3 TH5;	*	*
		55, 60, 64, 69, 72	0, 0, 0, 0, 0
		84, 84, 84, 84, 84	0, 0, 0, 0, 0

* No hubo cosecha del Thc, pues la fecha de efectuar la cosecha N° 1 de todos los tratamientos hídricos (1, 2, 3, 4 y 5), todas las plantas eran controles bien irrigados sin déficit hídrico.

TH (Tratamiento hídrico); DDS (Días después de la siembra)

Hábito de crecimiento Tipo I: crecimiento determinado arbustivo (Fig. 3.1a)

Las plantas tipo I presentan las siguientes características:

1. El tallo y las ramas terminan en una inflorescencia desarrollada. Cuando esta inflorescencia está formada, el crecimiento del tallo y de las ramas generalmente se detiene, siendo determinado.
2. En general el tallo es fuerte, con un bajo número de entrenudos, de 5 a 10, comúnmente cortos.

3. La altura puede variar entre 30 y 50 cm. Sin embargo hay casos de plantas enanas (15 a 25 cm).

4. La etapa de floración es corta y la madurez de todas las vainas ocurren casi al mismo tiempo.

Sin embargo se debe notar la presencia de una variación dentro del hábito de crecimiento determinado, en la cual los entrenudos son mas largos, pueden ser más numerosos (más de 8) y en algunos casos con guías trepadoras.

Hábito de crecimiento Tipo II: crecimiento indeterminado arbustivo (Fig. 3.1b)

Las plantas tipo II presentan las siguientes características:

1. Tallo erecto sin aptitud para trepar, aunque termina en una guía corta. las ramas no producen guías.

2. Pocas ramas, pero en número superior al tipo I y generalmente cortas con respecto al tallo.

3. El número de nudos del tallo es superior al de las plantas del tipo I; generalmente más de 12.

4. Como todas las plantas de hábito de crecimiento indeterminado, estas continúan creciendo durante la etapa de floración, aunque a un ritmo menor.
En las figuras 3.2 a la 3.6, se muestran esquemáticamente la aplicación y extensión de los distintos tratamientos hídricos y las cosechas efectuadas en el tratamiento hídrico: \(T_H = D_H + \text{control} \), donde \(T_H = 1 \to 5 \) (Nº del tratamiento hídrico) y \(D_H = 1 \to 5 \) (Nº del déficit hídrico), se entiende por aplicación, la fecha del inicio del déficit hídrico en (DDS), la cual corresponde en cada tratamiento a una fase del ciclo fenológico del cultivo; y por extensión, la amplitud del déficit hídrico desde su aplicación hasta la cosecha final de rendimiento en grano \((Y_0) \).
FIGURA 3.2: Programación del déficit hídrico y cosechas del TH1=DH1+control: déficit hídrico iniciado a los 20 DDS (entre la última etapa de la fase vegetativa y la 1ra etapa de la fase reproductiva (prefloración) y mantenido por 64 días respecto a controles bien irrigados

FIGURA 3.3: Programación del déficit hídrico y cosechas del TH2=DH2+control: déficit hídrico iniciado a los 27 DDS (en la etapa de prefloración) de la fase fase reproductiva y mantenido por 64 días respecto a controles bien irrigados
FIGURA 3.4: Programación del déficit hídrico y cosechas del TH3=DH3+control: déficit hídrico iniciado a los 34 DDS (etapa de floración) de la fase reproductiva y mantenido por 49 días respecto a controles bien irrigados.

FIGURA 3.5: Programación del déficit hídrico y cosechas del TH4=DH4+control: déficit hídrico iniciado a los 41 DDS (etapa de formación de vainas) de la fase reproductiva y mantenido por 42 días respecto a controles bien irrigados.
FIGURA 3.6: Programación del déficit hídrico y cosechas del TH5=DH5+control: déficit hídrico iniciado a los 48 DDS (etapa de llenado de vainas) de la fase reproductiva y mantenido por 35 días respecto a controles bien irrigados

3.1.3 Parámetros analizados

1) Clima

Durante las 3 cosechas se efectuó un registro microclimático de los siguientes parámetros (en cursos diarios desde las 8:00 a.m. a las 6:00 p.m., cada dos horas): 1) Temperatura (suelo, dosel y aire), se utilizaron pares de termistores conectados a un teletermómetro; 2) Radiación (total al aire, total al suelo, fotosintética activa (PAR), se utilizó un radiómetro marca LI-COR, Modelo Li-189; 3) Humedad relativa, se utilizó un psicrómetro de ventilación de Ashman; 4) La precipitación y la
evaporación se registraron según datos obtenidos por la estación del MARN, de San Juan de Lagunillas.

2) Estado hídrico del suelo y las plantas

En las 3 cosechas, para cada tratamiento hídrico se obtuvieron los siguientes parámetros:

a. Potencial hídrico del suelo (Ψ_s): se midió con tensiómetros de suelo de succion de agua, fabricados por el laboratorio de Física de Suelo del Instituto de Silvicultura de la Facultad de Ciencias Forestales de la Universidad de Los Andes.

b. Potencial hídrico de la hoja (Ψ_h): se midió utilizando la bomba de presión de Scholander (Scholander, 1965).

c. %CRA(h) (contenido relativo de agua en la hoja): el cual se calculó mediante la siguiente ecuación:

$$%CRA = \frac{\text{Peso fresco(h)} - \text{Peso seco(h)}}{\text{Peso fresco de saturación(h)} - \text{Peso seco(h)}} \times 100$$

Todas las medidas fueron realizadas el día de la cosecha a las 8:00 a.m.

3) Análisis del crecimiento y producción de biomasa seca

El crecimiento fue analizado a partir de las siguientes variables:

3.1 Iniciación floral y área foliar.

3.2 Biomasa seca: Se obtuvo la biomasa seca en raíz, hoja y tallo y total.

La producción de biomasa seca se determinó en las tres cosechas en kg/ha.
3.3 Crecimiento: Se analizaron las siguientes variables:

a) Índice de área foliar (IAF): Definida y calculada mediante la siguiente ecuación:

\[\overline{L_{2-1}} = \frac{L_{A_2} - L_{A_1}}{P} \]: Sin dimensiones

-\(L_A \): Área foliar total
-\(P \): Área de terreno cosechada
-\(L_{2-1} \): Área foliar total en el intervalo entre las cosechas (2 y 1)

b) Tasa relativa de crecimiento (TRC):

\[\overline{r_{2-1}} = \frac{\log_{2}W - \log_{1}W}{T_2 - T_1} \]: Peso.\, \text{area}^{-1}.\text{tiempo}^{-1}

-\(W \): peso seco total de la hoja
-\(L_A \): área foliar total
-\(T_2-T_1 \): intervalo de tiempo entre t2-t1

c) Tasa neta de asimilación

\[TN_{A_{2-1}} = \frac{W_2 - W_1}{T_2 - T_1} \cdot \frac{\log(e_2L_A) - \log(e_1L_A)}{L_{A_2} - L_{A_1}} \]: Peso.\, \text{area}^{-1}.\text{tiempo}^{-1}

4) Rendimiento en grano (\(Y_G \)); % de reducción del rendimiento; índice de susceptibilidad a la sequía (S) e índice de cosecha (IC)

El rendimiento en grano (\(Y_G \)) se obtuvo a partir de los componentes del rendimiento y se estableció el % de reducción del rendimiento en grano. El índice (S) se calculó en base a la variación del rendimiento en grano (\(Y_G \)) para los cinco tratamientos de déficit hídrico, respecto a los rendimientos en grano para los tratamiento controles.

El índice de cosecha (IC), se calculó en base a las variables siguientes:

1. El rendimiento en grano (\(Y_G \)), en los cinco tratamientos hídricos (Ys1, Ys2, Ys3, Ys4 y Ys5) y el control (\(Y_{R1}, Y_{R2}, Y_{R3}, Y_{R4} \) y \(Y_{R5} \)), en la última cosecha.
2. La productividad de biomasa seca total de la cosecha 3 en los cinco tratamientos (BST_{S1}, BST_{S2}, BST_{S3}, BST_{S4} y BST_{S5}) respecto a la biomasa seca total del tratamiento control (BST_{R1}, BST_{R2}, BST_{R3}, BST_{R4} y BST_{R5}).

3.1.4 Análisis estadístico

Los resultados fueron analizados con el paquete estadístico (SAS), mediante el análisis de varianza múltiple para los cinco tratamientos de déficit hídrico diferencial, respecto al tratamiento control de riego normal. Además se realizó un análisis de correlación múltiple para el índice de cosecha (IC) respecto al rendimiento en grano Y_G y la biomasa seca total y sobre el rendimiento en grano (Y_G) respecto a tiempo de iniciación floral, peso seco de la raíz y el índice de área foliar.

3.2 Resultados

3.2.1 Microclima

En forma general para cada tratamiento hídrico se observó que los parámetros microclimáticos evaluados a las 8:00 a.m., a través de 3 cosechas, realizadas al inicio (cosecha N° 1), mitad (cosecha N° 2) y final del ciclo de déficit hídrico (cosecha N° 3) presentaron las siguientes características:

1) **Tratamiento hídrico N° 1**: La radiación total (Rt) oscila entre 1000 watt.m2 en las cosechas 1 y 2 y 600 watt.m2 en la cosecha 3. La humedad relativa mostró poca variación, entre 50% a 65% entre las 3 cosechas
(Figs. 3.7a y 3.7b). Las temperaturas del suelo, aire y hoja, oscilaron en las 3 cosechas entre 21°C a 28°C, observándose que la temperatura superficial es la más alta, por encima de la de la hoja y el aire (Fig. 3.7c).

2) **Tratamiento hídrico N° 2:** La radiación total (Rt) varió desde 160 watt.m² en la cosecha 2 a 600 watt.m² en la 3. La humedad relativa osciló entre 50% a 62% entre las 3 cosechas (Figs 3.8a y 3.8b). Las temperaturas fueron similares al tratamiento hídrico N° 1 (Fig. 3.8c).

3) **Tratamiento hídrico N° 3:** Los parámetros microclimáticos en este tratamiento, estuvieron ambientalmente condicionados por precipitaciones caídas 48 horas antes de cada cosecha. La radiación total estuvo alrededor de los 600 watt.m² debida a la alta nubosidad. La humedad relativa se mantuvo alta entre 55% y 65% (Figs. 3.9a y 3.9b). Las temperaturas experimentaron ligeros cambios respecto a los tratamientos 1 y 2, con disminución en las temperaturas del aire y la hoja, aunque las temperaturas del suelo se mantuvieron en el mismo rango (Fig. 3.9c).

4) **Tratamiento hídrico N° 4:** Los parámetros microclimáticos en este tratamiento, estuvieron también condicionados por precipitaciones, caídas 48 horas antes de las cosechas 1 y 2 y 24 horas antes de la cosecha 3. La radiación total se mantuvo en 1000 watt.m² en las cosechas 1 y 2, pero cae a 600 watt.m² en la última cosecha. La humedad relativa fue alta en las 3 cosechas (figs 3.10a y 3.10b). Las temperaturas se mantuvieron en el rango del tratamiento hídrico N° 3 (Fig. 3.10c).
5) **Tratamiento hídrico N° 5:** Este fue el tratamiento con menor duración en relación al déficit hídrico y el iniciado más tardíamente. Los parámetros microclimáticos estuvieron también condicionados por lluvias antes de las tres cosechas. La radiación total osciló entre 600 y 1600 watt.m². La humedad relativa y la temperatura se mantuvo en los valores del tratamiento hídrico N° 4 (Fig. 3.11).

3.2.2 Relaciones hídricas

La Fig. 3.12a muestra la disminución relativa entre control y déficit hídrico para el %CRAhoja, Ψhoja y Ψsuelo entre la cosecha y la cosecha III para los tratamientos hídricos (1, 2, 3, 4 y 5). La disminución relativa de estos parámetros se compara con el valor inicial de ellos al comienzo del déficit hídrico.

Tratamiento hídrico 1, el déficit hídrico produjo un descenso de los Ψsuelo, el cual se hizo mayor a medida que aumentaba la duración del mismo, alcanzando los máximos valores a los 64 DDS en la cosecha N° 3 (Fig. 3.12). El descenso de los Ψsuelo produjo una disminución en el contenido de agua de la hoja (%CRA) y del Ψhoja que se mantuvo, en forma general en % menores y en valores más negativos respecto a los controles a través de las 3 cosechas. El déficit hídrico produjo una disminución relativa acentuada del Ψsuelo en las cosechas II y III, siendo
FIGURA 3.11: Variación de parámetros climáticos de un cultivo durante 26 días para 3 cosechas en un estudio de ThS.

1) Cosecha N. 1
 a) 48 DDS: 1 DDH
 b) % HR
 c) Temperatura (°C)
 d) Temp. del aire
 e) Temp. hoja
 f) Temp. suelo (10 cm)
 g) Temp. suelo (0 cm)

2) Cosecha N. 2
 a) 72 DDS: 24 DDH
 b) % HR
 c) Temperatura (°C)
 d) Temp. del aire
 e) Temp. hoja
 f) Temp. suelo (10 cm)
 g) Temp. suelo (0 cm)

3) Cosecha N. 3
 a) 84 DDS: 34 DDH
 b) % HR
 c) Temperatura (°C)
 d) Temp. del aire
 e) Temp. hoja
 f) Temp. suelo (10 cm)
 g) Temp. suelo (0 cm)
FIGURA 3.10: Variación de parámetros climáticos de un curso diario de 6 horas, para 3 cosechas en el Th4

Th4: inicio del déficit hídrico a los 41 DDS y prolongado por 42 días

1) Cosecha Nº 1
 41 DDS; 0 DDH
 1.a) R_t (watt.m$^{-2}$)
 1.b) % HR
 1.c) Temperatura (°C)
 $A =$ Temp. del aire
 $H =$ Temp. hoja
 $S_{10} =$ Temp. suelo (10 cm)
 $S_0 =$ Temp. suelo (0 cm)

2) Cosecha Nº 2
 69 DDS; 26 DDH
 2.a) R_t (watt.m$^{-2}$)
 2.b) % HR
 2.c) Temperatura (°C)
 $A =$ Temp. del aire
 $H =$ Temp. hoja
 $S_{10} =$ Temp. suelo (10 cm)
 $S_0 =$ Temp. suelo (0 cm)

3) Cosecha Nº 3
 84 DDS; 42 DDH
 3.a) R_t (watt.m$^{-2}$)
 3.b) % HR
 3.c) Temperatura (°C)
 $A =$ Temp. del aire
 $H =$ Temp. hoja
 $S_{10} =$ Temp. suelo (10 cm)
 $S_0 =$ Temp. suelo (0 cm)
FIGURA 3.9: Variación de parámetros climáticos de un curso diario de 6 horas, para 3 cosechas en el Th3

Th3: inicio del déficit hídrico a los 34 DDS y prolongado por 49 días

1) Cosecha Nº 1
 34 DDS; 0 DDH
1.a) R_t (watt.m$^{-2}$)
1.b) % HR
1.c) Temperatura ($^\circ$C)
 A = Temp. del aire
 H = Temp. hoja
 S_{10} = Temp. suelo (10 cm)
 So = Temp suelo (0 cm)

2) Cosecha Nº 2
 64 DDS; 36 DDH
2.a) R_t (watt.m$^{-2}$)
2.b) % HR
2.c) Temperatura ($^\circ$C)
 A = Temp. del aire
 H = Temp. hoja
 S_{10} = Temp. suelo (10 cm)
 So = Temp suelo (0 cm)

3) Cosecha Nº 3
 84 DDS; 49 DDH
3.a) R_t (watt.m$^{-2}$)
3.b) % HR
3.c) Temperatura ($^\circ$C)
 A = Temp. del aire
 H = Temp. hoja
 S_{10} = Temp. suelo (10 cm)
 So = Temp suelo (0 cm)
FIGURA 3.8: Variación de parámetros climáticos de un curso diario de 6 horas, para 3 cosechas en el Th2

Th2: inicio del déficit hídrico a los 27 DDS y prolongado por 56 días

1) Cosecha N° 1
27 DDS: 0 DDH
1.a) \(R_t \) (watt.m⁻²)
1.b) % HR
1.c) Temperatura (°C)
 \(A = \) Temp. del aire
 \(H = \) Temp. hoja
 \(S10 = \) Temp. suelo (10 cm)
 \(So = \) Temp. suelo (0 cm)

2) Cosecha N° 2
60 DDS: 33 DDH
2.a) \(R_t \) (watt.m⁻²)
2.b) % HR
2.c) Temperatura (°C)
 \(A = \) Temp. del aire
 \(H = \) Temp. hoja
 \(S10 = \) Temp. suelo (10 cm)
 \(So = \) Temp. suelo (0 cm)

3) Cosecha N° 3
84 DDS: 56 DDH
3.a) \(R_t \) (watt.m⁻²)
3.b) % HR
3.c) Temperatura (°C)
 \(A = \) Temp. del aire
 \(H = \) Temp. hoja
 \(S10 = \) Temp. suelo (10 cm)
 \(So = \) Temp. suelo (0 cm)
FIGURA 3.7: Variación de parámetros climáticos de un curso diario de 6 horas, para 3 cosechas en el Th1

Th1: inicio del déficit hídrico a los 20 DDS y prolongado por 64 días

1) Cosecha No 1 (29-07-93)
 20 DDS; 0 DDH
1.a) Rt (watt.m-2)
1.b) % HR
1.c) Temperatura (°C)
 A = Temp. del aire
 H = Temp. hoja
 S10 = Temp. suelo (10 cm)
 So = Temp suelo (0 cm)

2) Cosecha No 2 (01-09-93)
 55 DDS; 35 DDH
2.a) Rt (watt.m-2)
2.b) % HR
2.c) Temperatura (°C)
 A = Temp. del aire
 H = Temp. hoja
 S10 = Temp. suelo (10 cm)
 So = Temp suelo (0 cm)

3) Cosecha No 3 (07-10-93)
 84 DDS; 64 DDH
3.a) Rt (watt.m-2)
3.b) % HR
3.c) Temperatura (°C)
 A = Temp. del aire
 H = Temp. hoja
 S10 = Temp. suelo (10 cm)
 So = Temp suelo (0 cm)
mayor en la cosecha III. La prueba de Duncan (Anexo 7) mostró DMS entre los valores de Ψsuelo control de las cosecha I y las disminuciones relativas de Ψsuelo de las cosechas II y III y entre los Ψsuelo de los suelos controles y en déficit hídrico de ambas cosechas para p<0.05 y p<0.01. Aunque los contenidos relativos de humedad fueron similares en cada cosecha para los cinco germoplasmas, los Ψhoja varió entre cosechas solamente para Criolla San Juan en la cosecha 2. Duncan mostró DMS entre el valor inicial de %CRA de los controles de la cosecha I y la disminución relativa de las cosechas II y III, así como entre los controles y el déficit hídrico de ambas cosechas en la mayoría de los germoplasmas, a excepción de ICA-PIJAO. La caída de los Ψhoja se refleja en disminuciones relativas fluctuantes entre los cinco germoplasmas, produciendo DMS entre el Ψhoja control de la cosecha I y la disminución relativa de Ψhoja en las cosechas II y III y entre los controles y el déficit hídrico para Criolla San Juan a p<0.05 y p<0.01 y entre la cosecha I y la disminución relativa de la cosecha III en EMP-192.

Tratamiento hídrico 2: el déficit hídrico produjo un descenso de los Ψsuelo similar al 1, aunque las disminuciones relativas fueron menores (fig. 3.12). En general para los cinco germoplasmas hubo caídas de los potenciales hídricos de la hoja (Ψh) y aumentos de la disminución relativa del %CRA, esta disminución relativa fue mayor en la cosecha II. La prueba de Duncan (Anexo 7) mostró DMS en los cinco germoplasmas entre el valor inicial de %CRA en la cosecha I y las disminuciones
relativas de las cosechas II y III y entre los %CRA de los controles y el déficit hídrico en ambas cosechas a p<0.05 y p<0.01. Las pérdidas de turgor al disminuir el %CRA, produjo una caída de los Ψhoja, que reflejan disminuciones relativas importantes en Criolla San Juan, EMP-192 e ICA-PIJAO, en la cosecha II, para estos germoplasmas la prueba de Duncan reveló DMS entre el valor inicial de Ψhoja en la cosecha I y las disminuciones relativas en las cosechas II y III a p<0.05 y p<0.01. Las disminuciones relativas de los Ψhoja fueron mayores en la cosecha II.

Tratamiento hídrico 3: el déficit hídrico produjo una disminución relativa de los Ψsuelo, de igual magnitud a los obtenidos en los tratamientos hídricos 1 y 2, mostraron según la prueba de Duncan (Anexo) DMS entre el Ψsuelo inicial de los controles en la cosecha I y los Ψsuelo de la cosecha II, para p<0.05 y p<0.01 y solo a p<0.01 para la cosecha III. La menor caída de los Ψsuelo fue debido a las precipitaciones caídas 48 horas antes de las cosechas. La disminución de los Ψsuelo produjeron caídas de los %CRA. La prueba de Duncan mostró DMS en los cinco germoplasmas a p<0.05 y p<0.01. Es notorio las fuertes disminuciones relativas de %CRA entre el déficit hídrico y el control. Las disminuciones relativas de los Ψhoja mostraron la tendencia de aumentar a medida que el déficit hídrico progresara, aunque la prueba de Duncan no reveló DMS entre el Ψhoja del control de la cosecha y las disminuciones relativas en las cosechas II y III en los cinco germoplasmas. Para la cosecha III, los Ψhoja mostraron DMS solo para DOR-227 y EXP-192.
Tratamiento hídrico 4: el ψsuelo bajo déficit hídrico disminuyó entre las cosechas 1 y 2 y aumentó en la cosecha 3, debida a precipitaciones caídas 48 horas antes de la cosecha; esto se refleja en un aumento del %CRA de los germoplasmas bajo déficit, excepto EXP-145 que disminuyó. Evidentemente la recuperación del ψsuelo en la 3ra cosecha produjo también recuperaciones en los ψhoja. La Fig. 3.12 muestra esta situación, excepto en EMP-192 el cual disminuye. Es notable que además en la 2da cosecha, aunque el ψsuelo disminuye, todos los ψhoja aumentaron en relación a la cosecha 1. Aunque los ψsuelo no mostraron una gran disminución; se observa en este tratamiento que las reducciones relativas entre el valor inicial de %CRA de los controles y las cosechas II y III en los cinco germoplasmas fueron muy altas y con DMS a p<0.05 y p<0.01. No se observaron DMS entre los ψhoja iniciales de los controles y las disminuciones relativas entre el déficit hídrico y los controles de las cosechas II y III. Solo se observan DMS para EMP-192 en la cosecha III a p<0.05 y p<0.01.

Tratamiento hídrico 5: en este tratamiento el déficit hídrico se aplicó muy tardíamente y estuvo condicionado por precipitaciones antes de las cosechas; los ψsuelo presentaron niveles de reducción muy leves y fueron semejantes a los observados en el tratamiento hídrico 4. El descenso del ψsuelo en el suelo bajo déficit hídrico a través de las 3 cosechas fue el menor de todos los tratamientos, pero la caída de los %CRA en los cinco germoplasmas bajo déficit hídrico fue alto, esto es
indudablemente una consecuencia de la senescencia avanzada. Los \(\Psi \) hoja bajo déficit hídrico presentaron las reducciones menores de los cinco tratamientos, se evidencia que un déficit hídrico tan corto y tardíamente iniciado, afectó muy poco los \(\Psi \) hoja (Fig. 3.12). Los \%CRA presentaron variaciones semejantes al tratamiento hídrico N° 4, destaca la baja reducción relativa de Criolla San Juan en la cosecha II. La prueba de Duncan mostró DMS para todos los germoplasmas entre el valor inicial de \%CRA y las disminuciones relativas en las cosecha I y II a p<0.05 y p<0.01. Los \(\Psi \) hoja no mostraron DMS entre el valor inicial de los controles en la cosecha I y las disminuciones relativas en las cosechas II y III. Destaca las DMS de la disminución relativa de \(\Psi \) hoja entre déficit hídrico y controles para DOR-227, EXP-145 Y EMP-192.

3.2.3 Análisis de correlación y regresión conjunta de los parámetros hídricos en suelo y en las plantas

El potencial hídrico del suelo (\(\Psi_s \)) y el potencial hídrico de la hoja (\(\Psi_h \)); (Fig. 3.13), presentaron alta correlación positiva \(r>0 \) y \(r^2=(0.66-0.90) \) en los cinco tratamientos. El déficit hídrico se incrementó a través del curso de las tres cosechas, lo cual produjo una disminución progresiva de los \(\Psi \) suelo en cada una. Esta disminución del \(\Psi \) suelo produjo una caída de los \(\Psi \) hoja. El análisis de correlación múltiple entre \(\Psi \) suelo vs \(\Psi \) hoja mostró correlaciones positivas mayores para los tratamientos hídricos 1 y 2, donde el déficit hídrico fue de mayor duración y no presentó interrupciones por precipitaciones antes de las cosechas. El tratamiento hídrico 5 presenta una alta correlación positiva, a
FIGURA 3.12: Contenido relativo de humedad (A) y Potenciales hídricos máximos (B) en los cinco germoplasmas en las tres cosechas y en los tratamientos hídricos: TH1 (64 días de déficit hídrico), TH2 (56 días de DH) y TH3 (49 días de DH). DOR-227 (□); EXP-145 (●); EMP-192 (▲); Criolla San Juan (○); ICA-PIJAO (■); Ψsuelo (☆)
FIGURA 3.12: Contenido relativo de humedad (A) y Potenciales hídricos máximos (B) en los cinco germoplasmas en las tres cosechas y en los tratamientos hídricos: TH4 (42 días de déficit hídrico) y TH5 (35 días de DH). DOR-227 (□); EXP-145 (♦); EMP-192 (▲); Criolla San Juan (●); ICA-PIJAO (■); ψ_suelo (⊥⊥)
FIGURA 3.13 Relación entre Ψ hoja en cinco germoplasmas de Phaseolus vulgarii L, bajo déficit hídrico a través de 3 cosechas en cinco tratamientos hídricos. Cada punto representa media de 4 repeticiones.
pesar de presentar un déficit hídrico de corta duración y con interrupciones del mismo antes de las cosechas; evidentemente el efecto de la senescencia en la hoja reforzó la caída de los Ψ_h. En los tratamientos hídricos N° 3 y 4 se observó que los coeficientes de correlación positiva, aunque altos, disminuyen respecto a los tratamientos hídricos anteriormente analizados; principalmente porque hubo interrupción del déficit hídrico por precipitaciones antes de las cosechas.

La correlación entre el $\%\text{CRA}_{\text{hoja}}$ y el Ψ_{hoja}, (figura 3.14) resultó $r<0$ y r^2 (0.76-0.92), lo cual sugiere que a altos contenidos de humedad, presenta bajos Ψ_{hoja} (mas positivos). En los tratamientos hídricos 1 y 2 se encontraron altas correlaciones inversas, lo que indica que la reducción del $\%\text{CRA}$ se manifestó en producción de Ψ_h más negativos, esto fue debido fundamentalmente a que en estos tratamientos, el déficit hídrico no fue afectado por interrupciones de precipitaciones previas a las cosechas. En el tratamiento hídrico N° 5, se observó una correlación inversa alta, debido más al efecto de senescencia combinado con el de déficit hídrico, el cual aunque se aplicó tardíamente y por corto tiempo, afectó el $\%\text{CRA}$ más que en otros tratamientos de mayor duración. Los tratamientos hídricos N° 3 y 4, presentaron correlaciones inversas intermedias producto de que sus ciclos de déficit hídrico fueron interrumpidos por precipitaciones previas a las cosechas; esto produjo que los $\%\text{CRA}$ en las hojas de los germoplasmas no guardara mayores correlaciones con los Ψ_{hoja}. Así observamos que en el tratamiento hídrico N° 3, los $\%\text{CRA}$ se mantuvieron relativamente altos y los Ψ_h no experimentaron drásticos descensos.
FIGURA 3.14: Relación entre %CRA vs ψ_{hoja} en cinco germoplasmas de Phaseolus vulgaris L, bajo déficit hídrico a través de 3 cosechas en cinco tratamientos hídricos. Cada punto representa media de 4 repeticiones.

1) Tratamiento hídrico (N° 1): 64 DDH (Dh$_h$=20 DDS)
2) Tratamiento hídrico (N° 2): 56 DDH (Dh$_h$=27 DDS)
3) Tratamiento hídrico (N° 3): 49 DDH (Dh$_h$=34 DDS)
4) Tratamiento hídrico (N° 4): 42 DDH (Dh$_h$=42 DDS)
5) Tratamiento hídrico (N° 5): 35 DDH (Dh$_h$=48 DDS)

Criolla San Juan · C1 = Cosecha 1
DOR-227 ○ C2 = Cosecha 2
EXP-145 □ C3 = Cosecha 3
EMP-192 △
ICA-PIJAO ×
3.2.4 Crecimiento y producción de biomasa seca

1) Crecimiento

a) Iniciación floral

El déficit hídrico afectó diferencialmente, como era de esperarse, la iniciación floral en todos los germoplasmas (tabla 3.4). Hubo adelantos de la floración en todos los germoplasmas en los tratamientos 1 y 2, siendo mayor en el tratamiento 2. Cuando el déficit hídrico se aplica en la etapa de prefloración. Los germoplasmas DOR-227 (7 días), Criolla San Juan y EXP-145 presentaron 5 días de adelanto, mientras que si se aplica en la etapa de floración, solo adelantan la floración por 2 días DOR-227 y EXP-145.

Se determinaron DS** (p<0.05) en los tratamientos 1 y 2 pero no se encontraron, para el tratamiento hídrico 3 ni efecto del déficit hídrico sobre la floración en los tratamientos hídricos 4 y 5, porque se aplicó después del inicio de la floración. Se encontraron DS** (p<0.05 y p<0.01), para germoplasmas e interacción (G x Th) en los tratamientos 1, 2 y 3 (Anexo 8). Las DS* se debieron a diferencias mínimas significativas (DMS) en adelanto de iniciación floral en los germoplasmas bajo déficit hídrico respecto a controles de los tratamientos hídricos 1, 2 y 3 y evaluados mediante pruebas de medias con la prueba de Duncan.
TABLA 3.4: Análisis de iniciación floral para cinco germoplasmas de *Phaseolus vulgaris* L., sometidos a cinco tratamientos hídricos.

- **Th₁**: DH (aplicado entre las etapas V4 y R5: la última vegetativa y prefloración)
- **Th₂**: DH (aplicado en la etapa R5: prefloración)
- **Th₃**: DH (aplicado en la etapa R6: floración)
- **Th₄**: DH (aplicado en la etapa R7: formación de vainas)
- **Th₅**: DH (aplicado en la etapa R8: llenado de vainas)

IF: Iniciación de floración (representa el promedio de 3 repeticiones)

DH: Déficit hídrico

C: Control

<table>
<thead>
<tr>
<th>Germoplasma</th>
<th>Th₁ (DHS)</th>
<th>IF (DDS)</th>
<th>DH dias</th>
<th>Th₂ (DHS)</th>
<th>IF (DDS)</th>
<th>DH dias</th>
<th>Th₃ (DHS)</th>
<th>IF (DDS)</th>
<th>DH dias</th>
<th>Th₄ (DHS)</th>
<th>IF (DDS)</th>
<th>DH dias</th>
<th>Th₅ (DHS)</th>
<th>IF (DDS)</th>
<th>DH dias</th>
</tr>
</thead>
<tbody>
<tr>
<td>"A" Vr Criolla San Juan</td>
<td>DH C</td>
<td>32 ab</td>
<td>35</td>
<td>12</td>
<td>DH C</td>
<td>30 ab</td>
<td>35</td>
<td>2</td>
<td>35 c*</td>
<td>0</td>
<td>DH C</td>
<td>35 c*</td>
<td>0</td>
<td>DH C</td>
<td>35 c*</td>
</tr>
<tr>
<td>"B" Hr DOR-227</td>
<td>DH C</td>
<td>32 ab</td>
<td>38</td>
<td>12</td>
<td>DH C</td>
<td>29 ab</td>
<td>36</td>
<td>2</td>
<td>37 c*</td>
<td>0</td>
<td>DH C</td>
<td>37 c*</td>
<td>0</td>
<td>DH C</td>
<td>37 c*</td>
</tr>
<tr>
<td>"D" Hr EXP-145</td>
<td>DH C</td>
<td>34 ab</td>
<td>37</td>
<td>14</td>
<td>DH C</td>
<td>32 ab</td>
<td>37</td>
<td>5</td>
<td>37 c*</td>
<td>0</td>
<td>DH C</td>
<td>37 c*</td>
<td>0</td>
<td>DH C</td>
<td>37 c*</td>
</tr>
<tr>
<td>"E" Hr EMP-192</td>
<td>DH C</td>
<td>36 ab</td>
<td>38</td>
<td>16</td>
<td>DH C</td>
<td>35 a</td>
<td>36</td>
<td>8</td>
<td>36 c*</td>
<td>0</td>
<td>DH C</td>
<td>36 c*</td>
<td>0</td>
<td>DH C</td>
<td>36 c*</td>
</tr>
<tr>
<td>"H" Hr ICA-PIJAO</td>
<td>DH C</td>
<td>36 ab</td>
<td>37</td>
<td>16</td>
<td>DH C</td>
<td>35 ab</td>
<td>38</td>
<td>8</td>
<td>37 c*</td>
<td>0</td>
<td>DH C</td>
<td>37 c*</td>
<td>0</td>
<td>DH C</td>
<td>37 c*</td>
</tr>
</tbody>
</table>

Entre déficit hídrico y control (Mediante prueba de Duncan)

- **a**: DM (p<0.05)
- **b**: DM (p<0.01)
- **c**: NS c*: No hay déficit hídrico en la iniciación floral
b) Parámetros de crecimiento

La tasa relativa de crecimiento para raíz (TRC$_{raíz}$) y planta (TRC$_{planta}$) (tabla 3.5) presentaron las siguientes características:

Tratamiento hídrico 1: Las TRC (raíz y planta), así como TAN disminuyó en cuatro de las cinco germoplasmas, a excepción de DOR-227 que presentó un ligero incremento en TCR$_{raíz}$ y TAN. El germoplasma donde se redujo mayormente TAN fue EXP-145.

Tratamiento hídrico 2: La TRC$_{raíz}$ disminuyó en EXP-145 y EMP-192, en tanto que aumentó en Criolla San Juan e ICA-PIJAO. La TAN disminuyó en cinco germoplasmas.

Tratamiento hídrico 3: Las TRC$_{raíz}$ aumentaron y las TRC$_{planta}$ y TAN disminuyeron de manera similar en los cinco germoplasmas.

Tratamiento hídrico 4: La TRC$_{raíz}$ disminuyó únicamente en EXP-145, mientras que TRC$_{planta}$ sólo aumentó en DOR-227. De manera similar a los tratamientos anteriores la TAN se redujo en todos los germoplasmas.

Tratamiento hídrico 5: El TRC$_{planta}$ disminuyó en los cinco germoplasmas, mientras que TRC$_{raíz}$ aumento en DOR-227, EXP-145 e ICA-PIJAO. La TAN se redujo en Criolla San Juan y DOR-227 habiendo un ligero incremento en los otros tres germoplasmas.

En forma general, el IAF se redujo en todos los germoplasmas en los cinco tratamientos hídricos.
TABLA 3.5: Efecto del déficit hídrico sobre parámetros del crecimiento en cinco germoplasmas de Phaseolus vulgaris L, sometidos a cinco tratamientos hídricos. TRC_R = Tasa relativa de crecimiento en raíz (g.g.día⁻¹). TRC_P = Tasa relativa de crecimiento en planta (g.g.día⁻¹) TNA = Tasa neta de asimilación (g.cm⁻².dia⁻¹). IAF = Índice de área foliar

<table>
<thead>
<tr>
<th>Germoplasma</th>
<th>Th</th>
<th>TH 1 Función de análisis de crecimiento</th>
<th>TH 2 Función de análisis de crecimiento</th>
<th>TH 3 Función de análisis de crecimiento</th>
<th>TH 4 Función de análisis de crecimiento</th>
<th>TH 5 Función de análisis de crecimiento</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>TRC<sub>R</sub> TRC<sub>P</sub> TNA IAF</td>
</tr>
<tr>
<td>“A” Vr Criolla</td>
<td>DH</td>
<td>2.9 6.37 2.90 0.65</td>
<td>1.82 2.76 0.29 0.8</td>
<td>4.4 0.5 0.54 0.09</td>
<td>2.0 3.0 0.30 0.004</td>
<td>1.29 0.5 1.06 0.20</td>
</tr>
<tr>
<td>San Juan</td>
<td>C</td>
<td>5.7 8.54 3.90 2.20</td>
<td>0.87 2.23 0.52 1.07</td>
<td>1.9 4.2 3.15 0.10</td>
<td>0.8 3.9 1.69 0.10</td>
<td>2.33 1.2 4.5 0.70</td>
</tr>
<tr>
<td>“B” Hr DOR-227</td>
<td>DH</td>
<td>5.6 7.10 3.32 1.00</td>
<td>0.50 1.59 0.49 0.01</td>
<td>4.1 3.7 0.07 0.12</td>
<td>2.6 5.0 2.06 0.034</td>
<td>4.50 0.3 1.65 0.01</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>5.3 7.51 2.88 1.41</td>
<td>0.24 1.75 0.51 0.61</td>
<td>0.8 5.3 1.68 0.22</td>
<td>1.1 3.7 3.15 0.16</td>
<td>1.10 3.1 9.48 0.10</td>
</tr>
<tr>
<td>“D” Hr EXP-145</td>
<td>DH</td>
<td>3.6 5.30 1.85 0.49</td>
<td>0.31 1.82 0.27 0.11</td>
<td>5.0 0.13 0.67 0.04</td>
<td>0.8 1.9 0.80 0.055</td>
<td>1.79 1.3 1.97 0.19</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>4.5 11.30 12.55 0.64</td>
<td>2.24 2.84 0.30 0.34</td>
<td>1.4 1.9 1.77 0.22</td>
<td>1.6 4.1 2.11 0.14</td>
<td>0.30 1.7 1.54 0.10</td>
</tr>
<tr>
<td>“E” Hr EMP-192</td>
<td>DH</td>
<td>4.7 6.70 2.56 1.36</td>
<td>0.81 0.55 0.70 0.54</td>
<td>5.8 1.43 6.46 0.02</td>
<td>1.8 1.1 0.80 0.039</td>
<td>1.50 0.9 3.12 0.04</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>5.4 7.90 2.91 1.36</td>
<td>2.22 2.85 1.96 0.54</td>
<td>1.6 2.23 6.76 0.23</td>
<td>1.1 3.4 1.36 0.18</td>
<td>2.27 3.7 2.71 0.14</td>
</tr>
<tr>
<td>“H” Hr ICA-PIJAO</td>
<td>DH</td>
<td>4.5 6.60 2.52 1.05</td>
<td>1.50 1.94 0.47 0.18</td>
<td>5.8 4.9 1.67 0.15</td>
<td>4.6 5.7 0.95 0.024</td>
<td>2.13 2.8 2.06 0.04</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>5.8 6.90 2.91 1.32</td>
<td>1.06 1.84 0.47 0.89</td>
<td>1.0 8.3 3.29 0.21</td>
<td>1.4 6.9 6.32 0.16</td>
<td>0.60 2.9 0.67 0.10</td>
</tr>
</tbody>
</table>
2) Producción de biomasa seca

La figura 3.15 muestra el efecto del déficit hídrico diferencial sobre la dinámica de producción de materia seca, para cinco germoplasmas de *Phaseolus vulgaris* L. El máximo efecto lo encontramos en la cosecha II para los tratamientos 1, 2, 3 y 4. Las mayores reducciones se alcanzaron en el tratamiento 1 en EXP-145 (-746 kg/ha) y en el tratamiento 2 en Criolla San Juan (-327 kg/ha). En el tratamiento 3, la máxima reducción se alcanzó en la cosecha III, para EMP-192 (-228 kg/ha). En la cosecha III, se observó un efecto de recuperación en los tratamientos 1, 2 y 3, el germoplasma con menor recuperación fue EMP-192. En los tratamientos 4 y 5, la recuperación fue menos espectacular y nuevamente EMP-192 mostró los valores de máxima reducción observándose poca o ninguna capacidad de recuperación. El efecto de recuperación se explica por la baja diferencia entre las biomirasas en déficit hídrico respecto al control y por las precipitaciones caídas entre las cosechas II y III en los tratamientos 2, 3 y 4.

El efecto del déficit hídrico sobre la producción de biomasa seca, lo evaluamos en función del porcentaje de su reducción en los germoplasmas bajo déficit hídrico respecto a controles (%RP$_{BS}$) de la cosecha 2, la cual es ideal al no estar influenciada por el efecto de senescencia normal que se observa en la 3ra cosecha. El efecto acumulativo lo calculamos como el % de la variación acumulada.
FIGURA 3.15: Efecto del déficit hídrico diferencial sobre la producción de materia seca de cinco germoplasmas de Phaseolus vulgaris: DOR-227 (□); EXP-145 (♦); EMP-192 (▪); Criolla San Juan (●); ICA-PIJAO (■)

ΔABST (Variación biomasa seca total); BSDH (Biomasa seca en déficit hídrico); BSc (Biomasa seca control)
de la reducción de biomasa seca total de los germoplasmas bajo déficit hídrico respecto a los controles (%VRP_{BST}), pero considerando la dinámica de biomasa seca total a través de las tres (03) cosechas, en cada uno de los tratamientos hídricos. La evaluación de estos efectos se presenta en la tabla 3.6.

En el tratamiento hídrico 1, el %RP_{BS} disminuyó en un 39.69% en promedio para los cinco germoplasmas. Los valores máximos de reducción se situaron en los germoplasmas EXP-145 y Criolla San Juan, y los mínimos en DOR-227 e ICA-PIJAO.

TABLA 3.6: Reducción de la producción de biomasa seca en la 2da cosecha (%RP_{BS}) y porcentaje de variación de la reducción de producción total (%VRP).

<table>
<thead>
<tr>
<th>Germoplasma</th>
<th>TH1=DH1+C</th>
<th>TH2=DH2+C</th>
<th>TH3=DH3+C</th>
<th>TH4=DH4+C</th>
<th>TH5=DH5+C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>%RP_{BS} (2\degree C)</td>
<td>%VRP_{BST}</td>
<td>%RP_{BS} (2\degree C)</td>
<td>%VRP_{BST}</td>
<td>%RP_{BS} (2\degree C)</td>
</tr>
<tr>
<td>“A” Vr</td>
<td>53.15</td>
<td>28.82</td>
<td>80.00</td>
<td>47.71</td>
<td>64.10</td>
</tr>
<tr>
<td>Criolla San Juan</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>“B” Hr DOR-227</td>
<td>12.86</td>
<td>19.22</td>
<td>5.18</td>
<td>10.51</td>
<td>38.11</td>
</tr>
<tr>
<td>“D” Hr EXP-145</td>
<td>87.45</td>
<td>72.0</td>
<td>-11.45</td>
<td>-51.73</td>
<td>45.72</td>
</tr>
<tr>
<td>“E” Hr EMP-192</td>
<td>35.40</td>
<td>22.14</td>
<td>52.88</td>
<td>59.13</td>
<td>66.39</td>
</tr>
<tr>
<td>“H” Hr ICA-PIJAO</td>
<td>9.62</td>
<td>3.54</td>
<td>-3.32</td>
<td>-16.16</td>
<td>63.17</td>
</tr>
</tbody>
</table>

131
En el tratamiento hídrico 2, la productividad disminuyó en algunos germoplasmas (Criolla San Juan, DOR-227 y EMP-192), mientras que en otros hubo un incremento (EXP-145 e ICA-PIJAO), los cuales acusaron %<0, pues la producción de los germoplasmas bajo déficit hídrico, fue más alta que los controles. El promedio de los %RP_BS fue de 22.62%. Los valores máximos se obtuvieron en Criolla San Juan y EMP-192, mientras que los germoplasmas ICA-PIJAO y EXP-145 presentaron los valores mínimos. Para el %VRP_BST encontramos que la producción total disminuyó a través de las 3 cosechas en Criolla San Juan, DOR-227 y EMP-192, mientras que aumentó en EXP-145 e ICA-PIJAO. La reducción general del %VRP_BST para los 5 germoplasmas fue de 49.46%.

En el tratamiento hídrico 3, el %RP_BS disminuyó en un 55.49%, en promedio la producción de los cinco germoplasmas. Criolla San Juan, EMP-192 e ICA-PIJAO, presentaron los máximos, siendo estos muy similares, mientras que las menores reducciones se encontraron en DOR-227 y EXP-145. En el %VRP_BST hubo una reducción general en los cinco germoplasmas, a través de las 3 cosechas, de 41.10% en promedio. Criolla San Juan y EMP-192, presentan los máximos, mientras que DOR-227 y EMP-145 muestran los mínimos de reducción.

En el tratamiento hídrico 4, el %RP_BS y el %VRP_BST se redujeron en 34.21% y 19.51%, respectivamente, en promedio para los cinco germoplasmas. AMP-192 e ICA-PIJAO muestran los máximos, mientras que Criolla San Juan y EXP-145 presentan la menor reducción.
En el tratamiento hídrico 5, el \(\%\text{RP}_{BS} \) presentó una reducción en 4 de los 5 germoplasmas; hubo sólo un incremento en DOR-227, para un déficit hídrico de 24 días, en plantas de 60 días de edad. El promedio de los cinco germoplasmas fue de -26.29, lo cual se debió al fuerte incremento en productividad sufrido por DOR-227, que trajo como consecuencia que el promedio fuese de incremento y no de reducción. Las mayores disminuciones se observaron en Criolla San Juan, EXP-145 y EMP-192, mientras que la menor se ubicó en ICA-PIJAHO. Para el \(\%\text{VRP}_{BST} \) se produjo una reducción promedio en los cinco germoplasmas a través de las 3 cosechas de 34.28%.

3.2.5 Rendimiento en grano \((Y_G)\), índice de susceptibilidad a la sequía \((S)\) e índice de cosecha \((IC)\)

En los cinco tratamientos hídricos, se redujo el rendimiento en grano, para los cinco germoplasmas (figura 3.16A y Anexo 9). Sin embargo la reducción es diferencial y depende del tratamiento y del germoplasma: Criolla San Juan resulta la más afectada en los tratamientos 1, 2 y 3, en tanto que EXP-145 es el germoplasma con un \% de reducción menor, prácticamente en los 5 tratamientos. Estos resultados coinciden con los índices de susceptibilidad a la sequía (figura 3.16B y Anexo 9), donde precisamente Criolla San Juan presenta mayores valores de \(S \) en los tratamientos 1, 2 y 3 y EXP-145 es el que presenta menores valores de \(S \), excepto en el tratamiento 2.
FIGURA 3.16: Efecto del déficit hídrico diferencial sobre: A) el rendimiento en grano (RG = Tratamientos control) y B) Indice de susceptibilidad a la sequía, de cinco germoplasmas de Phaseolus vulgaris: DOR-227 (); EXP-145 (); EMP-192 (); Criolla San Juan (); ICA-PIJAO (■); (n=3)
En relación al rendimiento en grano, se puede establecer que DOR-227 y EXP-145 se desempeñaron mejor en los tratamientos 1 y 2; EXP-145 y EMP-192 en el tratamiento 3 y EXP-145 en los tratamientos 4 y 5.

El índice de cosecha, determinado como la relación (IC=YG/BST) permite un análisis de la dinámica de biomasa seca y su efecto sobre el rendimiento en grano, esto a su vez permite establecer criterios de selección de resistencia a la sequía del material en estudio. El efecto de los distintos tratamientos sobre el índice de cosecha, fue el siguiente (tabla 3.7):

a) El índice de cosecha (IC) promedio mostró diferencias significativas entre el control y los tratamientos 1 y 2 y además los valores están por encima del valor normal aceptado por el CIAT (0.5-0.6), sugerido por White (1991), lo cual estaría indicando que en algunos germoplasmas los rendimientos aún en condiciones de déficit hídrico, son acceptables, probablemente debido a que presentan mecanismos de resistencia a la sequía.

b) En el tratamiento hídrico 2, los promedios del IC fueron los de mayor diferencia entre el IC_{DH}=0.67 y el IC_{C}=0.70. En este tratamiento se produjeron los mayores % de reducción del rendimiento de todo el ensayo (48.03%) en promedio para los cinco germoplasmas; correspondiendo los máximos a Criolla San Juan, DOR-227 y EMP-192. Los IC más bajos en déficit hídrico corresponden a dos de estos germoplasmas EMP-192 (0.62) y DOR-227 (0.64).
TABLA 3.7: Índice de cosecha (IC) para cinco germoplasmas de *Phaseolus vulgaris* L sometidos a cinco tratamientos hídricos: n=3 repeticiones

<table>
<thead>
<tr>
<th>Germoplasma evaluado</th>
<th>TH1</th>
<th>TH2</th>
<th>TH3</th>
<th>TH4</th>
<th>TH5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IC = Y_G/BST</td>
</tr>
<tr>
<td></td>
<td>DH C</td>
<td>DH C</td>
<td>DH C</td>
<td>DH C</td>
<td>DH C</td>
</tr>
<tr>
<td>"A" Vr Criolla San Juan</td>
<td>0.64 ab 0.75</td>
<td>0.67 ab 0.71</td>
<td>0.69 ab 0.73</td>
<td>0.71 ab 0.79</td>
<td>0.77 c 0.72</td>
</tr>
<tr>
<td>"B" Hr DOR-227</td>
<td>0.76 c 0.76</td>
<td>0.80 c 0.79</td>
<td>0.64 ab 0.71</td>
<td>0.72 ab 0.82</td>
<td>0.83 c 0.84</td>
</tr>
<tr>
<td>"D" Hr EXP-145</td>
<td>0.79 ab 0.83</td>
<td>0.74 ab 0.83</td>
<td>0.72 ab 0.73</td>
<td>0.76 ab 0.78</td>
<td>0.83 c 0.71</td>
</tr>
<tr>
<td>"E" Hr EMP-192</td>
<td>0.75 c 0.73</td>
<td>0.82 c 0.72</td>
<td>0.62 c 0.62</td>
<td>0.62 c 0.61</td>
<td>0.83 c 0.70</td>
</tr>
<tr>
<td>"H" Hr ICA-PIJAO</td>
<td>0.81 ab 0.84</td>
<td>0.69 ab 0.82</td>
<td>0.68 ab 0.71</td>
<td>0.72 ab 0.83</td>
<td>0.70 ab 0.86</td>
</tr>
<tr>
<td>(\overline{X}_{50})</td>
<td>0.75 ab 0.78</td>
<td>0.74 ab 0.77</td>
<td>0.67 ab 0.70</td>
<td>0.71 ab 0.77</td>
<td>0.79 ab 0.77</td>
</tr>
</tbody>
</table>

Entre control y déficit hídrico

a = DMS (p<0.05)
b = DMS (p<0.01)
c = NS

Mediante prueba de Duncan

c) En el tratamiento hídrico 5, el promedio de IC fue alto, además del % de reducción del rendimiento, promedio, mas bajo para los cinco germoplasmas (16.75%). Aparentemente los altos valores de IC podrían deberse a que el déficit hídrico produjo una reducción mutua balanceada entre \(Y_G \) y la biomasa seca total, mientras que en los controles se evidenció un incremento de \(Y_G \) sobre la biomasa seca total.
El análisis de varianza sobre el rendimiento en grano \(Y_G \) para los cinco tratamientos hídricos. Anexo 10, indica que para la fuente de variación: **Bloques (repeticiones)**, no hubo diferencias significativas entre los cinco tratamientos hídricos; la diferencia significativa para bloques, en el tratamiento 5 es solo para \(p<0.05 \), y se explica debido a que el número de plantas cosechadas en cada repetición fue muy diferente, siendo bajo en las repeticiones 1 y 3, debido al efecto de plagas. Para la fuente de variación: \(TH \) (tratamiento hídrico), se observan diferencias altamente significativas para el rendimiento en grano en los cinco tratamientos hídricos, lo cual evidencia el efecto del déficit hídrico sobre el rendimiento respecto a los controles. Estas diferencias altamente significativas tuvieron su origen en las DMS muy altas existentes entre los \(Y_G \) para los tratamientos hídricos 3, 2 y 1. Para la fuente de variación **germplasma**, se encontraron en diferentes comportamientos estadísticos entre los cinco germoplasmas y para cada tratamiento. **Para el tratamiento hídrico 1** existen DS solo para \(p<0.05 \), que tienen su origen en DMS, entre el bajo rendimiento en grano \((Y_G)_{DH} \) respecto al rendimiento del control en EXP-145, DOR-227 e ICA-PIJAO. **Para el tratamiento hídrico 2**, hubo DS solo para \(p<0.05 \), que se deben a DMS entre el bajo rendimiento en grano \((Y_G)_{DH} \) respecto al rendimiento del control en Criolla San Juan, ICA-PIJAO y EMP-192, y de DMS entre el alto rendimiento en grano \((Y_G)_{DH} \) respecto al rendimiento en grano del control \((Y_G)c \) en DOR-227 y EXP-145. **Para los tratamientos hídricos 3 y 4**, no hubo diferencias
significativas. **Para el tratamiento hídrico 5**, hubo DS* para p<0.05 y p<0.01 para los germoplasmas. Estas se deben a DMS entre germoplasmas de alto rendimiento bajo sequía \((Y_G)_{DH}\) respecto al control EXP-145, DOR-227 e ICA-PIJAO y germoplasmas de rendimiento intermedio EMP-192 y Criolla San Juan. Para la fuente interacción (tratamiento hídrico x germoplasma), la variación se debe a la duración del déficit hídrico y a la fase fenológica donde se aplicó el déficit hídrico y finalmente por las características propias de cada germoplasma de acuerdo a los mecanismos de resistencia a la sequía. **Para el tratamiento hídrico 1** hay DS* para p<0.05 y p<0.01, estas se deben a la existencia de DMS entre el bajo rendimiento en grano en sequía \((Y_G)_{DH}\) respecto al rendimiento en grano del control \((Y_G)c\) de los germoplasmas Criolla San Juan y EMP-192, y los rendimientos intermedios bajo sequía \((Y_G)_{DH}\) de EXP-145, DOR-227 e ICA-PIJAO. Estas DMS en la interacción se deben a lo prolongado del déficit hídrico (64 DDH) y al haber iniciado el déficit hídrico en la etapa de prefloración. **Para el tratamiento hídrico 2**, hay DS* para p<0.05 y p<0.01, estas se deben a la existencia de DMS entre el bajo rendimiento en grano en déficit hídrico \((Y_G)_{DH}\) respecto al rendimiento del control \((Y_G)c\) en Criolla San Juan, ICA-PIJAO y EMP-192, y los altos rendimientos en déficit hídrico \((Y_G)_{DH}\) respecto al rendimiento en grano del control \((Y_G)c\) de los germoplasmas DOR-227 y EXP-145. Estas DMS en la interacción se deben a lo prolongado del ciclo de déficit hídrico (56 DDH) y al haber iniciado el déficit hídrico en la etapa de
floración. Para los tratamientos hídricos 3 y 4 no hay diferencias significativas, probablemente debido a que el déficit hídrico afectó por igual el rendimiento en grano a todos los germoplasmas; no hay diferencias contrastantes entre los germoplasmas y los tratamientos hídricos y en general los índices (S) fueron los más altos del ensayo. Para el tratamiento hídrico 5, hubo DS* altas para p<0.05 y p<0.01, estas se deben a DMS entre los altos valores del rendimiento en grano de todos los germoplasmas bajo déficit hídrico (Y_G)DH respecto a los controles (Y_G)c, los cuales presentaron índices (S) relativamente bajos. Las DMS se deben en este tratamiento 5, a la existencia de un corto déficit hídrico de 35 DDH aplicado muy tardíamente en una etapa no crítica, lo cual aseguró que todos los germoplasmas pasaran las etapas mas críticas del ciclo como control.

El Anexo 11, muestra el resumen del análisis de varianza sobre el índice de cosecha (IC), para cinco tratamientos hídricos (particularizados) para 5 germoplasmas de Phaseolus vulgaris L. Para la fuente de variación bloques (repeticiones), en general no hubo diferencias significativas entre los cinco tratamientos hídricos para el IC de los cinco germoplasmas con la sola excepción de una ligera DS para el p<0.05 en el tratamiento hídrico 2. Para la fuente de variación tratamientos hídricos, hubo (DS)** para los IC de los cinco tratamientos, estas se atribuyen en general a la existencia de DMS entre el IC_{DH} y IC_{C} en los cinco germoplasmas, donde en los tratamientos hídricos (1, 2, 3 y 4), el efecto del déficit hídrico pudo
retardar el Y_G y la BST, lo cual redujo el IC en forma compensada y la DMS del tratamiento hídrico N° 5, donde por lo corto del déficit hídrico y lo tardío en su aplicación no se espera que éste disminuya muy acentuadamente el Y_G. Para la fuente de variación germoplasma en general existen para los IC de los cinco tratamientos hídricos aplicados en los cinco germoplasmas diferencias altamente significativas (DS)**, para los cinco tratamientos hídricos atribuidas a DMS en la reducción del rendimiento en grano ($Y_G)_{DH}$ en los cinco germoplasmas respecto al ($Y_G)c$, estas son máximas en los tratamientos 2, 3 y 4, con DMS en el tratamiento hídrico N° 5, donde por no actuar severamente el déficit hídrico se obtuvo la menor reducción del rendimiento. Para la fuente de variación (tratamiento hídrico x germoplasma), por ser una interacción su análisis es más complejo; en general existen DS* en los tratamientos 2, 3, 4 y 5 para $p<0.05$ y $p<0.01$, no existen diferencias significativas, en el tratamiento hídrico N° 1, las DS en la interacción se deben a DMS en los cinco tratamientos hídricos atribuidos en la reducción del rendimiento ($Y_G)_{DH}$ respecto al ($Y_G)c$ y a los altos coeficientes (S) de los germoplasmas sujetos a déficit hídrico de los cinco tratamientos hídricos.

En la figura 3.17 se observa un diagrama múltiple de desarrollo de los cinco tratamientos hídricos con la variación del promedio para los cinco germoplasmas del (%RY$_G$) y del índice (S) en cada tratamiento. En general, se observa que la reducción del rendimiento fue mayor en los
FIGURA 3.17: 1) Diagrama de desarrollo de los cinco tratamientos hídricos: inicio del déficit hídrico (I_{DH}) extensión del déficit hídrico (DDH) y superposición de etapas fenológicas que cubre cada tratamiento hídrico
2) Variación de $X(RYG)_SG$ por tratamiento hídrico
3) Variación de $X(S)_SG$ por tratamiento hídrico
tratamientos hídrico 3 y 4 donde los déficit hídricos se iniciaron en las etapas de plena floración y formación de vainas (48.03% y 43.05%) respectivamente. La reducción del rendimiento fue intermedia en los tratamientos hídricos (1 y 2), donde los déficit hídricos se iniciaron en la etapa intermedia entre la última etapa vegetativa y la prefloración, para el tratamiento hídrico 1 (32,51%) y en la etapa de prefloración para el tratamiento hídrico 2 (28,47%).

La figura 3.18(1) presenta la variación de $\%RY_G$ en 5 tratamientos hídricos para germoplasmas de alta (ARS); baja resistencia a la sequía (BRS) y resistencia intermedia a la sequía (IRS); se puede observar que Criolla San Juan (IRS) presentó el más alto $\%RY_G$ en los tratamientos 1, 2 y 3 y EMP-192 el mayor $\%RY_G$ en los tratamientos 4 y 5; DOR-227 (ARS) y EXP-145 (ARS) presentaron en los tratamientos 1, 2 y 5 los valores más bajos de (S) respecto al resto de los germoplasmas evaluados. Figura 3.18(2).

3.3 Discusión

3.3.1 Parámetros del estado hídrico

La magnitud del déficit hídrico aplicado se establece a través del Ψ suelo, el cual debe reflejarse en los efectos sobre la columna hídrica del continuo suelo-planta-atmósfera, donde potenciales negativos en el suelo se compensan con potenciales hídricos más negativos en las hojas que ejercen la fuerza de succión del agua del suelo hacia las hojas, estos
FIGURA 3.18: 1) Variación de %RY_G en 5 tratamientos hídricos para germplasmas de alta resistencia a la sequía (ARS): DOR-227 y EXP-145; resistencia intermedia (RIS): Criolla San Juan y baja resistencia (BRS): EMP-192 e ICA-PIJAO

2) Variación de (S) en 5 tratamientos hídricos para germplasmas (ARS, BRS e IRS)
potenciales mas negativos han sido creados a expensas de las pérdidas de agua en la hoja reflejadas por las disminuciones del %CRA de las plantas bajo déficit, respecto a los controles bien irrigados. De los tres parámetros evaluados, el %CRA es el más confiable para determinar el impacto general del déficit hídrico en cada tratamiento (Slatyer, 1967), mientras que el \(\Psi_h \) es el que mejor visualiza la expectativa de presencia de los mecanismos de resistencia a la sequía, en cada germoplasma (Hsiao, 1974; Levitt, 1980).

Al analizar los parámetros \(\Psi_{suelo} \), \(%\text{CRA}_{\text{hoja}} \) y \(\Psi_{\text{hoja}} \) de los controles, se encontró que presentaron la misma tendencia a disminuir en los germoplasmas bajo déficit hídrico. Esto se debe a que la frecuencia de riego no fue constante (cada 3 días), lo cual contribuyó a que las plantas controles presentaron un cierto grado de déficit hídrico. Por lo tanto se hizo necesario visualizar la variación de estos parámetros como la disminución relativa entre los controles y el déficit hídrico de cada germoplasma en los cinco tratamientos hídricos entre el valor inicial del parámetro control de la cosecha I y las cosechas II y III. En general e independientemente del tratamiento aplicado en los cinco germoplasmas se encontró correlación entre \(\Psi_{\text{hoja}} \) y la resistencia a la sequía la cual ha sido ampliamente reportada por el CIAT (1984 y 1985) y Sponchiado (1985).
En los cinco tratamientos hídricos, en general, los cinco germoplasmas parecen resistir la sequía por incremento de la conductividad de la fase líquida, mecanismo mediante el cual se puede mantener la absorción de agua a pesar de la existencia de altos potenciales hídricos en el suelo (negativos), debido a la creación de Ψ_{hoja} más negativos que los del suelo. Las velocidades de cambio, expresadas por la pendiente de la recta de regresión fueron, en general, altas en magnitud y con correlación directa. Estas correlaciones tan altas entre Ψ_{suelo} y Ψ_{hoja} pueden estar siendo influidas en los cinco germoplasmas, por un incremento del sistema radicular, el cual es otro mecanismo de resistencia a la sequía, encontrado tanto en los ensayos de 1991 y 1992 como en el presente. Las diferencias en la magnitud de la correlación entre los tratamientos indica que los diferentes germoplasmas presentan diferentes comportamientos frente al déficit hídrico, cuando éste se aplica en forma diferencial a través del ciclo fenológico y con diferente duración. Las diferencias en las correlaciones Ψ_{suelo} vs Ψ_{hoja} entre tratamiento, permiten postular que existen diferencias en el uso del agua y que esas diferencias se expresan a través de la dinámica de biomasa seca y el rendimiento en grano de los cinco germoplasmas, los cuales establecen las diferencias definitivas de resistencia a la sequía entre los germoplasmas.

Respecto a la correlación $%\text{CRA}$ vs Ψ_h, observamos que los coeficientes de correlación inversa son muy altos, los cuales permiten inferir que la caída del contenido de agua en la hoja, produce que el Ψ_{hoja}
se haga más negativo, esto reforzaría el mecanismo de resistencia a la sequía por incremento de la conductividad en la fase líquida evidenciada mediante la correlación Ψ_{suelo} vs Ψ_{hoja} en los cinco tratamientos hídricos. Las diferencias en la magnitud de las correlaciones entre $\%CRA$ vs Ψ_{hoja}, nos permiten establecer el impacto del déficit hídrico en cada tratamiento hídrico, las altas correlaciones inversas de los tratamientos hídricos 1 y 2 nos indican que en estos tratamientos donde el déficit hídrico no fue interrumpido, la caída de los Ψ_{hoja} realmente está inversamente asociada con la pérdida de agua. En los tratamientos 3 y 4 la disminución de la correlación indica que el ciclo de déficit hídrico fue interrumpido, ocasionando menor pérdida del turgor, que se asocia con un menor descenso en los Ψ_{hoja}. En estos tratamientos hídricos, la pérdida del turgor, que se refleja en los valores muy bajos del $\%CRA$ está asociado más al proceso de senescencia que al déficit hídrico.

3.3.2 Crecimiento y producción de biomasa seca

1) Crecimiento

a) Iniciación floral

La respuesta de los germoplasmas al déficit hídrico fue de adelanto de la iniciación floral cuando éste se aplicó en los tratamientos 1 y 2. Este es un mecanismo de resistencia a la sequía del tipo de escape a la sequía (rápido desarrollo fenológico). Los germoplasmas con mayor adelanto en la iniciación floral pueden ser de mediana (Criolla San Juan) a altamente resistentes (EXP-145 y DOR-227) (CIAT, 1985), mientras que a los germoplasmas con menor adelanto en la iniciación floral se les considera como de poca resistencia a la sequía, EMP-192 e ICA-PIJAO.
En DOR-227 y EXP-145, se encontró una clara relación entre el adelanto de la floración y un alto rendimiento en grano bajo déficit hídrico. Sin embargo Criolla San Juan que también adelantó floración, no muestra una clara y directa relación con el rendimiento en grano, pues este germoplasma presenta bajo déficit hídrico alta reducción del rendimiento; estas relaciones diferenciales entre el mecanismo de escape por adelanto de floración y el rendimiento en *Phaseolus vulgaris* L han sido reportadas por Pajarito et al, (1989) y CIAT, (1989).

b) Funciones de crecimiento

1) El germoplasma DOR-227, evade la sequía por incremento de su densidad y profundidad radicular a través de un aumento de la TRC$_{raíz}$ en déficit hídrico en los cinco tratamientos hídricos. Por otra parte, en los tratamientos 1, 3 y 4 aumenta IAF, TNA y TRC$_{planta}$, lo cual puede considerarse como estrategias de escape a la sequía por desarrollo de la plasticidad. DOR-227 fue el germoplasma que expresó, a través de las funciones de crecimiento, el mayor número de mecanismos de resistencia a la sequía en los cinco tratamientos.

2) Los germoplasmas Criolla San Juan, EXP-145, EMP-192 e ICA-PIJAO mostraron, en general, el mecanismo de evasión a la sequía (por incremento de la densidad y profundidad radicular) a través de un aumento de la TRC$_{raíz}$ en los tratamientos 3 y 4. ICA-PIJAO mostró el mismo mecanismo en los tratamientos 2, 4 y 5. Por otra parte, EMP-192 e ICA-PIJAO mostraron escape a la sequía (por desarrollo de la plasticidad) a través de un aumento del IAF en déficit hídrico en el tratamiento 5.
3) En general, en los cinco tratamientos hídricos los cinco germoplasmas mostraron la tendencia a reducir el área foliar en déficit hídrico, los cual se puede considerar como un mecanismo de evasión a la sequía, sin embargo, conduce a una reducción del rendimiento en grano.

Gunton y Evenson (1980), observaron que el índice de área foliar (IAF) y la tasa de producción de materia seca estarían altamente relacionadas al rendimiento de *Phaseolus vulgaris* L por un incremento en el uso del agua. Este rendimiento se relaciona a su vez con el aumento de la TCR_{raíz} y en la tasa de duración del área foliar (TDAF).

Stone (1988), al estudiar los efectos de tres tratamientos de riego sobre *Phaseolus vulgaris* L, evidenció que las funciones de medida del análisis de crecimiento: Índice de área foliar (IAF), duración del área foliar (DAF), tasa relativa de crecimiento de cultivo (TCRC), producción de materia seca (Wt) y tasa neta de asimilación (TNA), están directamente relacionadas con mecanismos que evitan la pérdida de agua (reducción del área foliar y aumento de la densidad y profundidad radicular).

c) Producción de biomasa seca

El déficit hídrico afectó la producción de biomasa seca en forma diferente en los cinco tratamientos hídricos. La respuesta a los tratamientos hídricos (1, 2, 3 y 4), fue una disminución de la producción promedio en los cinco germoplasmas y un aumento en el tratamiento
hídrico 5. La máxima reducción de producción de materia seca se encontró en el tratamiento 3, donde el déficit hídrico se aplicó en la etapa de floración y se mantuvo por 49 días.

La disminución de la producción en los cinco tratamientos, parece deberse a la reducción acumulada de biomasa seca, en todos los órganos por efecto del déficit hídrico; observamos que en los tratamientos hídricos 2 y 3, donde se aplicaron déficit hídricos de 56 y 49 días respectivamente fueron los más severos debido a que el déficit se inició en los períodos de prefloración y floración; etapas del ciclo fenológico en las cuales el déficit hídrico afecta más la producción de materia seca. En estos dos tratamientos observamos que los germoplasmas menos afectados fueron EXP-145 y DOR-227, los cuales son considerados resistentes a la sequía.

La reducción de la producción de biomasa seca por efecto del déficit hídrico, cobra importancia y se manifiesta en el índice de cosecha (IC).

3.3.3 Rendimiento del cultivo \((Y_G) \), índice de susceptibilidad a la sequía \((S) \) e índice de cosecha \((IC) \)

En el ensayo de campo de 1992, fueron clasificados como resistentes a la sequía DOR-227 y EXP-145, de resistencia intermedia Criolla San Juan, y de poca resistencia a los germoplasmas EMP-192 e
ICA-PIJAO. Además se estableció la relación entre los mecanismos de resistencia a la sequía y el rendimiento del cultivo; para un déficit hídrico iniciado a los 20 DDS (entre la última etapa de la fase vegetativa y las etapas de prefloración de la fase reproductiva) y con una duración de 60 días. Los resultados obtenidos permiten establecer que: 1) los germoplasmas menos afectados en su rendimiento por el déficit hídrico y con los índices (S) más bajos, son aquellos que presentan el mayor número de mecanismos de resistencia a la sequía: DOR-227 y EXP-145, 2) los germoplasmas en los cuales el rendimiento se redujo altamente por, efecto del déficit hídrico y con índices (S) mayores, mostraron el menor número de mecanismos de resistencia a la sequía (EMP-192 e ICA-PIJAO) (ver Capítulo 2).

En el presente ensayo en el cual el déficit hídrico se inició en etapas diferentes del ciclo fenológico y variando su duración; encontramos que los mismos germoplasmas evaluados en 1992 presentan diferencias en %RY_G, S e IC, producto de que existe plasticidad en la expresión de los mecanismos de resistencia a la sequía y en general de sus respuestas al déficit hídrico.

El déficit hídrico redujo el rendimiento en todos los tratamientos, siendo mayor en los tratamientos 3 y 4, de menor impacto en el tratamiento hídrico 5, y de impacto intermedio en los tratamientos 1 y 2.
Siguiendo el procedimiento de Millar (1977), para definir el efecto del déficit hídrico sobre las fases del ciclo fenológico y el rendimiento, se calculó el de reducción del rendimiento (%RYG) y comparando los resultados obtenidos por Doorembos et al (1975) y Robins y Domingo, (1956), encontramos que nuestros resultados están parcialmente de acuerdo, pues para estos autores las etapas más críticas se sitúan en prefloración y plena floración, mientras que nosotros las ubicamos en plena floración y formación de vainas. La diferencia se debe a que ellos trabajaron con un germoplasma de hábito de crecimiento determinado y por lo tanto con un ciclo fenológico más estable, mientras que nosotros trabajamos con cinco germoplasmas de hábitos de crecimiento determinado e indeterminado y con ciclos fenológicos variables.

El tratamiento hídrico donde se observó el menor (%RYG) fue el 5, en el cual el déficit hídrico se inició en la etapa de llenado de grano (16.75%). La secuencia de reducción promedio del YG encontrada fue similar a la de Magalhaes et al, (1979).

De acuerdo al rendimiento en grano (YG) y a S, los germoplasmas DOR-227 y EXP-145 se mantienen como ARS, siendo EXP-145 considerado como el de mayor resistencia a la sequía. EMP-192 e ICA-PIJAO se ubican como BRS y Criolla San Juan fluctúa como IRS a BRS de acuerdo al tratamiento hídrico aplicado.
3.4 Conclusiones

1) El descenso de los parámetros Ψ_{hoja}, Ψ_{suelo} y $\%CR_{hoja}$ es constante y se va incrementando al incrementarse la duración del déficit hídrico del suelo, aunque estos parámetros difieren entre sí en los cinco germoplasmas en las tres cosecha y a través de los cinco tratamientos hídricos. La magnitud del déficit hídrico aplicado se establece mediante el Ψ_{suelo}. $\%CR_{A}$ permite determinar el impacto del déficit hídrico, mientras que el Ψ_{h} puede indicar los mecanismos de resistencia a la sequía.

2) Los germoplasmas varían en los mecanismos de resistencia a la sequía, de acuerdo al tratamiento aplicado, de la siguiente forma:

2.1) Incremento de la conductividad del agua para mantener la absorción
 - Criolla S.J. en los tratamientos 1, 3 y 4
 - DOR-227 en los tratamientos 2 y 3
 - EMP 192 en los tratamientos 1 y 4
 - ICA-Pijao en los tratamientos 2 y 4

2.2) Incremento del sistema radical (mecanismo de evasión a la sequía)
 - DOR-227 en el tratamiento 1
 - EXP-145; EMP-192 e ICA-PIJAO en el tratamiento 2
En los tratamientos 4 y 5 ninguno de los germoplasmas desarrolló mecanismos de resistencia a la sequía.

3) Todos los germoplasmas adelantaron la floración en mayor o menor grado en los tratamientos 1, 2 y 3. Los mayores adelantos se sitúan en DOR-227 y EXP-145 considerados de alta resistencia a la sequía.

4) Aunque la producción de biomasa seca total (%VRP_{BST}), se redujo en los cinco germoplasmas, el mayor efecto se encontró en los tratamientos 2 y 3.

5) La mayor reducción promedio del rendimiento (Y_{G}), para los cinco germoplasmas en los cinco tratamientos hídricos, se presentó en los tratamientos donde el déficit hídrico se inició en las etapas de floración y formación de vainas. La reducción del rendimiento fue intermedia en los tratamientos donde el déficit hídrico se inició entre la última etapa vegetativa y la prefloración (tratamiento hídrico 1) y la etapa de prefloración (tratamiento hídrico 2).

6) En los germoplasmas Criolla San Juan y EMP-192, la aplicación de déficit hídricos severos continuos, o puntuales, entre la última etapa vegetativa y la prefloración y/o la etapa de formación de vainas reducirían el rendimiento en grano en el rango de 30% a 64%. Criolla San Juan exhibió en todos los tratamientos hídricos, los máximos valores de reducción del rendimiento y de susceptibilidad a la sequía.
Para estos germoplasmas las únicas etapas donde la aplicación de un déficit hídrico, causaría poca reducción del rendimiento sería en la etapa de llenado de vaina, aunque todavía estarían por encima de los valores obtenidos en DOR-227 y EXP-145.

7) En ICA-PIJAO un déficit hídrico aplicado en forma puntual o continua, entre la etapa de prefloración y la etapa de formación de vainas produciría fuertes reducciones por encima del 40%. Sin embargo en este germoplasma la aplicación de un déficit hídrico entre la última etapa vegetativa y la prefloración, solo producirá un 24% de reducción, así mismo, la aplicación en la etapa de llenado de vaina reduciría el rendimiento solo en un de 12%. ICA-PIJAO puede, a la luz de esta discusión, considerarse como un germoplasma con características de resistencia intermedia a la sequía.

8) Los promedios de los cinco germoplasmas bajo los cinco tratamientos hídricos, respecto al índice de cosecha en déficit hídrico ($I_{C_{DH}}$) están por encima del valor normal (0.5-0.6), según criterios del CIAT (White, 1991), lo cual evidencia la existencia de mecanismos de resistencia a la sequía.

9) Los germoplasmas con $I_{C_{DH}}$ mayores fueron, aquellos que presentaron la mayoría de los mecanismos de resistencia a la sequía DOR-227, EXP-145 y Criolla San Juan. En el tratamiento hídrico 5, no se expresan mecanismos de resistencia a la sequía y los índice de bajo
déficit hídrico (IC_{DH}) se mantienen altos debido al poco efecto del corto déficit hídrico.

10) Respecto a los germoplasmas que muestran baja resistencia a la sequía y los que ocupan posiciones intermedias, podemos concluir que aunque presentaron algunos mecanismos de resistencia a la sequía, no tienen alto rendimiento; en ninguno de los cinco tratamientos hídricos. El bajo rendimiento probablemente está asociado con variaciones diferenciales de parámetros de intercambio gaseoso y osmorregulación; los cuales no fueron analizados en este ensayo, ellos son evidentes muy claramente en un sentido agroecofisiológico y no en uno estrictamente ecofisiológico.
CAPÍTULO 4

EFECTO DEL DÉFICIT HÍDRICO SOBRE LA CONCENTRACIÓN Y DISTRIBUCIÓN DE LOS NIVELES DE NITRÓGENO Y CARBOHIDRATOS EN PLANTAS DE *PHASEOLUS VULGARIS* L

Introducción

El déficit hídrico inhibe numerosos procesos fisiológicos y reduce la biomasa del cultivo y el rendimiento de la semilla (Hsiao, 1973). La importancia del nitrógeno (N), para maximizar la fotosíntesis, materia seca y rendimiento de la semilla de los cultivos de leguminosas ha sido demostrado por Sinclair, 1986 y Muchow y Sinclair, 1986.

Variaciones en el reparto y la movilización del N entre los diferentes componentes de la planta influyen en el rendimiento final de genotipos de soya (Salado-Navarro et al, 1985). Así, altas tasas de removilización de nitrógeno desde las hojas a las semillas, durante el crecimiento reproductivo adelantan la senescencia y disminuyen la longitud del período de llenado en la semilla. La acumulación y distribución de nitrógeno en las partes vegetativas y reproductivas de las leguminosas de grano son importantes procesos en la determinación del rendimiento de la semilla. Los cultivares de *Phaseolus vulgaris* L muestran diferencias significativas entre el N vegetativo, rendimiento del cultivo y las
concentraciones de nitrógeno total y proteínas en la semilla (Oliker et al, 1978).

Mientras la disminución de la fotosíntesis en las hojas y aumento en las tasas de senescencia se pueden relacionar con la carencia de N, el efecto del déficit hídrico sobre la fijación, acumulación, reparto y removilización de N están menos documentados (Sprend, 1976).

Phaseolus vulgaris L, se ha usado en estudios bioquímicos y fisiológicos de traslocación de fotosintetizados, desde las hojas a la semilla y las vainas (Lucas et al, 1976; Waters et al, 1980) y la influencia del ambiente sobre la concentración y distribución de los carbohidratos ha recibido, recientemente, una atención particular (Geiger y Wen-Jang, 1988). Aunque *Phaseolus vulgaris* L es particularmente difícil de estudiar ya que hay muchas posibilidades de combinación de hábitos de crecimiento durante el llenado de las vainas, se ha observado que el déficit hídrico acelera la removilización de la materia seca almacenada en leguminosas de grano (Huber, 1983).

El presente trabajo tiene por objetivos: 1) Evaluar la variación de la concentración y distribución de los niveles de nitrógeno total y carbohidratos reductores, no reductores y totales en órganos y plantas de *Phaseolus vulgaris* L bajo déficit hídrico; 2) Determinar la relación entre la variación de estos metabolitos y la resistencia a la sequía; 3) Estimar la factibilidad de uso de algunos de estos metabolitos, como "marcadores metabólicos del déficit hídrico y de resistencia a la sequía".
4.1 Materiales y Métodos

La concentración y distribución de los niveles de nitrógeno y carbohidratos en plantas de Phaseolus vulgaris L., se determinó mediante la evaluación fitoquímica de la biomasa seca en raíz, tallo, hoja y semillas, de las mismas plantas provenientes del ensayo de campo de 1992 (Capítulo 2). Los germoplasmas utilizados fueron (Vr Criolla San Juan (A); Hr DOR-227 (B), Hr EXP-145 (D), Hr AMP-192 (H) e Hr ICA-PIJAO (E)).

1. Nitrógeno total y proteína bruta mediante el método de micro-
 Kjeldahl

Se utilizó el método descrito por López y López (1978) partiendo de la modificación del método original de Kjeldahl propuesta por Ulrich y Hill (1967) para material vegetal. Se determinaron las concentraciones de nitrógeno total como % N (g.100g⁻¹) en la biomasa seca de la cosecha final (89 DDS y 60 DDH). Se calcularon la distribución acumulada de nitrógeno total por órgano, respecto a la planta y el % de proteína bruta para lo cual se utilizó el factor de conversión (6.25) propuesto por la “Association of Official Agricultural Chemists” (1970). Cada determinación se realizó en 4 replicas para cada repetición.

2. Azúcares reductores, no reductores y totales

Los niveles de azúcares reductores se obtuvieron por el método de Antronca (Allen, 1974) y los de azúcares totales por la metodología de
Somoggi (1952) y Nelson (1944). Los azúcares no reductores se determinaron por diferencia entre los azúcares totales y los reductores. Las concentraciones se expresan en mg/g peso seco. Se determinó la distribución acumulada de azúcares totales; reductores y no reductores por órgano respecto a la planta. Cada determinación se realizó en 4 repeticiones para cada repetición.

3. Análisis estadístico

Los niveles de nitrógeno total y azúcares fueron analizados con el paquete estadístico SAS.

4.2 Resultados

4.2.1 N_{total} y proteína

El déficit hídrico produjo variaciones en la concentración del N_T y proteínas en la biomasa seca de órganos y plantas de los cinco germoplasmas de Phaseolus vulgaris L (Tabla 4.1). En promedio hubo un ligero aumento de la concentración de N_T (mg/100 mg PS) para raíz, semilla y planta, y una ligera disminución para tallo y hoja. Los valores individuales en la raíz (bajo déficit hídrico) aumentaron en EXP-145; EMP-192 e ICA-PIJAO y disminuyeron en Criolla San Juan y DOR-227. En el tallo se observa un aumento en DOR-227 y EXP-145 y un descenso en Criolla San Juan, EMP-192 e ICA-PIJAO. Sin embargo, estas diferencias no fueron significativas (Prueba de Duncan). La concentración de N_T en la hoja fue menor en cuatro de los cinco germoplasmas y sólo se
TABLA 4.1: Efecto del déficit hídrico sobre la concentración y distribución de N_T en órganos y planta de cinco germoplasmas de *Phaseolus vulgaris* L. Los valores son el promedio de 4 repeticiones. Entre control y déficit hídrico (Test medias de Duncan). DMS: Diferencias mínimas significativas ($a = DS a p<0.05$) y ($b=DS a p<0.01$). NS: No significativa (C)

<table>
<thead>
<tr>
<th>Germoplasma</th>
<th>Tratamiento</th>
<th>%N_T (mg/100mgPseco)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Raíz</td>
<td>Tallo</td>
</tr>
<tr>
<td>“A” Vr Criolla San Juan</td>
<td>Th</td>
<td>0.85 c</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>1.36</td>
</tr>
<tr>
<td>“B” Hr DOR-227</td>
<td>Th</td>
<td>1.54 c</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>1.84</td>
</tr>
<tr>
<td>“D” Hr EXP-145</td>
<td>Th</td>
<td>1.50 c</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>1.14</td>
</tr>
<tr>
<td>“E” Hr EMP-192</td>
<td>Th</td>
<td>1.26 c</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>1.23</td>
</tr>
<tr>
<td>“H” Hr ICA-PIJAO</td>
<td>Th</td>
<td>1.90 c</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>1.16</td>
</tr>
<tr>
<td>X_{SG}</td>
<td>Th</td>
<td>1.41 c</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>1.35</td>
</tr>
</tbody>
</table>

observó un aumento estadísticamente significativo en ICA-PIJAO. Los mayores %N_T se observaron en la semilla, siendo los valores bajo déficit hídrico mayores que en los controles en los cinco germoplasmas y estadísticamente significativos. Los valores de % de N_T en la planta fueron menores que los controles en Criolla San Juan, iguales para EMP-192 y mayores DOR-227, EXP-145 e ICA-PIJAO y estadísticamente significativos para DOR-227, EXP-145 e ICA-PIJAO (Tabla 4.1).

En los porcentajes promedios de proteínas para los órganos y plantas, destaca un fuerte aumento en las semillas de los cinco
germplasmas bajo déficit hídrico (tabla 4.2). Los valores más altos se encontraron en Criolla San Juan, DOR-227 y EXP-145, en tanto que el menor contenido lo presentaron EMP-192 e ICA-PIJAO, con diferencias estadísticas significativas entre los cinco germoplasmas (tabla 4.2).

El análisis de varianza múltiple para el \%N$_T$ en órganos y en la planta (Anexo 12), mostró que para la raíz solo se encontraron diferencias significativas entre los cinco germoplasmas y la interacción (G x Th) para p<0.05 y p<0.01, aunque la prueba de medias de Duncan no encontró diferencias significativas. En el tallo hubo diferencias significativas entre los cinco germoplasmas y la interacción (G x Th) para p<0.05 y p<0.01; la prueba de medias de Duncan encontró DMS entre déficit hídrico y control únicamente para DOR-227 a p<0.05 y p<0.01. A nivel de las hojas hay diferencias altamente significativas entre los germoplasmas y la interacción (G x Th) para p<0.05 y p<0.01; la prueba de medias de Duncan encontró (DMS) entre déficit hídrico y control únicamente para ICA-PIJAO a p<0.05 y p<0.01. En semilla hubo diferencias altamente significativas para los tratamientos germoplasmas y la interacción (G x Th) para p<0.05 p<0.01 y DMS entre déficit hídrico y control en todos los germoplasmas. En planta, hubo diferencias altamente significativas para tratamiento hídrico, germoplasmas y la interacción (G x Th); la prueba de medias de Duncan revela DMS para DOR-227, EXP-145 e ICA-PIJAO. Para el promedio de los cinco germoplasmas; la prueba de medias de Duncan, reveló (DMS) solo para \%N$_T$(semilla) y \%N$_T$(planta).
TABLA 4.2: %Proteína en órganos y planta de cinco germoplasmas de Phaseolus vulgaris L, bajo dos tratamientos de déficit hídrico y riego. Los valores son el promedio de 4 repeticiones. Entre control y déficit hídrico (Test de media de Duncan). DMS: diferencias mínimas significativas (a=p<0.05 y b=p<0.01) NS (no significativas)

<table>
<thead>
<tr>
<th>Germoplasma</th>
<th>Tratamiento</th>
<th>%Proteína (peso seco)</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Raíz</td>
<td>Tallo</td>
<td>Hoja</td>
<td>Semilla</td>
<td>Planta</td>
</tr>
<tr>
<td>“A” Vr Criolla</td>
<td>Th</td>
<td>5.31 c</td>
<td>8.38 c</td>
<td>12.81 c</td>
<td>21.19 ab</td>
<td>47.69 c</td>
</tr>
<tr>
<td>San Juan</td>
<td>C</td>
<td>8.51</td>
<td>11.25</td>
<td>16.88</td>
<td>18.00</td>
<td>54.62</td>
</tr>
<tr>
<td>“B”</td>
<td>Th</td>
<td>8.50 c</td>
<td>12.00 ab</td>
<td>14.50 c</td>
<td>19.50 ab</td>
<td>56.00 ab</td>
</tr>
<tr>
<td>Hr DOR-227</td>
<td>C</td>
<td>9.63</td>
<td>8.31</td>
<td>17.94</td>
<td>17.13</td>
<td>54.88</td>
</tr>
<tr>
<td>“D”</td>
<td>Th</td>
<td>9.38 c</td>
<td>7.75 c</td>
<td>9.75 c</td>
<td>20.85 ab</td>
<td>47.13 ab</td>
</tr>
<tr>
<td>Hr EXP-145</td>
<td>C</td>
<td>7.13</td>
<td>7.31</td>
<td>11.50</td>
<td>15.50</td>
<td>41.43</td>
</tr>
<tr>
<td>“E”</td>
<td>Th</td>
<td>7.81 c</td>
<td>6.75 c</td>
<td>13.06 c</td>
<td>16.38 ab</td>
<td>44.06 c</td>
</tr>
<tr>
<td>Hr EMP-192</td>
<td>C</td>
<td>7.69</td>
<td>8.06</td>
<td>13.25</td>
<td>15.13</td>
<td>44.13</td>
</tr>
<tr>
<td>“H”</td>
<td>Th</td>
<td>11.88 c</td>
<td>4.25 c</td>
<td>16.63 ab</td>
<td>16.56 ab</td>
<td>43.31 ab</td>
</tr>
<tr>
<td>Hr ICA-PIJAO</td>
<td>C</td>
<td>7.25</td>
<td>5.75</td>
<td>13.00</td>
<td>14.63</td>
<td>40.62</td>
</tr>
<tr>
<td>\overline{X}_{5G}</td>
<td>Th</td>
<td>8.58 c</td>
<td>7.83 c</td>
<td>13.35 c</td>
<td>19.18 ab</td>
<td>49.18 ab</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>8.04</td>
<td>8.14</td>
<td>14.51</td>
<td>16.09</td>
<td>47.14</td>
</tr>
</tbody>
</table>

4.2.2 Azúcares Reductores

Los niveles de azúcares reductores presentes en los órganos (raíz, tallo, hoja y semilla) y en las plantas completas de Phaseolus vulgaris L presentaron ligeras variaciones entre el déficit hídrico respecto a controles. En promedio se encontró (tabla 4.3) un ligero aumento en el tallo, semilla y planta mientras que en la raíz y la hoja no hay variación apreciable respecto a los controles.
<table>
<thead>
<tr>
<th>Germoplasma Evaluado</th>
<th>Raíz</th>
<th>Tallo</th>
<th>Hoja</th>
<th>Semilla</th>
<th>Planta</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AR</td>
<td>ANR</td>
<td>AR</td>
<td>ANR</td>
<td>AT</td>
</tr>
<tr>
<td>"A" Vr Criolla San Juan</td>
<td>Th 72.54 c</td>
<td>52.18 ab</td>
<td>124.72 c</td>
<td>105.63 c</td>
<td>169.52 ab</td>
</tr>
<tr>
<td></td>
<td>C 75.72</td>
<td>17.67</td>
<td>93.39</td>
<td>93.39</td>
<td>60.99</td>
</tr>
<tr>
<td>"B" Hr DOR-227</td>
<td>Th 68.77 c</td>
<td>48.4 c</td>
<td>171.17 c</td>
<td>132.65 c</td>
<td>108.26 ab</td>
</tr>
<tr>
<td></td>
<td>C 74.96</td>
<td>57.69</td>
<td>77.65</td>
<td>65.62 c</td>
<td>63.94</td>
</tr>
<tr>
<td>"D" Hr EXP-145</td>
<td>Th 60.36 c</td>
<td>87.84 ab</td>
<td>148.20 ab</td>
<td>123.70 c</td>
<td>118.81 c</td>
</tr>
<tr>
<td></td>
<td>C 68.82</td>
<td>54.18</td>
<td>63.14</td>
<td>96.52</td>
<td>121.97 c</td>
</tr>
<tr>
<td>"E" Hr EMP-192</td>
<td>Th 68.45 ab</td>
<td>95.34 c</td>
<td>163.83 ab</td>
<td>152.19 c</td>
<td>115.19 c</td>
</tr>
<tr>
<td></td>
<td>C 67.64</td>
<td>84.55</td>
<td>152.19</td>
<td>102.39 c</td>
<td>173.24 ab</td>
</tr>
<tr>
<td>"H" Hr ICA-PIJAO</td>
<td>Th 86.48 ab</td>
<td>58.11 c</td>
<td>144.59 ab</td>
<td>126.29 c</td>
<td>92.25 c</td>
</tr>
<tr>
<td></td>
<td>C 66.92</td>
<td>59.37</td>
<td>126.29</td>
<td>40.07</td>
<td>134.50 c</td>
</tr>
<tr>
<td>(\bar{X}_{SG})</td>
<td>Th 71.33 c</td>
<td>68.37 ab</td>
<td>139.70 c</td>
<td>125.64</td>
<td>108.03 c</td>
</tr>
<tr>
<td></td>
<td>C 70.81</td>
<td>54.69</td>
<td>125.64</td>
<td>63.20</td>
<td>200.39 a</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Prueba de medias de Duncan

a: Diferencias mínimas significativas a p<0.05
b: Diferencias mínimas significativas a p<0.01
c: No significativa
El análisis de varianza múltiple (Anexo 13) para azúcares reductores (AR) en órganos, mostró diferencias significativas para los germoplasmas a $p<0.05$. La prueba de media de Duncan encontró DMS entre déficit hídrico y control para (AR)raíz en los germoplasmas EMP-192 e ICA-PIJAO y (AR)tallo para DOR-227 a $p<0.05$ y $p<0.01$ para ambos órganos (tabla 4.3 y Anexo 13).

4.2.3 Azúcares No Reductores

Los niveles de azúcares no reductores presentes en los órganos y en plantas presentaron variaciones mayores que las encontradas en los azúcares reductores respecto al déficit hídrico aplicado y en relación a los controles. En promedio para los cinco germoplasmas (tabla 4.3), los niveles de azúcares no reductores, bajo déficit hídrico, experimentaron aumento en raíz, tallo y planta, y un descenso en hoja y semilla. Sin embargo, los valores individuales no presentaron un único patrón, como en los azúcares reductores. Así, en la raíz se observó que aumenta en Criolla San Juan, EXP-145 y EMP-192, disminuyó en DOR-227 y se mantuvo igual en ICA-PIJAO; en el tallo aumentó en Criolla San Juan y EMP-192, disminuye en EXP-145 y se mantuvo igual en DOR-227 e ICA-PIJAO. En la hoja disminuyó en cuatro de los cinco germoplasma, se exceptúa EMP-192; para semilla en general hubo disminución y en la planta los azúcares no reductores aumentaron para Criolla San Juan y EMP-192, disminuyendo en el resto de los germoplasmas.
De acuerdo a los resultados del análisis de varianza para azúcares no reductores (Anexo 14), sólo se observaron diferencias significativas para tratamientos hídricos a p<0.05. La prueba de medias de Duncan muestra DMS para Criolla San Juan y EXP-145 a p<0.05 y p<0.01. Para ANR(tallo) hay diferencias significativas para germoplasmas y la interacción (G x Th) a p<0.05 y p<0.01. La prueba de medias de Duncan muestra DMS para Criolla San Juan y EXP-145 a p<0.05 y p<0.01. Para ANR(hoja) no hay diferencias significativas para ninguna de las fuentes de variación y la prueba de medias de Duncan no mostró DMS. Para ANR(semilla) hay diferencias altamente significativas para tratamientos hídricos, germoplasmas y la interacción (G x Th) a p<0.05 y p<0.01; la prueba de medias de Duncan solo arrojó DMS para EXP-145 a p<0.05 y p<0.01 (tabla 4.3 y Anexo 14).

4.2.4 Azúcares Totales

En promedio para los cinco germoplasmas (ver tabla 4.3), los niveles de azúcares totales experimentaron un aumento en déficit hídrico en raíz, tallo y planta. Para las hojas y semillas hubo un ligero descenso respecto a los controles. Los valores individuales de azúcares totales, variaron de la siguiente manera: en la raíz aumentó en Criolla San Juan, EXP-192 e ICA-PIJAO y solo disminuyó en DOR-227; en el tallo hubo un incremento en todos los germoplasmas excepto EXP-145. En las hojas se observó un descenso, con excepción de EMP-192. En semilla se encontró un descenso para cuatro de los cinco germoplasmas con la excepción de EXP-145 que presentó un ligero aumento. En planta, los azúcares totales aumentaron en todos los germoplasmas.
El análisis de varianza múltiple de azúcares totales (AT) en órganos (Anexo 15), mostró que para AT(raíz) hubo diferencias significativas para tratamientos hídricos y germoplasmas a p<0.05 y p<0.01, la prueba de medias de Duncan no arrojó DMS. Para AT(tallo) solo hubo diferencias significativas para la interacción G x Th a p<0.05 y p<0.01, la prueba de medias de Duncan, mostró DMS para Criolla San Juan y EMP-192 a p<0.05 y p<0.01. En AT(hoja) no hubo diferencias significativas para ninguna de las fuentes de variaciones. Para AT(semilla) hubo diferencias significativas para tratamientos hídricos y germoplasmas a p<0.05 y p<0.01; las pruebas de medias de Duncan mostraron solo DMS para EXP-145 e ICA-PIJAO a p<0.05 y p<0.01 (ver tabla 4.3 y Anexo 15).

4.2.5 Distribución de nitrógeno

El déficit hídrico afectó en forma diferencial la distribución de N en los órganos de los cinco germoplasmas de Phaseolus vulgaris L; sin embargo la distribución promedio por órgano expresada como Δ%NT, mostró que la semilla fue el órgano con el mayor % de variación (figura 4.1), con un claro aumento de este metabolito. La distribución de (NT) en los demás órganos (raíz, tallo y hoja) mostró que a la fecha de la cosecha final (89 DDS y 60 DDH) el nitrógeno aumentó preferencialmente en la semilla. El % de NT y su variación porcentual en los órganos respecto a la planta, siguió patrones de distribución semejantes, donde el % de variación mas alto se obtuvo para la raíz, seguido de la hoja.
FIGURA 4.1: Distribución de \((N_T) \) en órganos respecto a la planta en cinco germoplasmas de *Phaseolus vulgaris* L, bajo dos tratamientos hídricos: Riego (control) y déficit hídrico

4.2.6 Distribución de Azúcares

a) Azúcares totales

La distribución de azúcares totales \% en los órganos de los cinco germoplasmas de *Phaseolus vulgaris* L, sometidos a déficit hídrico varió en forma diferencial. La distribución promedio expresada como \(\Delta \% \) (AT) (figura 4.2) presentó incrementos en la raíz y el tallo, siendo mayor en el tallo, lo cual se toma como una fuente de acumulación de azúcares, posiblemente remobilizados de las hojas y almacenados como productos secundarios.
FIGURA 4.2: Distribución de azúcares totales (AT) en órganos respecto a la planta en cinco germoplasmas de Phaseolus vulgaris L., bajo dos tratamientos hídricos: Riego (control) y déficit hídrico

b) Azúcares reductores

La variación porcentual promedio entre los órganos por planta entre déficit hídrico y controles no alcanza diferencias significativas en magnitud pero sí la dirección de sus niveles. En la figura 4.3 se puede observar que existen incrementos en raíz y semilla, siendo la raíz el órgano que en promedio alcanzó el mayor incremento. Por otra parte, la hoja y el tallo presentaron, en promedio, una disminución.
FIGURA 4.3: Distribución de azúcares reductores (AR) en órganos respecto a la planta en cinco germoplasmas de *Phaseolus vulgaris L.*, bajo dos tratamientos hídricos: Riego (control) y déficit hídrico.

c) Azúcares no reductores

El déficit hídrico afectó el patrón de distribución de azúcares no reductores; en general este componente presenta un patrón de variación más homogéneo que los azúcares totales y reductores (figura 4.4).

En promedio, en los cinco germoplasmas, bajo déficit hídrico, hay un aumento en raíz y tallo, siendo mayor en el tallo, lo que lo convierte en el órgano con mayor acumulación, probablemente debido a la retraslocación secundaria desde las hojas por el proceso de senescencia o porque el tallo es un órgano preferentemente conductor y los ANR son la forma principal de compuestos orgánicos translocados.
FIGURA 4.4: Distribución de azúcares no reductores (ANR) en órganos respecto a la planta en cinco germoplasmas de *Phaseolus vulgaris* L, bajo dos tratamientos hídricos: Riego (control) y déficit hídrico

4.3 Discusión

4.3.1 Contenido de nitrógeno total y proteína

El déficit hídrico afectó el contenido de N_T en los órganos y la planta de los cinco germoplasmas de *Phaseolus vulgaris* L, en forma diferente. El contenido de N_T en cada germoplasma en raíz, tallo, hoja y planta no presentó relación con el grado de resistencia a la sequía obtenido en los ensayos de invernadero y campo. Los mayores aumentos de N_T(semilla) fueron encontrados en EXP-145, Criolla San Juan y DOR-227, los cuales se identificaron como de alta a moderada resistencia a la
sequía; mientras que los germoplasmas con menor aumento fueron EMP-192 e ICA-PIJAO, los cuales son menos resistentes a la sequía, sin embargo, \(N_T \) (semilla) bajo déficit hídrico, presenta relación con el grado de resistencia a la sequía encontrados en los germoplasmas evaluados. Por otra parte se incrementó también el \%Proteína de la semilla en todos los germoplasmas bajo déficit hídrico, es decir a mayor resistencia a la sequía mayor contenido de proteína en la semilla. Esta relación de incremento proteico en función del déficit hídrico en los germoplasmas de alta resistencia a la sequía, tiene una gran importancia agroalimentaria para el mejoramiento genético en condiciones de sequía. El mayor contenido de \(N_T \) en raíz y semilla de germoplasmas de Phaseolus vulgaris L, encontrado por nosotros, ha sido también reportado por Izquierdo (1981) y Hernández (1984), en condiciones de campo e invernadero, aunque Chapman y Muchow (1985) compararon la acumulación de N en seis leguminosas de grano y concluyeron que la media de la tasa de acumulación de N en semilla, disminuye en la medida que el déficit hídrico se aumentó, aunque se observaron interacciones especie x tratamiento hídrico.

4.3.2 Contenido de azúcares

En general, no se encontró relación entre los niveles de azúcares reductores, no reductores y totales, en órganos y plantas bajo déficit hídrico de los cinco germoplasmas de Phaseolus vulgaris L, respecto a la resistencia a la sequía.
Según Kramer (1983), los órganos de muchas especies bajo déficit hídrico generalmente, aumentan el contenido de azúcares y reducen el de almidón. Sin embargo, Wadleigh y Ayers (1945), observaron una disminución en el contenido de almidón, pero sin aumento en azúcares en _Phaseolus vulgaris_ L bajo déficit hídrico severo. Woodhams y Kozlowski (1954) encontraron que aumentos del déficit hídrico, sobre un período de tiempo, reduce el almidón, azúcares y carbohidratos totales en frijol y tomate. La no existencia de diferencias significativas en AR, ANR y AT entre los órganos y plantas de _Phaseolus vulgaris_ L bajo déficit hídrico respecto al control también ha sido reportado por el CIAT (1977 y 1978) y por Izquierdo (1981).

4.3.3 Distribución de nitrógeno total y proteína

La semilla actúa como la _demanda final_ de nitrógeno, y el resto de los órganos actúan como fuente _final de exportación_, especialmente la hoja, la cual a pesar de que el déficit hídrico afectó su crecimiento mantiene su actividad metabólica. En la raíz observamos un ligero aumento en el _NT_, lo cual parece no ser significativo por su magnitud y en relación con los % de distribución de los otros órganos (White, 1991). El alto % de variación de nitrógeno en la semilla no es sorprendente, tratándose de una leguminosa de grano, fijadora de nitrógeno, así mismo el incremento presentado como promedio en los cinco germoplasmas por efecto del déficit hídrico ha sido encontrado también por Oliker et al (1978) y Chapman y Muchow (1985) en _Phaseolus vulgaris_ L.
Si tomamos la variación de % de nitrógeno total de la semilla como indicador metabólico del efecto del déficit hídrico e intentamos relacionarlo con la resistencia a la sequía, encontramos que el incremento más alto se encuentra en los germoplasmas EXP-145, Criolla San Juan y DOR-227, los cuales se han establecido, de acuerdo a los resultados del mismo ensayo, como de alta resistencia a la sequía. Los % de variación más bajos, se encuentran en EMP-192 e ICA-PIJAO; catalogados como de baja resistencia a la sequía. ICA-PIJAO presenta los valores más bajos en la semilla, siendo el único germoplasma que experimenta un descenso del N_T de la semilla en déficit hídrico. En base a estos resultados, podemos concluir que el %N_T en la semilla entre plantas de *Phaseolus vulgaris* L, puede tomarse como marcador metabólico del efecto del déficit hídrico en la semilla. Es decir, este criterio se podría utilizar como una prueba rápida para detectar y probar la respuesta de los germoplasmas a la sequía. Los patrones de distribución de N_T en semilla de *Phaseolus vulgaris* L bajo déficit hídrico se establecieron de acuerdo a los resultados obtenidos por Devnjes et al (1989).

Finalmente encontramos que el %N_T en la hoja de los cinco germoplasmas sigue un patrón de distribución similar al encontrado en la semilla, ya que los germoplasmas resistentes a la sequía (DOR-227 y EXP-145) y moderadamente resistentes presentan los descensos de $\Delta %N_T$ más pronunciados, mientras que los germoplasmas (EMP-192 e ICA-PIJAO) presentan un patrón no homogéneo de distribución, pero que en su
conjunto es diferente al presentado en los germoplasmas resistentes (mas baja disminución para EMP-192 y ligero incremento en ICA-PIJAO) esto hace que el $\%N_T$ en la hoja se postule como un "posible" marcador metabólico para resistencia a la sequía, ya que por ser un órgano afectado y marcadamente dependiente del déficit hídrico y del proceso de senescencia, su designación como marcador seguro se debe tomar con precaución.

Los períodos de sequía afectan la acumulación total de N en leguminosas de grano (Chapman y Muchow, 1985). Sin embargo, Egli et al (1983), encontraron que no existe una relación consistente entre el nivel o el tiempo de déficit hídrico y la contribución del N transferido a la semilla de soya; estos autores sugirieron que la cantidad de N remobilizado durante el llenado de la semilla está relacionado con la cantidad de N asignado hacia la semilla durante toda la estación de crecimiento.

4.3.4 Distribución de azúcares

El descenso promedio de azúcares totales en hojas y semillas muestra que la distribución de estos azúcares en estos órganos no actúa como fuente→sumidero dirigida como en el caso de N_T. La fuerte disminución en la hoja es una clara evidencia del efecto del déficit hídrico sobre los procesos primarios de la fotosíntesis y de acumulación de biomasa seca. La distribución en órganos no sigue un patrón regular y no
guarda relación con la resistencia a la sequía presentada por los germoplasmas. En el estado avanzado de senescencia foliar y con toda la distribución de materia seca completa, los azúcares que no se necesitan para el proceso de síntesis de proteína necesariamente deben acumularse en órganos como el tallo y la raíz, esto se observa en los germoplasmas Criolla San Juan, DOR-227 y EXP-145 para la raíz y en Criolla San Juan, DOR-227, EXP-145 e ICA-PIJAO en el tallo.

Shibles et al (1975) y Pate (1975) señalan que en *Phaseolus vulgaris* L., el crecimiento y el desarrollo están regulados por la competencia entre la fuente y la demanda. El tamaño de la fuente-demanda parece ser el determinante primario de la habilidad de que una determinada *demanda* compita con ventaja entre otras demandas. Los bajos % de variación de azúcares reductores en los órganos indican que el déficit hídrico no afecta, marcadamente, los niveles ni la distribución de estos azúcares. Sin embargo se observa una tendencia de dirigir los azúcares reductores hacia la semilla en un esquema fuente → sumidero dirigida desde la hoja y el tallo (fuente) hacia la demanda (semilla), aunque sus magnitudes hacen pensar que no hay reservas acumulativas y que todo el total de azúcares reductores ya fue translocado hacia la semilla e incorporado al esqueleto carbonado de sus proteínas (Lucas et al, 1976).

La comparación de los % (azúcares totales, reductores y no reductores), sugiere que ninguno de estos tipos de azúcares pueden
utilizarse como marcadores metabólicos, por lo menos en esta fase final de la cosecha, donde ya todo el proceso metabólico se ha cumplido (Geiger y Wen-Jan, 1988; Huber, 1983).

4.4 Conclusiones

1) La cantidad de N_T por individuo y en órganos (raíz, tallo, hoja), no presentó relación con el grado de resistencia a la sequía obtenido en los ensayos de invernadero (1991) y campo (1992); sin embargo, en semilla de los cinco germoplasmas bajo déficit hídrico, se observó un aumento respecto a los controles. Los germoplasmas que presentaron los mayores aumentos en %N_T(semilla y proteína) en la semilla fueron EXP-145, Criolla San Juan y DOR-227, los cuales se han identificado como de alta resistencia a la sequía, mientras que los de menor aumento fueron EMP-192 e ICA-PIJAO, los cuales se identifican como de menor resistencia a la sequía. La relación de aumento de N_T (semilla) en función del déficit hídrico, se postula como un posible marcador metabólico del déficit hídrico en Phaseolus vulgaris.

2) Los cinco germoplasmas bajo déficit hídrico aumentaron el contenido de azúcares reductores en tallo, semilla y planta; mientras que en raíz y hoja no hay variaciones apreciables. Los azúcares no reductores presentaron en promedio mayores, variaciones que las encontradas en los azúcares reductores; aumentando en raíz, tallo y planta; y disminuyendo en hoja y semilla. Los azúcares totales reflejaron mejor
el efecto del déficit hídrico sobre el metabolismo de carbohidratos en *Phaseolus vulgaris* L y permite obtener mayor número de evidencias de la distribución de azúcares entre los órganos.

3) En general, no se encontró relación entre los niveles de azúcares reductores, no reductores y totales en órganos y planta bajo déficit hídrico y la resistencia a la sequía de los cinco germoplasmas estudiados, por lo tanto no es recomendable utilizar estos azúcares como marcadores metabólicos.

4) El aumento del *N*ₚ en la semilla, puede tomarse como marcador metabólico del efecto del déficit hídrico y de resistencia a la sequía.

5) El déficit hídrico afectó marcadamente la distribución de azúcares, observándose en general reducciones en hojas y semilla y acumulación variada en tallo y raíz. No se observa relación entre la distribución de los azúcares (totales reductores y no reductores) el déficit hídrico y la resistencia a la sequía.
CAPÍTULO 5

"INTERCAMBIO GASEOSO Y RENDIMIENTO EN GRANO EN CINCO GERMOPLASMAS DE PHASEOLUS VULGARIS L, BAJO DOS TRATAMIENTOS HÍDRICOS"

Introducción

El déficit hídrico reduce la fotosíntesis porque afecta la apertura de los estomas y la eficiencia del proceso de fijación del carbono. También la reducción de la superficie foliar provocada por el déficit hídrico es un aspecto importante de la producción de los cultivos, y que afecta la superficie fotosintetizadora y su persistencia (Valero y Olalla, 1993). O’Toole et al (1977), propusieron que los efectos sobre la fotosíntesis se deben adscribir a dos componentes. Por una parte, la reducción del intercambio gaseoso debido al cierre estomático y por la otra la resistencia del mesófilo. Phaseolus vulgaris L, presenta un cierre total en pocos minutos después de la aplicación del estrés. Con el cierre estomático, la absorción y posterior fijación de CO₂ es mínima y existe una acumulación de O₂ que incrementa la fotorespiración, lo cual produce disminución de la producción de biomasa seca y del rendimiento en grano (Powles y Osmond, 1979). El cierre estomático también se ha correlacionado con la disminución del potencial hídrico foliar (Ψhoja) y el aumento de la
hibridación intra-entre específica y la producción temperatura (Moldan, 1973). La carota es un cultivo intermediario en sensibilidad estomática a la humedad. El-Sharkawy et al, 1984, sugieren que este cultivo sigue una estrategia de conservación intermedia del agua por desarrollo de mecanismos de evasión a la sequía.

Ghoraskhy et al (1971), encontraron que en soya la fotosíntesis disminuía linealmente en relación al potencial hídrico del suelo y O’Toole et al (1977), verificaron que la fotosíntesis neta y la transpiración disminuían cuando los Ψh de frijol alcanzaban valores de -0.3 a -0.5 MPa. En situaciones de sequía prolongada con disminución de los Ψh (-0.9 a -1.0 MPa), la fotosíntesis neta y la transpiración fueron prácticamente nulas. Millar y Gardner (1972) señalaron que la resistencia estomática de las hojas aumentó con una reducción del Ψh (-0.8 MPa) y que en este punto coincidió con una rápida disminución de la producción de materia seca. Basándose en un comportamiento semejante en condiciones de déficit hídrico, O’Toole et al (1977), concluyeron que la apertura estomática es un factor de control de la fotosíntesis.

Otro componente que reduce la fotosíntesis es la pérdida de la eficiencia fotosintética, que se refleja como un incremento en la resistencia del mesofilo (r_m), tal efecto ocurre únicamente a muy bajos potenciales hídricos (Moldan, 1973). Dentro del género Phaseolus; P. vulgaris L, se considera como menos resistente a la sequía que P. acutifolius L; los estomas en esta especie se cierran a potenciales hídricos mas altos que en P. vulgaris L, retardando la deshidratación del tejido.
foliar (Cory y Webster, 1984); P. acutifolius tiene un sistema radicular de penetración mas profundo, el cual contribuye también a la tolerancia a la sequía (Markhart, 1985).

La coordinación del intercambio gaseoso y la actividad del cloroplasto son importantes en el desarrollo del comportamiento de la planta bajo limitaciones ambientales de agua. El cierre estomático es un efecto primario del déficit hídrico y las disminuciones observadas en las tasas fotosintéticas bajo estas condiciones son, a menudo, debidas a reducciones en la presión parcial de CO₂ dentro de la hoja. Las tasas fotosintéticas medidas a tasas saturadas de CO₂ en cultivares de P. vulgaris L, indican tolerancia a reducciones en el contenido relativo de agua (Castonguay y Markhart, 1991). Diferencias genéticas en la respuesta estomática al déficit hídrico se han reportado entre P. vulgaris L y P. acutifolius (Jones et al, 1985). Los resultados obtenidos por Castonguay y Markhart (1991), indican que la variabilidad genotípica en tolerancia a la sequía entre P. vulgaris y P. acutifolius no está relacionado con tolerancia del mesófilo a la deshidratación. Las adaptaciones de P. acutifolius a medios ambientes áridos parecen ser más una respuesta cercana a una posposición de la deshidratación que a tolerancia a la sequía.

Los programas de resistencia a la sequía con Phaseolus vulgaris L son recientes, pero ya presentan resultados promisores. La preocupación inicial de estos programas fue evaluar germoplasmas potencialmente resistentes a la sequía (CIAT, 1985a; Guimarães y Zimmermann, 1985).
En la actualidad, estos programas no solo proveen los germoplasmas, sino que también estudian los mecanismos de resistencia a la sequía, de poblaciones segregantes. Los resultados de Guimarães y Zimmermann (1985) muestran que los materiales promisores en condiciones de déficit hídrico, presentan sistemas radiculares más desarrollados en perfiles de suelos de 20-60 cm de profundidad, y potenciales hídricos (Ψh) más altos que los no promisores. Una alta resistencia difusiva se presenta para el cultivar BAT-477 y la alta densidad radicular, puede ser responsable de su buen desempeño en condiciones de deficiencia hídrica. Los trabajos del CIAT (1985,a,b) y de White y Sponchiado (1985), también presentan resultados de un programa de investigaciones de resistencia a la sequía. Los materiales promisores en condiciones de deficiencia hídrica, presentan sistemas radiculares más profundos (130 cm) mientras que los no promisores los presentan mas superficiales, (70) cm y mantienen mas bajos los valores de Ψ hoja y Rs.

El presente trabajo tuvo por objetivos: 1) Analizar el efecto de la sequía sobre el intercambio gaseoso (tasa neta de fotosíntesis, conductividad estomática y tasa neta de transpiración) de germoplasmas de *Phaseolus vulgaris* L.; 2) Determinar el rendimiento en grano de cinco germoplasmas de *Phaseolus vulgaris* L., bajo dos tratamientos hídricos (riego y sequía); 3) Evaluar la resistencia a la sequía a través de la correlación entre los parámetros de intercambio gaseoso y el rendimiento en grano de cinco germoplasmas de *P vulgaris* L.
5.1 Materiales y Métodos

El trabajo se realizó en el Centro Internacional de Agricultura Tropical (CIAT) en su sede de Palmira, Cali-Colombia, con una duración de 82 días, desde la siembra (08-06-94) a la última cosecha (29-08-94). Los germoplasmas fueron sembrados en subparcelas de 29.58 m², con 10 surcos de 2.96 m². Se usó un diseño experimental de parcelas divididas, con un arreglo factorial de bloques al azar, para dos tratamientos hídricos (riego y sequía), para cinco (05) germoplasmas y cuatro (04) repeticiones. Se realizaron 3 mediciones de parámetros del estado hídrico y de intercambio gaseoso a nivel de hoja, a los 20 DDS (0 DDH), 40 DDS (20 DDH) y 50 DDS (30 DDH). Además se evaluaron los potenciales hídricos del suelo. A la fecha de la madurez fisiológica (71-77 DDS), se efectuó una cosecha de biomasa, y la cosecha final entre los días 78 y 82 DDS, evaluándose los componentes del rendimiento en grano Y_G.

5.1.1 Diseño experimental

En el ensayo se utilizaron cinco (05) germoplasmas de *Phaseolus vulgaris* L, obtenidos en el banco de germoplasmas del CIAT y previamente caracterizados por el Programa de Fisiología de Frijol del CIAT, a través del BIDYT (Bean International Drought Yield Trial); como materiales tolerantes, tolerancia intermedia y susceptibilidad a la sequía. Estos germoplasmas pertenecían a diferentes tipos de hábitos de crecimiento según la clasificación del CIAT (tabla 5.1). El ensayo formó parte del 2do grupo de ensayos del año 1994 y fue sembrado en el lote N-
IN-4994-B (figura 5.1). La Fig. 5.2 muestra el esquema de una subparcela (germoplasma) y la Fig. 5.3 muestra el esquema de una parcela (tratamiento). El área para cada repetición fue de 367.3 m², para un total de 1504.7 m². Las plantas se sembraron a una distancia de 5,55 cm y separadas entre cada surco por 0.6 m, correspondiendo a una densidad de siembra de 230,000 plantas/ha. El material fue sembrado mediante técnica mecanizada, fue dejado crecer con riego por superficie hasta los 20 DDS, fecha en que se suprimió el riego al 50% de las subparcelas de cada germoplasma, manteniéndose en déficit hídrico hasta la cosecha final, respecto al otro 50% de las subparcelas de cada germoplasma que se mantuvieron en riego normal y se usaron como control. A través del ensayo se realizaron las labores de riego según criterio de la tensión de agua del suelo en las parcelas con riego se aplicó solo fertilización foliar y se establecieron los respectivos controles de entes bióticos: maleza, insectos y hongos.

TABLA 5.1: Caracterización de germoplasmas de *Phaseolus vulgaris* L., según hábitos de crecimiento (CIAT) y tolerancia a la sequía (BIDYT-CIAT).

<table>
<thead>
<tr>
<th>Germoplasma evaluado en el ensayo 9469</th>
<th>Tipo de hábito de crecimiento</th>
<th>Tolerancia a la sequía según programa BIDYT-CIAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAT-477</td>
<td>3</td>
<td>Tolerante</td>
</tr>
<tr>
<td>San Cristóbal-83</td>
<td>3</td>
<td>Tolerante</td>
</tr>
<tr>
<td>Criolla San Juan</td>
<td>1</td>
<td>Intermedio*</td>
</tr>
<tr>
<td>A-70</td>
<td>4</td>
<td>Susceptible</td>
</tr>
<tr>
<td>BAT-1224</td>
<td>4</td>
<td>Susceptible</td>
</tr>
</tbody>
</table>

Hábitos de Crecimiento: 1: Determinado arbustivo; 2: Indeterminado arbustivo; 3: Indeterminado postrado; 4: Indeterminado trepador

* Tolerancia intermedia según IIAP-ULA y de alta a intermedia sequía (Capítulos 2 y 3) del presente trabajo

BIDYT: Bean International Drought Yield Trial

183
Germoplasmas
1: BAT-477
2: ICA-PIJAO
3: San Cristóbal 83
4: A70
5: BAT-1224

S: Sequía
R: Riego

Repeticiones: I, II, III y IV

Figura 5.1: Plano general de siembra del ensayo. CIAT (1994)

10 surcos * 0.6 = 6 mts

4.93 mts

F
B
PEH

a) N° de surcos: 10; b) Área de cada surco: 4.93 m (largo) x 0.6 m (ancho) = 2.958 m²; c) Área de la subparcela: 10 surcos x 0.6 = 6 m(ancho) x 4.93 m largo = 29.58 m²; d) Descripción del uso de los surcos: 1: Borde; 2: Fotosíntesis, Biomasa y Parámetros del Estado Hídrico; 3: Borde; 4: Fotosíntesis, Biomasa y Parámetros del Estado Hídrico; 5: Borde; (6, 7, 8 y 9): Rendimiento en grano; 10: Borde

Figura 5.2: Esquema de una subparcela (germoplasma) del ensayo. CIAT (1994)
Figura 5.3: Esquema de una parcela (tratamiento), cada parcela está formada por 5 subparcelas (5 germoplasmas)
1) Para el tratamiento hídrico de déficit hídrico, habrán 5 subparcelas/parcelas x 4 repeticiones = 20 subparcelas. 2) Para el tratamiento hídrico de (riego), habrán 5 subparcelas/parcela x 4 repeticiones = 20 subparcelas. El ensayo en total tendrá 40 subparcelas. 3) Área de cada parcela: Área de cada parcela= Área de subparcela x N° de SP/P + Área de las calles.

5.1.2 Análisis de producción de biomasa seca a madurez fisiológica

En este análisis se evaluó la productividad para una cosecha de biomasa seca a madurez fisiológica, en kg/ha. Las plantas correspondientes al área cosechada en cada uno de los germoplasmas bajo riego y sequía, se fraccionaban y se efectuaba previamente la determinación del área total/plantas/parcela; para lo cual se utilizó un detector un medidor de área foliar de lectura digital, marca Hayashi, modelo AAC-400 (Denkoh.CO.LTD). El material se llevo a un horno de
desecación por 72 horas a 80°C y luego fue pesado para obtener la biomasa seca total/plantas/área cosechada. Para la cosecha a la madurez fisiológica, se cosechó un área de 2.4 m² (4 surcos de 0.6 m de ancho c/u y 1m de largo) y se determinó el tiempo y la biomasa seca total, la cual se utilizó posteriormente junto al rendimiento en grano, para calcular el índice de cosecha (IC).

5.1.2 Componentes del rendimiento y del rendimiento en grano

El rendimiento en grano \(Y_G \) se calculó siguiendo la metodología del CIAT (White, 1985), que toma en cuenta los siguientes componentes:
1) N° de plantas cosechadas/Área cosechada; 2) Peso total de semillas; 3) % Humedad real; 4) N° semillas/50 vainas; 5) Peso de 100 semillas. Se aplicó la siguiente ecuación:

\[
Y_G = 2\times3\times4\times5 \text{ (Peso semilla/Área cosechada)}
\]

El área cosechada fue: 7.2 m² (Fig. 5.2).

El valor obtenido de \(Y_G \) se corrigió para una humedad de 14%, utilizando la siguiente ecuación:

\[
Y_{Gc} = 10 \times Y_G \times (100-H_{R}/86) \text{AP: kg/ha}
\]

\(Y_{Gc} \) = Rendimiento real corregido al 14% de humedad

\(Y_G \) = Rendimiento en grano

\(H_R \) = Humedad real

\(AP \) = Área de la parcela

White, (1981) estableció la siguiente ecuación:

\[
Y_{Gc} = P_1 \times \frac{100-H\%}{86}
\]

\(P_1 \): Rendimiento en grano a la humedad real.
\(\%H \): Humedad real al momento de la cosecha.
5.1.3 Índice de cosecha

Para el índice de cosecha (IC), se utilizó la siguiente ecuación:

\[IC = \frac{Y_G}{BST} \quad \text{(sin dimensión)} \]

\[Y_G: \text{Rendimiento biológico} \]

\[BST: \text{Biomasa seca total} \]

5.1.4 Parámetros del estado hídrico

En el ensayo se midieron los siguientes parámetros del estado hídrico en el suelo y en las plantas:

a) Potencial hídrico del suelo se midió en las parcelas bajo riego y sequía;
b) Potencial hídrico de la hoja; se determinó mediante la técnica de la bomba de presión de Scholander.

5.1.5 Intercambio gaseoso

Para medir las tasas fotosintéticas y resistencia estomática se utilizó una analizador infrarrojo de gases IRGA (LICOR-6200) de tipo cerrado. La tasa fotosintética se calculó en \(\mu \text{mol CO}_2/\text{cm}^2/\text{seg} \) en hojas individuales, el LICOR-6200 calculaba también resistencia y conductividad estomática, radiación PAR, % HR, concentración interna de \(\text{CO}_2 \) y concentración de \(\text{CO}_2 \) de la atmósfera.

5.1.6 Análisis estadístico

Los resultados experimentales se evaluaron a través del paquete estadístico (SAS), mediante un análisis de varianza múltiple. Se efectuó un análisis de correlación y la recta de regresión para rendimiento en grano y las tasas fotosintéticas.
5.2 Resultados

5.2.1 Tiempo de floración y madurez fisiológica

Solo dos germoplasmas mostraron diferencias significativas en el tiempo de floración (Criolla San Juan y A-70), las cuales fueron de 2 días de adelanto. Evidentemente el déficit hídrico no influyó en este ensayo sobre el tiempo de floración y madurez fisiológica al menos para un déficit hídrico que osciló entre 12 y 16 días, aplicado a los 20 DDS (ver tabla 5.2).

5.2.2 Producción de biomasa seca a madurez fisiológica

El efecto del déficit hídrico fue reducir la producción de biomasa seca a madurez fisiológica (Fig. 5.4) de los cinco germoplasmas. Los mayores % de reducción de producción se encontraron en Criolla San Juan, BAT-477 y A-70, con 55.78%, 52.99% y 50.32%, respectivamente. Los menores % de reducción se localizaron en BAT-1224 y San Cristóbal-83, con 41.32% y 36.78%, respectivamente (Tabla 5.3).

Estos valores mostraron diferencias significativas para los tratamientos hídricos a p<0.05 y p<0.01 y para los germoplasmas a p<0.01 (Anexo 16). De acuerdo a la prueba de Duncan existen DMS entre control (riesgo) y déficit hídrico para los cinco germoplasmas y el promedio de los cinco germoplasmas.
TABLA 5.2: Floración y madurez fisiológica de cinco germoplasmas de *Phaseolus vulgaris* L, bajo dos tratamientos hídricos (1) riego y (2) sequía en Cali-Palmira (1994). DDS (Días después de la siembra); DDH (Días en déficit hídrico)

<table>
<thead>
<tr>
<th>Germoplasma evaluado</th>
<th>Th</th>
<th>Floración DDS/DDH</th>
<th>ΔF (DDS)</th>
<th>Madurez fisiológica (DDS)</th>
<th>ΔMF (DDS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAT-477</td>
<td>1</td>
<td>34/0</td>
<td>0</td>
<td>73</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>34/12<sup>c</sup></td>
<td></td>
<td>71<sup>a</sup></td>
<td>adelante</td>
</tr>
<tr>
<td>Criolla San Juan</td>
<td>1</td>
<td>37/0</td>
<td>2</td>
<td>75</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>35/13</td>
<td>adelante</td>
<td>75<sup>c</sup></td>
<td></td>
</tr>
<tr>
<td>San Cristóbal-83</td>
<td>1</td>
<td>34/0</td>
<td>0</td>
<td>73<sup>a</sup></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>34/12<sup>c</sup></td>
<td></td>
<td>71<sup>a</sup></td>
<td>adelante</td>
</tr>
<tr>
<td>A-70</td>
<td>1</td>
<td>37/0</td>
<td>2</td>
<td>76<sup>c</sup></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>35/13</td>
<td>adelante</td>
<td>76<sup>c</sup></td>
<td></td>
</tr>
<tr>
<td>BAT-1224</td>
<td>1</td>
<td>38/0</td>
<td>0</td>
<td>77</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>38/16<sup>c</sup></td>
<td></td>
<td>76<sup>c</sup></td>
<td>adelante</td>
</tr>
</tbody>
</table>

a: DMS a p<0.05 Prueba de medias de Duncan
b: DMS a p<0.01
c: No significativas

TABLA 5.3: Producción de biomasa seca a madurez fisiológica y % de reducción de madurez fisiológica de cinco germoplasmas de *Phaseolus vulgaris* L, sometidos a dos tratamientos hídricos (1) riego y (2) sequía, en el CIAT-Palmira (1994), DMS: Diferencias mínimas significativas; MF: Madurez fisiológica; DDH: Dias en déficit hídrico; DDS: Dias después de la siembra; %RMF: % de reducción de biomasa a madurez fisiológica; $\bar{X}_{4 \text{REP}}$: Media de 4 repeticiones

<table>
<thead>
<tr>
<th>Germoplasma</th>
<th>Th</th>
<th>M.F. DDS/DDH</th>
<th>Producción a madurez fisiológica (kg/ha) $\bar{X}_{4 \text{REP}}$</th>
<th>%RMF</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAT-477<sub>(R)</sub></td>
<td>1</td>
<td>73<sup>a</sup></td>
<td>3671.86<sup>ab</sup></td>
<td>52.99%</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>71<sup>a</sup></td>
<td>1726.04<sup>ab</sup></td>
<td></td>
</tr>
<tr>
<td>Criolla San Juan<sub>(Q)</sub></td>
<td>1</td>
<td>75<sup>c</sup></td>
<td>2722.94<sup>ab</sup></td>
<td>55.78%</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>75<sup>c</sup></td>
<td>1204.17<sup>ab</sup></td>
<td></td>
</tr>
<tr>
<td>San Cristóbal<sub>(R)</sub></td>
<td>1</td>
<td>73<sup>a</sup></td>
<td>3268.75<sup>ab</sup></td>
<td>36.78%</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>71<sup>a</sup></td>
<td>2066.67<sup>ab</sup></td>
<td></td>
</tr>
<tr>
<td>A-70<sub>(S)</sub></td>
<td>1</td>
<td>76<sup>c</sup></td>
<td>3908.33<sup>ab</sup></td>
<td>50.32%</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>76<sup>c</sup></td>
<td>1941.67<sup>ab</sup></td>
<td></td>
</tr>
<tr>
<td>BAT-1224<sub>(S)</sub></td>
<td>1</td>
<td>77<sup>c</sup></td>
<td>2646.88<sup>ab</sup></td>
<td>41.32%</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>76<sup>c</sup></td>
<td>1553.13<sup>ab</sup></td>
<td></td>
</tr>
</tbody>
</table>
a = DMS a p<0.05 Prueba de medias de Duncan
b = DMS a p<0.05

![Graph showing biomass data for different germplasms.](image)

FIGURA 5.4: Efecto del déficit hídrico sobre la producción de materia seca en la madurez fisiológica de cinco germoplasmas de *Phaseolus vulgaris* L.

5.2.3 Rendimiento en grano (*Yc*); índice de cosecha (IC), % de reducción del rendimiento e índice de susceptibilidad a la sequía (S), para los cinco germoplasmas de *Phaseolus vulgaris* L

En la tabla 5.4, se observa que en condiciones de sequía, los germoplasmas considerados de alta resistencia presentaron diferencias en sus rendimientos. San Cristóbal-83 ocupó el máximo de rendimiento, mientras que BAT-477 tiene una posición intermedia. El germoplasma Criolla San Juan mantuvo su posición intermedia de resistencia a la sequía, si se compara con materiales seleccionados como resistentes (BAT-477).
TABLA 5.4: Variación de rendimiento en grano (Y_G: kg/ha); índice de cosecha (IC); % de reducción de (Y_G), e índice de susceptibilidad a la sequía (S) para cinco germoplasmas de *Phaseolus vulgaris* L, sometidos a 2 tratamientos hídricos de (1) riego y (2) sequía en el CIAT-Cali (1994). Los valores son promedio de 4 repeticiones. (RS): Resistente a la sequía y (SS): Sensible a la sequía; DMS: Diferencias mínimas significativas, DDS: días después de la siembra, DDH: días de déficit hídrico; CNF: cosechas madurez fisiológica

<table>
<thead>
<tr>
<th>Germoplasma</th>
<th>Th</th>
<th>DDS (Y$_G$)</th>
<th>DDH (Y$_G$)</th>
<th>(Y_G): kg/ha</th>
<th>$\frac{Y_G}{IC}= \frac{1}{P_{BST}}$</th>
<th>%R(Y$_G$)</th>
<th>(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAT-477 (RS)</td>
<td>1</td>
<td>82</td>
<td>82</td>
<td>0</td>
<td>2163.61 ab</td>
<td>0.59 c</td>
<td>0.49</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td>60</td>
<td>820.99 ab</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Criolla San Juan</td>
<td>1</td>
<td>82</td>
<td>82</td>
<td>0</td>
<td>1902.80 ab</td>
<td>0.71 ab</td>
<td>0.38</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td>60</td>
<td>448.39 ab</td>
<td></td>
<td></td>
</tr>
<tr>
<td>San Cristóbal (RS)</td>
<td>1</td>
<td>82</td>
<td>82</td>
<td>0</td>
<td>1860.21 ab</td>
<td>0.57 c</td>
<td>0.61</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td>60</td>
<td>1236.79 ab</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A-70 (SS)</td>
<td>1</td>
<td>82</td>
<td>82</td>
<td>0</td>
<td>2311.71 ab</td>
<td>0.59 a</td>
<td>0.44</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td>60</td>
<td>849.02 ab</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BAT-1224 (SS)</td>
<td>1</td>
<td>82</td>
<td>82</td>
<td>0</td>
<td>1820.42 ab</td>
<td>0.71 ab</td>
<td>0.49</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td>60</td>
<td>749.03 ab</td>
<td></td>
<td></td>
</tr>
<tr>
<td>\bar{X}_{SG}</td>
<td>1</td>
<td>82</td>
<td>82</td>
<td>0</td>
<td>2011.75 ab</td>
<td>0.63 a</td>
<td>0.48</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td>60</td>
<td>820.84 ab</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a = DMS a p<0.05 Prueba de medias de Duncan
b = DMS a p<0.01

El rendimiento en grano (Y_G), disminuyó en déficit hídrico y su variación respecto al control es menor en el germoplasma San Cristóbal-83 (figura 5.5). Los otros 4 germoplasmas, tuvieron S similares y disminuyen el Y_G en forma semejante. El índice de cosecha (IC) fue similar al control en San Cristóbal-83 y disminuyó en los otros germoplasmas.
El rendimiento en grano y el índice de cosecha, mostraron diferencias significativas para germoplasmas y la interacción (Th x G) solamente a p<0.01 y p<0.05 respectivamente. La prueba de Duncan arrojó (DMS) entre control (riego) y déficit hídrico para los cinco germoplasmas y el promedio de los cinco germoplasmas. La prueba de Duncan arrojó (DMS) para Criolla San Juan y BAT-1224 a p<0.05 y p<0.01 y solamente a p<0.05 para A-70 y el promedio de los cinco germoplasmas.

FIGURA 5.5: Rendimiento en grano (○), Índice de cosecha (□) e Índice de susceptibilidad a la sequía (△), con respecto al control, de cinco germoplasmas de Phaseolus vulgaris L, sometidos a déficit hídrico (los valores de S*10^-2 y los de IC *10^-3)
5.2.4 Intercambio gaseoso y relaciones hídricas

5.2.4.A) Etapa de pre-floración

La figura 5.6 muestra el curso diario de fotosíntesis neta (Pn: μmol CO₂ m⁻² s⁻¹), conductancia estomática (Cs: mol.m⁻².s⁻¹) y potenciales hídricos de la hoja (Ψhoja), realizados entre 8:00 am y 6:00 pm. La fotosíntesis neta (Pn) aumentó en los cinco germoplasmas alrededor de las 12 m, el cual representa el máximo del curso diario y coincide con la máxima conductancia (Cs). Se observó una caída de (Pn) a partir de las 2:00 pm, la cual se mantiene hasta las 6:00 pm, excepto en BAT-1224 y que también coincidió con la disminución de Cs. Estas disminuciones están asociadas con el cierre estomático a partir de las 2:00 pm. Los potenciales hídricos foliares (Ψhoja) mostraron un patrón de variación común para los cinco germoplasmas, el cual consiste en disminución progresiva hasta un valor mínimo a las 12:00 m y luego recuperación rápida a valores mas positivos hasta alcanzar recuperación total o casi total a las 6.00 pm.

5.2.4.B) Etapa de floración bajo condiciones de déficit hídrico

En la etapa de floración la tasa de fotosíntesis neta, de los cinco germoplasmas, bajo déficit hídrico, presentó una reducción a través del curso diario respecto a los controles bajo riego normal (Figura 5.7). El valor máximo de Pn, tanto en riego como bajo déficit hídrico se obtuvo a las 8.00 am; observándose valores mayores en riego. A las 8:00 am, los % de reducción máximas de las tasas entre control y déficit hídrico se encuentran en los germoplasmas BAT-1224 (38.41%) y A-70 (37.31%) mientras que las menores se ubican en San Cristóbal 83 (27.38%), Criolla San Juan (27.38%) y BAT-477 (14.87%).
FIGURA 5.6: Curso diario de A) Fotosíntesis neta; B) Conductancia estomática; C) Ψhoja para cinco germoplasmas de Phaseolus vulgaris L bajo riego normal (20 DDS y 0 DDH); en la etapa de pre-floración.
FIGURA 5.7: Curso diario de A) Fotosíntesis neta; B) Conductancia estomática y C) Ψhoja, para cinco germoplasmas de *Phaseolus vulgaris* L., bajo riego y déficit hídrico para plantas en la etapa de floración
A esta hora, las mayores reducciones de (Cs) se observaron en los germoplasmas San Cristóbal-83 (70.89%) y Criolla San Juan (70.69%) y las menores en los germoplasmas A-70 (36.96%), BAT-1224 (31.38%) y BAT-477 (11.68%).

Entre las 8:00 am y las 12:00 m, disminuyeron las Pn, con los descensos más abruptos entre las 12:00 m y las 2:00 pm; estos descensos se corresponden con la disminución de Cs. La reducción % de Pn por efecto del déficit hídrico en los cinco germoplasmas a las 2.00 pm, fue mayor en Criolla San Juan (56.26%); A-70 (52.21%) y BAT-1224 (24.93%); mientras que las menores se ubicaron en San Cristóbal-83 (0.29%) y BAT-477 (19.84%). A las 2:00 pm las mayores reducciones de Cs en déficit respecto a los controles las presentaron Criolla San Juan (88.9%) y BAT-477 (55.51%), y las menores correspondieron a San Cristóbal-83 (10.92%) y BAT-1224 (3.56%). A partir de las 2.00 pm se observó un descenso en Pn que presenta su valor más bajo a las 6.00 pm para los cinco germoplasmas en ambos tratamientos hídricos. En BAT-477 los valores de (Pn) a las 6.00 pm fueron similares para el control y el déficit hídrico; para (Criolla San Juan; BAT-1224 y A-70) los valores de (Pn)DH a esta hora fueron menores que (Pn)control y en San Cristóbal-83 (Pn)DH > (Pn)control, aunque esto depende más de la luz que del déficit hídrico. La conductancia estomática (Cs) de los cinco germoplasmas bajo déficit hídrico, mostró una reducción a través del curso diarios respecto a los controles bajo riego. El potencial hídrico (Ψh) siguió un patrón definido y
constante en ambos tratamientos hídricos. En el curso diario, sus valores mas negativos se obtuvieron a las 12 m, siendo Ψh de las plantas bajo déficit hídrico mas negativos que en los controles, se observan los mayores descensos entre las 12 m y las 2:00 pm. Destaca BAT-477, el cual presentó la menor variación de Ψh entre las 12 m y las 2.00 pm.

5.2.4.C) Etapa de madurez fisiológica (72-77 DDS y 42-46 DDH)

En la etapa de madurez fisiológica (Fig. 5.8), las plantas de los cinco germoplasmas, en déficit hídrico y en el control, se caracterizaron por presentar un aumento de Pn entre las 8 am a las 12 m, cuando se alcanzó el valor máximo. A través de todo el ciclo diario la Pn de las plantas controles fueron mayores. Las tasas de fotosíntesis neta a las 8 am para los controles se mantuvo en 34.54 μmol.CO₂.m⁻².s⁻¹ para Criolla San Juan y en 18 μmol.CO₂.m⁻².s⁻¹ para el resto de los germoplasmas. Los % de reducción de Pn bajo déficit hídrico fueron mayores en BAT-477 (25.18%) y Criolla San Juan (54.43%). A las 8 am hubo correspondencia en el % de reducción de la conductancia estomática (Cs); las mayores reducciones se presentaron en BAT-477 (38.52%) y Criolla San Juan (54.43%), el resto de los germoplasmas presentaron bajos % de reducción de (Cs). A esta hora se observó un descenso en Ψhoja de las plantas bajo déficit hídrico respecto a los controles de hasta -0.98 MPa.
FIGURA 5.8: Curso diario de intercambio gaseoso y potenciales hídricos en cinco germoplasmas de *Phaseolus vulgaris* L., bajo riego y déficit hídrico, en la etapa de madurez fisiológica.
Los máximos de Pn, Cs y los valores más negativos de Ψhoja, se obtuvieron a las 12 m. A esta hora los % de reducción en (Pn) fueron altos para BAT-477 (43.39%) y Criolla San Juan (47.31%), intermedios en % de reducción para A-70 (24.27%) y BAT-1224 (31.79%) y bajos para San Cristóbal-83 (16.60%). En general los % de reducción de Cs, fueron altos para los germoplasmas a excepción de San Cristóbal-83, que presentó % muy bajos (<0) porque la PnDH>Pncontrol, a las 12 m, los Ψhoja en déficit hídrico, descendieron hasta -1.8 MPa, siendo este valor (-1.4 MPa) más negativo respecto al control BAT-477 presentó el Ψhoja (menos negativo: -1.4), mientras que los otros cuatro germoplasmas, presentaron Ψhoja de -1.8 MPa.

Entre las 12:00 m y las 2:00 pm desminuyó la conductancia. A las 2:00 pm aumentó pasando en las plantas en déficit hídrico de -12.8 MPa a -1.1 MPa, esto ocasiona un aumento de la conductancia estomática (Cs) que, en general, fueron mayores que los registrados en la etapa de floración. La Pn presentó % de reducción muy parecidos a los encontrados en la etapa de floración, altas reducciones en A-70 (44.87%), San Cristóbal-83 (44.78%), BAT-477 (40.59%) intermedias para Criolla San Juan y BAT-1224.

5.2.4.D) Intercambio gaseoso y relaciones hídricas a través de las etapas de prefloración, floración y madurez fisiológica

El curso de variación de la tasa de fotosíntesis neta Pn, conductancia estomática Cs y potenciales hídricos del suelo (Ψsuelo) y de
la hoja (Ψhoja); a través de las etapas de prefloración, floración y madurez fisiológica bajo riego (control) y déficit hídrico se presentó en la figura 5.9. Las medidas se efectuaron a las 8 am, para observar la capacidad de recuperación matinal de los parámetros evaluados, luego de pasar el día anterior bajo déficit hídrico (etapas de floración y madurez fisiológica).

En los controles el Ψsuelo osciló entre -0.01 y -0.03 Mpa a 280 mbar entre prefloración y madurez fisiológica, con un máximo en floración -0.04 MPa. Esta oscilación de los Ψsuelo en los controles se debe a la frecuencia del riego utilizado. En el suelo bajo déficit hídrico, el Ψsuelo pasa de -0.01 MPa el día 20 DDS cuando se inicia el déficit hídrico en la etapa de prefloración a -0.06 MPa en madurez fisiológica, con un máximo de -0.066 en la etapa de floración. El descenso de los Ψsuelo produjo un descenso general de los Ψhoja en los cinco germoplasmas, observándose los valores más negativos en la etapa de floración.

La respuesta fotosintética de las plantas bajo déficit hídrico, estuvo condicionada por el efecto de los Ψhoja sobre la conductancia estomática Cs; la cual se vió reducida entre las etapas de floración y madurez fisiológica. Nuevamente observamos tendencias generales de recuperación de Cs a los valores controles en la etapa de madurez fisiológica. En BAT-477 se observaron valores de Pn y Cs similares en control y déficit hídrico.
FIGURA 5.9: Tasa de fotosíntesis neta (Pn), Conductancia estomática (Cs) y Relaciones hídricas (Ψsuelo y Ψhoja) a las 8:00 am, a través de las etapas de preflorecencia (20 DDS y 0 DDH), floración (34 a 38 DDS) y (12 a 16 DDH) y madurez fisiológica (72 a 77 DDS) y (42 a 46 DDH) para cinco germoplasmas de *Phaseolus vulgaris* L.
La respuesta fotosintética sigue un curso de aumento entre las etapas de prefloración y floración, con máximos en esta última etapa, lo cual se cumple para los controles y el déficit hídrico. En general las \((Pn)_{c}> (Pn)_{DH}\); para los cinco germoplasmas. En general se observa una reducción de \(Pn\) y \(Cs\) entre las etapas de floración y madurez fisiológica, de las plantas bajo déficit, respecto a los controles y que esta reducción aumenta según la duración del déficit hídrico (determinada por los días bajo déficit) y por la magnitud (determinado por los \(\Psi_{suelo}\)) y expresado por los \(\Psi_{h}\).

5.2.4.E) Correlación entre tasa de fotosíntesis neta \((Pn)\) y el rendimiento en grano \((Y_G)\)

La relación entre la tasa de fotosíntesis neta \(Pn\) y el rendimiento en grano \((Y_G)\), para los cinco germoplasmas, bajo riego y déficit hídrico en la etapa de madurez fisiológica (figura 5.10) es de tipo lineal con un coeficiente de correlación positiva de \(r^2=0.62\), lo que permite establecer que un aumento de \(Pn\), incide directamente en mayor rendimiento en grano. Los valores bajo riego se agrupan en la parte inferior de la recta, mostrando que a valores mayores de \((Pn)\) corresponden los máximos valores de \((Y_G)\).
FIGURA 5.10: Relación entre la tasa de fotosíntesis neta (Pn) vs rendimiento en grano (Y_G), para cinco germoplasmas de Phaseolus vulgaris L., bajo tratamientos de riego y déficit hídrico en la etapa de madurez fisiológica (72-77 DDS) y (42-46 DDH). BAT-477 (●), Criolla San Juan (○), San Cristóbal-83 (■), A-70 (□), BAT-1224 (△)

5.3 Discusión

1) Resistencia a la sequía: Enfoque agroecológico

De los germoplasmas de Phaseolus vulgaris L. analizados en este ensayo, cuatro de ellos habían sido evaluados previamente, caracterizando a BAT-477 y San Cristóbal-83 como resistentes y como sensibles A-70 y
BAT-1224. Criolla San Juan es un germoplasma regional andino venezolana evaluado por el IIAP (ULA), como de resistente a la sequía (Añez, 1976 y 1990), sin embargo, los resultados del presente trabajo (ver capítulos 2, 3 y 4), lo ubican como de resistencia intermedia a alta. Bajo condiciones del CIAT, en su estación experimental de Cali, encontramos que bajo un déficit hídrico de 60 días continuos, la respuesta agronómica de resistencia a la sequía es variable (White, 1981 y 1984).

No existe un patrón único de respuesta al déficit hídrico en los cinco germoplasmas evaluados, respecto al inicio de floración y madurez fisiológica. Únicamente Criolla San Juan y A-70 presentan diferencias mínimas significativas entre riego y sequía en el inicio de floración y BAT-477 y San Cristóbal-83 en el adelanto de madurez fisiológica. Los resultados de productividad, rendimiento en grano, índices de susceptibilidad a la sequía y de rendimientos muestran respuestas más directas y permiten una mejor evaluación de la resistencia a la sequía.

La producción en biomasa disminuye significativamente en las plantas bajo déficit hídrico respecto a los controles en todos los germoplasmas. La reducción de la producción por efecto del déficit hídrico es alto y en general supera el 30%, siendo menor en San Cristóbal-83, un germoplasma considerado resistente a la sequía y con un adelanto significativo de la madurez fisiológica.
El rendimiento en grano \((Y_G) \) fue afectado drásticamente por el déficit hídrico y en general en promedio los cinco germoplasmas disminuyeron en un 58,54%. Las expectativas sobre resistencia a la sequía de los germoplasmas producidos por el CIAT, no se cumplieron completamente, pues de los referidos como de alta resistencia a la sequía (BAT-477 y San Cristóbal-83), BAT-477 disminuyó el rendimiento de forma comparable a los germoplasmas considerados como de baja resistencia A-70 y BAT-1224). El germoplasma regional venezolano fue el más afectado al presentar el mayor % de reducción del rendimiento respecto al control.

Los índices de susceptibilidad a la sequía \((S) \) concuerdan con los % de reducción del rendimiento y son concluyentes para diferenciar los cinco germoplasmas respecto a su resistencia a la sequía; así encontramos que el de mayor resistencia fue San Cristóbal-83, mientras que los otros germoplasmas del CIAT, se presentan en bloque como de resistencia intermedia. Criolla San Juan mostró baja resistencia a la sequía.

El índice de cosecha expresa muy bien el efecto del déficit hídrico sobre la productividad y el rendimiento. En BAT-477, Criolla San Juan, A-70 y BAT-1224, el IC en déficit hídrico es inferior a lo normalmente aceptado para Phaseolus vulgaris L., bajo condiciones de riego \((0.5-0.6) \) (White, 1981). Únicamente San Cristóbal-83 presenta un índice de cosecha bajo déficit hídrico alto y situado dentro del rango, lo cual se
explica por su alta resistencia (Sponchiado, 1985). La aplicación de los índices de susceptibilidad a la sequía en *Phaseolus vulgaris* L., ha sido excelentemente demostrada por Huepe (1986); quien obtiene resultados similares en la evaluación de 24 genotipos, en los cuales incluye a BAT-477, BAT-1224 y San Cristóbal-83. En lo referente al germoplasma venezolano Criolla San Juan, sus expectativas de resistencia a la sequía no son buenas, considerando sus altos % de reducción del rendimiento, su alto índice (S) y su bajo índice de cosecha. La resistencia de alta a intermedia encontrada por nosotros en los ensayos de 1992 y 1993, lucen como adaptaciones locales al clima seco de San Juan de Lagunillas en Mérida-Venezuela, lo cual indica que en estas condiciones, este germoplasma puede ser utilizado debido a su alto rendimiento (Añez, 1976 y Añez y Tavira, 1990).

2) **Intercambio gaseoso, relaciones hídrica y resistencia a la sequía**

Luego de tres evaluaciones de los Ψ hoja, observamos que BAT-477 y San Cristóbal-83 presentan los valores mas altos y en las etapas de floración y madurez fisiológica, estos presentan las mayores tendencias de recuperación al final del curso diario. Estos germoplasmas han sido caracterizados como resistentes a la sequía, especialmente BAT-477 el cual presentó el menor tiempo de madurez fisiológica (71 DDS) bajo déficit hídrico.
En la etapa de prefloración, al no existir déficit hídrico la respuesta fotosintética es muy similar en los cinco germoplasmas a través del día. En la etapa de floración, el déficit hídrico ejerce, en general, un efecto de reducción de la fotosíntesis neta, la cual es diferencial para los cinco germoplasmas.

Como era de esperar los germoplasmas de mayor resistencia a la sequía (BAT-477 y San Cristóbal-83) fueron los que disminuyeron menos la Pn. En la etapa de floración no encontramos una correspondencia entre la reducción de la conductancia estomática Cs y la resistencia a la sequía entre los cinco germoplasmas, pues solo BAT-477 presenta una baja reducción de Cs, con baja reducción de su Pn. Los germoplasmas con características de baja resistencia a la sequía presentaron una reducción media de Cs, pero Criolla San Juan y San Cristóbal-83 con historial de resistencia intermedia y alta a la sequía, presentan una alta reducción de su Cs con valores de Pn intermedios para Criolla San Juan y bajos para San Cristóbal-83.

En la etapa de madurez fisiológica, la respuesta fotosintética, alcanza su menor nivel, tanto en los controles como déficit hídrico, esto se explica para los controles por efecto de la senescencia sobre la biomasa foliar y en las plantas bajo déficit hídrico por efecto combinado de la sequía y la senescencia. La disminución de Pn por déficit hídrico es máxima para
BAT-477 y Criolla San Juan y menores para el resto de los germoplasmas. Hay correspondencia con los altos % de reducción de Cs para estos germoplasmas. San Cristóbal-83 presenta valores negativos en su % de reducción de (Pn) y (Cs), lo que indica que aun después de 46 días de déficit hídrico, sus estomas permanecen abiertos durante el día.

En madurez fisiológica, los Ψ_h más negativos se encuentran en A-70 y BAT-1224, con una Cs alta, lo que permite una mayor Pn, lo cual implica que el mecanismo de resistencia a la sequía por cierre estomático no estaría operando, lo cual podría explicar su baja resistencia a la sequía. En los germoplasmas BAT-477 y Criolla San Juan hay una fuerte reducción de Cs lo cual indica un cierre estomático, con bajos Ψ_h, lo que impide la pérdida de agua, pero también hay fuerte reducción de la Pn.

Kanemasu y Tanner (1969), establecieron un rango entre -8 bars (-0.8 MPa) y -11 bars (-1.1 MPa), para el cierre estomático en Phaseolus vulgaris L., aunque se reconoce que muchos factores ambientales pueden alterar la respuesta. O'Toole et al (1977), establecieron en condiciones de invernadero, que la fotosíntesis neta y la transpiración de Phaseolus vulgaris L. comienzan a disminuir cuando el Ψ_h alcanza el rango de -0.3 a -5 bar y concluyeron que en condiciones de déficit hídrico crítico (<-10 bars), la apertura estomática es el factor que controla la fotosíntesis. Nosotros encontramos que, en general, la Pn disminuye por el déficit hídrico y que la floración, en estas condiciones es la etapa donde se visualiza mejor la relación Pn y Cs. El germoplasma San Cristóbal-83, es
el de mayor resistencia a la sequía, debido a su capacidad de respuesta al déficit hídrico mediante bajos Ψ_h y mediana conductancia estomática.

3) Correlación entre la tasa de fotosíntesis neta (Pn) y el rendimiento en grano (Y_G)

Los germoplasmas presentaron una clara relación entre Pn y el rendimiento en grano Y_G; bajo riego la Pn es alta (30-37 μmolCO$_2$.m$^{-2}$.s$^{-1}$) en los cinco germoplasmas siendo A-70 y BAT-477 los que presentan el mayor rendimiento en grano. En déficit hídrico encontramos que existe en la recta de regresión, un agrupamiento de los cinco germoplasmas en un rango entre 19-31 μmolCO$_2$.m$^{-2}$.s$^{-1}$ y un rendimiento en grano (Y_G) muy bajo, que alcanza su máximo en el germoplasma San Cristóbal-83, el cual se ha considerado como resistente a la sequía. El coeficiente de correlación Pn vs Y_G ($r=0.62$) para los cinco germoplasmas es mayor que el encontrado bajo déficit hídrico para un número similar de germoplasmas por Kueneman et al (1979), la cual fue de 0.58.

5.4 Conclusiones

1) De los germoplasmas de Phaseolus vulgaris L., analizados en la estación experimental del CIAT en Cali, Colombia, en el año 1994, encontramos que bajo un déficit hídrico de 60 días continuos, la respuesta agroecológica de resistencia a la sequía es variable. La floración y la madurez fisiológica, bajo déficit hídrico, se adelantan significativamente en Criolla San Juan y San Cristóbal-83.
2) La biomasa seca se reduce por efecto del déficit hídrico y está relacionada con la expresión de mecanismos de resistencia a la sequía. Siendo su reducción menor en aquellos germoplasmas que expresan estos mecanismos.

3) El germoplasma con mayor resistencia a la sequía fue San Cristóbal-83, el resto de los germoplasmas del CIAT, se presentan como de resistencia intermedia y Criolla San Juan presenta características de baja resistencia a la sequía. La resistencia parece ser un carácter que depende de las condiciones de crecimiento en Criolla San Juan.

4) De los germoplasmas de alta resistencia a la sequía, solo BAT-477 presenta, en general, una baja reducción de Cs, lo que explicaría su baja reducción de Pn. Los germoplasmas de baja resistencia a la sequía (A-70 y BAT-1224) presentan reducción media de Cs lo que implica también una reducción media de Pn, pero Criolla San Juan y San Cristóbal-83 con resistencia a la sequía media y alta, presentan una alta reducción de su Cs, con valores de Pn intermedios para Criolla San Juan y bajos para San Cristóbal-83.
5) En los cinco germoplasmas de *Phaseolus vulgaris* L bajo déficit hídrico, Pn disminuye respecto a los controles. De las tres etapas del ciclo fenológico, en la de floración es en la que mejor se visualiza la relación entre Pn y Cs. El germoplasma San Cristóbal-83 es más resistente a la sequía debido a sus bajos \(\Psi\)hoja, alto % de reducción de (Cs) y bajo % de reducción de Pn.

6) Los cinco germoplasmas evaluados bajo déficit hídrico muestran correlación positiva entre Pn y \(Y_G\).
CAPÍTULO 6

1. CONCLUSIONES GENERALES Y RECOMENDACIONES

De la evaluación de resistencia a la sequía, en cultivares de *Phaseolus vulgaris* L., en condiciones de invernadero y campo a través de los ensayos realizados durante los años 1991, 1992, 1993 y 1994, podemos sintetizar las siguientes conclusiones, establecidas a través de las respuestas agroecofisiológicas a la sequía, en los diferentes germoplasmas estudiados.

 a) Adelantos de la fecha de iniciación floral, de inicio de fructificación y de madurez fisiológica; se identifican como un mecanismo de escape a la sequía por rápido desarrollo fenológico y fueron identificados en los germoplasmas DOR-227, EXP-145 y Criolla San Juan.

 b) El aumento en altura de la planta, crecimiento de la raíz, hoja y tallo de los germoplasmas EXP-145, EMP-192 y DOR-227 bajo déficit hídrico, se identificó como un mecanismo de escape a la sequía por desarrollo de la plasticidad.

 c) El aumento en la profundidad radicular, por efecto del déficit hídrico, se identificó como un mecanismo de evasión a la sequía para el mantenimiento de la absorción de agua. Este mecanismo se expresa en los germoplasmas DOR-227, EXP-145 y Criolla San Juan (ver anexo 19).

2) El déficit hídrico aplicado en la etapa de pre-floración en ensayos de invernadero y campo (1991 y 1992), produjo cambios diferenciales en el rendimiento en grano; los germoplasmas menos afectados por el déficit hídrico fueron DOR-227, EXP-145 y Criolla San Juan. Por el contrario, los más afectados por el déficit hídrico fueron EMP-192 e ICA-PIJAO, pues presentan los % de reducción de \(Y_G\) mayores y los índices (S) más altos. Criolla San Juan, presenta una posición intermedia. La baja reducción del N° vainas/planta y del N° semillas/vaina en DOR-227, EXP-145 y Criolla San Juan serían agronómicamente responsables de que el rendimiento sea relativamente alto; mientras que la alta reducción de estos componentes en EMP-192 e ICA-PIJAO es la razón de su alta reducción en el rendimiento. En general, el componente peso de semilla fue el más constante y el que contribuyó en menor % a la disminución del rendimiento. Para los cinco germoplasmas bajo déficit hídrico, el IC de 4 de ellos (Criolla San Juan, EXP-145, EMP-192 e ICA-PIJAO), está por debajo de los controles y es inferior al rango de IC: (0.5-0.6) aceptado para la especie, lo que demuestra que el déficit hídrico afectó principalmente el rendimiento en grano \(Y_G\) (ver anexo 19).
3) Bajo déficit hídrico diferencial, por aplicación de cinco tratamientos hídricos, iniciados y mantenidos a través de diferentes etapas del ciclo fenológico; los germoplasmas presentan diferentes mecanismos de resistencia a la sequía, de acuerdo al tratamiento hídrico:

a) Incremento de la conductividad de agua para mantener la absorción (mecanismo de evasión a la sequía): Criolla San Juan en los tratamientos 1, 3 y 4, DOR-227 en los tratamientos 2 y 3; EMP-192 en los tratamientos 1 y 4 e ICA-PIJAO en los tratamientos 1 y 4.

b) Incremento del sistema radicular (mecanismo de evasión a la sequía), en EXP-145, EMP-192 e ICA-PIJAO del tratamiento hídrico 2.

4) La mayor reducción promedio del rendimiento en grano (Y_0) por efecto del déficit para cinco germoplasmas y en cinco tratamientos hídricos, se presentó en los tratamientos hídricos 3 y 4, donde el déficit hídrico se inició en las etapas de floración y formación de vainas 34 y 41 DDS. La reducción del rendimiento fue intermedia en los tratamientos hídricos, donde el déficit hídrico se inició entre la última etapa vegetativa y la prefloración (32.51% y 28.47%), respectivamente, para los cinco germoplasmas. El tratamiento hídrico con la menor reducción promedio del rendimiento en grano (Y_0), fue el tratamiento 5. Para los germoplasmas considerados de alta resistencia a la sequía (DOR-227 y EXP-145), la aplicación de un déficit hídrico severo y continuo y/o puntual, iniciado entre la última etapa de la fase vegetativa y la etapa de prefloración (20 DDS); solo causaría una reducción en el rendimiento de hasta un máximo de 20%. La aplicación de un déficit hídrico en la etapa de llenado de grano (48 DDS), solo causarían en estos germoplasmas un máximo de 10% de reducción del rendimiento. Los germoplasmas DOR-227 y EXP-145, se mantienen como los de mayor resistencia a la sequía, siendo EXP-145 el de mayor resistencia a la sequía (ver anexo 20).

5) El mecanismo de resistencia a la sequía del tipo escape; expresado por rápido desarrollo fenológico (acortamiento de la floración y aumento del desarrollo de la plasticidad), afectan la producción de los cultivos; al aumentar el rendimiento en (DOR-227, Criolla San Juan y EXP-145). Esto en contradicción de lo señalado por Turner (1978) y Jones et al (1981).

6) El índice de cosecha en déficit hídrico (IC)DH promedio de los cinco germoplasmas bajo los cinco tratamientos hídricos, están por encima del rango normal (0.5-0.6); según criterios del CIAT, White (1991). Los germoplasmas con (IC)DH mayores fueron en ambos tratamientos, aquellos que expresaron la mayoría de los mecanismos de resistencia a la sequía (DOR-227, EXP-145 y Criolla San Juan).

7) La variación del $\%N_T$ para cada germoplasma, en órganos y por planta, no presentó relación con el grado de resistencia a la sequía obtenido en las evaluaciones respectivas en los ensayos de invernadero (1991) y campo (1992). El $\%$ de N_T(semilla)
de los cinco germoplasmas presenta aumento respecto a los controles, existiendo diferencias mínimas significativas para todos los germoplasmas. Los germoplasmas EXP-145, Criolla San Juan y DOR-227, presentan bajo déficit hídrico los mayores aumentos de N\(_T\) (semilla), los cuales se identifican como resistentes a la sequía. Los germoplasmas con menor aumento en %N\(_T\) (semilla) fueron EMP-192 e ICA-PIJAO, los cuales se identifican como de baja resistencia a la sequía. Destaca un aumento de %Proteína (semilla) de los cinco germoplasmas bajo déficit hídrico. Los %Proteína (semilla) más altos se obtuvieron en Criolla San Juan, DOR-227 y EXP-145. Si tomamos la Δ%N\(_T\) de la semilla como indicador metabólico del efecto del déficit hídrico y lo relacionamos con la resistencia a la sequía, concluimos que la Δ%N\(_T\) (semilla) puede tomarse como marcador metabólico del efecto del déficit hídrico y de resistencia a la sequía en Phaseolus vulgaris L.

8) El déficit hídrico no afectó considerablemente la concentración de azúcares reductores en los órganos (raíz, tallo, hoja y semilla) y en la planta de los cinco germoplasmas. Para los azúcares no reductores, en promedio para los cinco germoplasmas, se observa un aumento en (raíz, tallo y planta) y una disminución en (hoja y semilla). Los azúcares totales, en promedio se observa un aumento para raíz, tallo y planta y una disminución para hoja y semilla. No hay relación entre la concentración de azúcares reductores, azúcares no reductores y azúcares totales y la resistencia a la sequía en los cinco germoplasmas evaluados.

9) Las expectativas sobre resistencia a la sequía de los germoplasmas producidos por el CIAT, no se cumplieron completamente puesto que de los germoplasmas considerados resistentes a la sequía; únicamente en San Cristóbal-83 el rendimiento fue poco afectado por el déficit hídrico, mientras que BAT-477 muestra rendimientos comparables a los presentados por los germoplasmas de baja resistencia a la sequía (A-70 y BAT-1224). El germoplasma regional venezolano (Criolla San Juan), mostró ser el más afectado por la sequía, al presentar el mayor % de reducción del rendimiento. Los índices de susceptibilidad a la sequía (S), concuerdan con los porcentajes de reducción del rendimiento y con el IC. Por lo tanto, desde el punto de vista agroecológico, San Cristóbal-83 es el de mayor resistencia a la sequía; BAT-477, A-70 y BAT-1224 presentan resistencia intermedia y Criolla San Juan baja resistencia a la sequía. La resistencia intermedia a la sequía, encontrada para Criolla San Juan, en los ensayos de campo de 1992 y 1993, lucen más como adaptaciones locales al clima árido y al tipo de suelo de San Juan de Lagunillas.

10)La respuesta fotosintética de los cinco germoplasmas, es diferente a través de las tres etapas fenológicas evaluadas. En prefioración (20 DDS y 0 DDH), al no existir déficit hídrico encontramos que (Pn) es similar para los cinco germoplasmas a través del curso diario. En floración (34 a 38 DDS y 12 a 16 DDH), el déficit hídrico reduce la (Pn) en general para los cinco germoplasmas. Los menores % de reducción de (Pn) a través del curso diario, corresponden a BAT-477 y San Cristóbal-83. En madurez
fisiológica, la respuesta fotosintética alcanza su menor nivel, tanto en controles como en déficit hídrico, debido a la senescencia foliar en los controles y el efecto combinado de la sequía (42-46 DDH) y la senescencia. Los máximos % de reducción en (Pn) se observan en BAT-477 y Criolla San Juan, siendo menores para el resto de los germoplasmas. Hay correspondencia de % de reducción de (Pn) y el % de reducción en (Cs) para BAT-477 y Criolla San Juan. Destaca el San Cristóbal-83 con valores negativos de % de reducción de (Pn) y (Cs), lo que demostraría que estando bajo 46 días de déficit hídrico sus estomas permanecerían todavía más abiertos que sus controles. En el ensayo encontramos que en general para los cinco germoplasmas evaluados bajo déficit hídrico, (Pn) es reducida respecto a los controles a través de las tres etapas y en los cursos diarios de cada etapa. De las tres etapas fenológicas evaluadas, es la de floración la que mejor visualiza la relación entre (Pn) y (Cs), siendo el germoplasma San Cristóbal-83, el que mejor muestra su resistencia a la sequía, avalando su capacidad de respuesta al déficit hídrico mediante sus bajos Y'hoja, alto % de reducción de (Cs) y bajo % de reducción de (Pn).

11) Se encontró una correlación positiva media (r=0.62) entre (Pn) y (Yₜₐₜ) entre los cinco germoplasmas de *Phaseolus vulgaris* L., bajo déficit hídrico y sus controles. En los germoplasmas bajo riego, encontramos que las (Pn) se agrupan entre (30-37 μmolCO₂.m⁻².s⁻¹) con (A-70 y BAT-477) los que presentan los mayores rendimientos, agrupándose en la parte superior de la recta de regresión. Bajo déficit hídrico encontramos que existe en la parte inferior de la recta de regresión, agrupamiento de los cinco germoplasmas en un rango entre (15-31 μmolCO₂.m⁻².s⁻¹) y rendimiento muy bajos, que alcanza su máximo para San Cristóbal-83, un germoplasma de alta resistencia a la sequía.
2. RECOMENACIONES

1) La posibilidad de que algunos genotipos de caraota negra sean capaces de evitar el déficit hídrico ya sea por conservar agua o por extraer una cantidad mayor de agua del suelo, debe ser investigada con mayor profundidad, para ello proponemos la realización de estudios que investiguen:

1.1) La correlación entre reducción de la temperatura del dosel, medida por termométria infrarroja y el rendimiento en sequía. Esto es posible, pues la disminución de la temperatura del dosel se debe a un enfriamiento por evaporación, esto a su vez refleja una mayor transpiración y mayor extracción de la humedad del suelo.

1.2) Los estudios agroecofisiológicos sobre resistencia a la sequía, deben hacer énfasis en dilucidar las diferencias en crecimiento radicular en núcleos de muestras de germoplasmas, previamente caracterizados como tolerantes y sensibles a la sequía. El mecanismo de aumento de crecimiento de la raíz fue concluyente para la evasión de la sequía en los suelos sueltos y fértiles del CIAT, pero la pregunta permanece, si una respuesta similar podría darse en suelos que posean más severas limitaciones al crecimiento de la raíz, que los encontrados en San Juan de Lagunillas, donde se expresó el mecanismo en algunos germoplasmas, pero no con la magnitud encontrada en el CIAT.

2) Debe investigarse en aquellos germoplasmas de Phaseolus vulgaris L que sean capaces de conservar la humedad a través de: a) movimiento de las hojas, b) efectos del tamaño de las hojas, c) reflectividad sobre la temperatura de la hoja, y d) comportamiento estomático; y que muestren capacidad de mantener la fotosíntesis con altos rendimientos bajo sequía. Recientes trabajos, usando discriminación de isótopos de CO₂ para evaluar la eficiencia en el uso del agua, indican la existencia de grandes diferencias en genotipos resistentes y sensibles a la sequía. La evaluación de parámetros del estado hídrico (Ψ, Ψπ, Ψp y %CRA) en forma comparativa con la discriminación de isótopos de CO₂, podría darnos herramientas para dilucidar los mecanismos de resistencia a la sequía que no sean enmarcados con respuestas a la sequía circunstanciales.

3) Debido a que la susceptibilidad a la sequía es un problema ecológico y fenotípico de gran magnitud en la reducción del rendimiento en leguminosas de grano como Phaseolus vulgaris L y que la complejidad de los efectos de la sequía ha demostrado que no pueden ser solucionados fácilmente y debido a que el problema de mejorar el rendimiento bajo sequía es complejo, proponemos que deban ser encaradas a gran escala a partir de dos vías: 1) Fijar, mediante programas de mejora genética, los mecanismos de resistencia a la sequía que se han probado y permitan mantener el rendimiento bajo sequía, y 2) probar técnicas y prácticas agronómicas que permitan sacar el mejor provecho de las líneas resistentes a la sequía, con un mejor manejo del agua para permitir una mayor eficiencia del uso del agua por el cultivar.
Los estudios sobre mecanismos individuales de resistencia a la sequía deben ser integrados en modelos de simulación, los cuales puedan predecir efectos sobre cambios en clima y tipos de suelos y que permitan evaluar la importancia de tres mecanismos fundamentales, ajuste osmótico, aumento del crecimiento de la raíz y aumento de la resistencia estomática a turgor total.
REFERENCIAS BIBLIOGRÁFICAS

FAO. 1973. Soil moisture and irrigation studies II. Proceedings of a panel held in Vienna organized by the Joint FAO/IAEA. Division of Atomic Energy in Food and Agriculture.

Ochoa, G. y D., Malagon (1979). Atlas de microscopía electrónica en suelos de Venezuela, Región de la Cordillera de Mérida (1000-3500 m.s.n.m.). p. 34. ULA-CIDIAI; Mérida, Venezuela. 40 p.

Salter, P.J. y J.E., Goode. (1967). Crop responses to water at different stages of growth commonwealth bureav of horticulture and plantation crops, East Malling, Mardstone, Kent.

227

ANEXOS
ANEXO 1: Resumen del análisis de varianza múltiple para los parámetros morfofenológicos de 10 germoplasmas de Phaseolus vulgaris L, sometidos a dos tratamientos hídricos *

<table>
<thead>
<tr>
<th>Fuente de Variación</th>
<th>Altura planta</th>
<th>Profundidad radicular</th>
<th>Área foliar</th>
<th>Peso raíz</th>
<th>Peso planta</th>
<th>Iniciación floral</th>
<th>Tallo Raíz</th>
<th>AFE</th>
<th>F_T</th>
<th>0.05</th>
<th>0.01</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modelo germoplasma</td>
<td>36.21*</td>
<td>87.44**</td>
<td>46.70*</td>
<td>649.91*</td>
<td>3008.74**</td>
<td>101.51**</td>
<td>553.93**</td>
<td>61.43*</td>
<td>1.70</td>
<td>2.11</td>
<td></td>
</tr>
<tr>
<td></td>
<td>67.45*</td>
<td>62.20**</td>
<td>61.99**</td>
<td>700.10**</td>
<td>2689.16**</td>
<td>150.78**</td>
<td>746.30**</td>
<td>83.36*</td>
<td>1.99</td>
<td>2.64</td>
<td></td>
</tr>
<tr>
<td>TH</td>
<td>0.03 (NS)</td>
<td>78.14**</td>
<td>186.48**</td>
<td>2452.38**</td>
<td>29175.49*</td>
<td>118.13**</td>
<td>548.32*</td>
<td>164.85*</td>
<td>3.96</td>
<td>6.96</td>
<td></td>
</tr>
<tr>
<td>GxTH</td>
<td>9.00*</td>
<td>113.71**</td>
<td>15.88**</td>
<td>399.94**</td>
<td>420.90**</td>
<td>50.40*</td>
<td>362.18**</td>
<td>27.51*</td>
<td>1.99</td>
<td>2.64</td>
<td></td>
</tr>
</tbody>
</table>

* (Riego y déficit hídrico), bajo condiciones de invernadero

ANEXO 2: Resumen de el análisis de varianza múltiple para componente del rendimiento y rendimiento en grano para el ensayo de invernadero

<table>
<thead>
<tr>
<th>Fuente de variación</th>
<th>Nº vainas planta</th>
<th>Nº semillas vaina</th>
<th>Peso seco \bar{X} (100 semillas)</th>
<th>Y_G g/plantas</th>
<th>F_T</th>
<th>0.05</th>
<th>0.01</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modelo germoplasma</td>
<td>1.49 (NS)</td>
<td>1.66 (NS)</td>
<td>2.32 (NS)</td>
<td>2.09 (NS)</td>
<td>3.24</td>
<td>5.29</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.20 (NS)</td>
<td>1.05 (NS)</td>
<td>1.25 (NS)</td>
<td>1.66 (NS)</td>
<td>3.24</td>
<td>5.29</td>
<td></td>
</tr>
<tr>
<td>TH</td>
<td>3.00 (NS)</td>
<td>2.98 (NS)</td>
<td>3.00 (NS)</td>
<td>3.00 (NS)</td>
<td>3.24</td>
<td>5.29</td>
<td></td>
</tr>
<tr>
<td>GxTH</td>
<td>1.66 (NS)</td>
<td>1.58 (NS)</td>
<td>1.66 (NS)</td>
<td>1.66 (NS)</td>
<td>3.24</td>
<td>5.29</td>
<td></td>
</tr>
</tbody>
</table>

ANEXO 3: Resumen para el análisis de varianza múltiple para inicio de floración y fructificación, altura de la planta y profundidad radicular para el ensayo de campo (1992)

<table>
<thead>
<tr>
<th>Fuente de variación</th>
<th>Inicio floración</th>
<th>Inicio fructificación</th>
<th>Altura planta</th>
<th>Profundidad radicular</th>
<th>F_T</th>
<th>0.05</th>
<th>0.01</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modelo</td>
<td>416.16**</td>
<td>263.77**</td>
<td>472.39**</td>
<td>492.08**</td>
<td>2.13</td>
<td>2.93</td>
<td></td>
</tr>
<tr>
<td>Repetición bloques</td>
<td>0.23 (NS)</td>
<td>3.7 (NS)</td>
<td>0.59 (NS)</td>
<td>0.54 (NS)</td>
<td>3.01</td>
<td>4.72</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13.49*</td>
<td>121**</td>
<td>825.63**</td>
<td>234.14**</td>
<td>4.26</td>
<td>7.82</td>
<td></td>
</tr>
<tr>
<td>TH</td>
<td>8.28**</td>
<td>436.28**</td>
<td>1473.42**</td>
<td>920.59**</td>
<td>2.78</td>
<td>4.22</td>
<td></td>
</tr>
<tr>
<td>Germoplasma</td>
<td>528.51**</td>
<td>514.34**</td>
<td>89.66**</td>
<td>865.38**</td>
<td>2.78</td>
<td>4.22</td>
<td></td>
</tr>
<tr>
<td>GxTH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ANEXO 4: Resumen para el análisis de varianza múltiple para componente del rendimiento y rendimiento en grano para el ensayo de campo (1992)

<table>
<thead>
<tr>
<th>Fuente de variación</th>
<th>Rendimiento YG, kg/ha</th>
<th>semillas</th>
<th>vainas</th>
<th>Peso semilla</th>
<th>FT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>vaina</td>
<td>planta</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modelo</td>
<td>4.47*</td>
<td>284.96**</td>
<td>125.25**</td>
<td>60.89**</td>
<td>1.96</td>
</tr>
<tr>
<td>Repetición TH</td>
<td>1.57 (NS)</td>
<td>2.33 (NS)</td>
<td>3.88* (NS)</td>
<td>1.78 (NS)</td>
<td>2.85</td>
</tr>
<tr>
<td>Germoplasma</td>
<td>3.16* (NS)</td>
<td>515.65**</td>
<td>311.78**</td>
<td>141.17**</td>
<td>2.62</td>
</tr>
<tr>
<td>GxTH</td>
<td>2.83 (NS)</td>
<td>188.68**</td>
<td>101.10**</td>
<td>38.42**</td>
<td>2.62</td>
</tr>
</tbody>
</table>

ANEXO 5: Análisis de varianza múltiple para (S) y % reducción del rendimiento en cinco germoplasmas de Phaseolus vulgaris L.

<table>
<thead>
<tr>
<th>Fuente de variación</th>
<th>Fc</th>
<th>FT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>“S”</td>
<td>%reducción del YG</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.05</td>
</tr>
<tr>
<td>Modelo</td>
<td>3.33</td>
<td>3.33</td>
</tr>
<tr>
<td>Repetición</td>
<td>0.83</td>
<td>0.83</td>
</tr>
<tr>
<td>Germoplasma</td>
<td>5.50</td>
<td>5.20</td>
</tr>
</tbody>
</table>

ANEXO 6: Análisis de varianza múltiple para el índice de cosecha (IC) en cinco germoplasmas de Phaseolus vulgaris L en el ensayo de campo (1992)

<table>
<thead>
<tr>
<th>Fuente de variación</th>
<th>Fc</th>
<th>FT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Índice de cosecha (IC)</td>
<td>0.05</td>
</tr>
<tr>
<td>Modelo</td>
<td>120.12**</td>
<td>9.28</td>
</tr>
<tr>
<td>Repetición TH</td>
<td>0.97</td>
<td>10.13</td>
</tr>
<tr>
<td>Germoplasma TH</td>
<td>952.44**</td>
<td></td>
</tr>
<tr>
<td></td>
<td>522.26**</td>
<td>2.78</td>
</tr>
<tr>
<td></td>
<td>167.71**</td>
<td>2.78</td>
</tr>
</tbody>
</table>
ANEXO 7: Pruebas de medias (Test de Duncan) entre control y déficit hídrico para %CRA_{hoja}; \Psi_h y \Psi_{suelo}, para la disminución relativa de esos parámetros entre las cosechas II y III, para 5 germoplasmas en 5 tratamientos hídricos. Ensayo de campo (1993)

Test de Duncan:
- a: DMS (p<0.05)
- b: DMS (p<0.01)
- c: No significativas

<table>
<thead>
<tr>
<th>Germoplasma</th>
<th>Th1</th>
<th>Th2</th>
<th>Th3</th>
<th>Th4</th>
<th>Th5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>% CRA</td>
<td>\Psi_h</td>
<td>\Psi_{suelo}</td>
<td>% CRA</td>
<td>\Psi_h</td>
</tr>
<tr>
<td>A: Criolla</td>
<td>a,b a</td>
<td>b, b C_{II}: a b, b C_{III}: a</td>
<td>c, a C_{II}: a b, b C_{III}: a</td>
<td>a, b a, b C_{II}: a b, b C_{III}: a</td>
<td>a, b a, b C_{II}: a b, b C_{III}: a</td>
</tr>
<tr>
<td>San Juan</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B: DOR-227</td>
<td>a,b c</td>
<td>C_{II}: a b, b C_{III}: a</td>
<td>a, b a, b C_{II}: a b, b C_{III}: a</td>
<td>a, b a, b C_{II}: a b, b C_{III}: a</td>
<td>c, a C_{II}: a b, b C_{III}: a</td>
</tr>
<tr>
<td>D: EXP-145</td>
<td>a,b c</td>
<td>C_{II}: a b, b C_{III}: a</td>
<td>a, b a, b C_{II}: a b, b C_{III}: a</td>
<td>c, a C_{II}: a b, b C_{III}: a</td>
<td>a,b a, b C_{II}: a b, b C_{III}: a</td>
</tr>
<tr>
<td>E: EMP-192</td>
<td>a,b a</td>
<td>C_{II}: a b, b C_{III}: a</td>
<td>a, b a, b C_{II}: a b, b C_{III}: a</td>
<td>a, b a, b C_{II}: a b, b C_{III}: a</td>
<td>a, b a, b C_{II}: a b, b C_{III}: a</td>
</tr>
<tr>
<td>H: ICA-PIJAO</td>
<td>a,b c</td>
<td>C_{II}: a b, b C_{III}: a</td>
<td>a, b a, b C_{II}: a b, b C_{III}: a</td>
<td>c, a C_{II}: a b, b C_{III}: a</td>
<td>a,b a, b C_{II}: a b, b C_{III}: a</td>
</tr>
</tbody>
</table>

ANEXO 8: Análisis de varianza múltiple para iniciación floral de 5 germoplasmas de Phaseolus vulgaris L., bajo sequía y riego

<table>
<thead>
<tr>
<th>Fuente de variación</th>
<th>Tratamiento hídrico aplicado</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Th1</td>
</tr>
<tr>
<td></td>
<td>Fc</td>
</tr>
<tr>
<td>Bloque (repetición)</td>
<td>0.5</td>
</tr>
<tr>
<td>Th</td>
<td>360</td>
</tr>
<tr>
<td>Germoplasma</td>
<td>22.70</td>
</tr>
<tr>
<td>G x Th</td>
<td>19.94</td>
</tr>
</tbody>
</table>

* No hay efecto del déficit hídrico sobre la floración, porque se aplicó después del inicio de la floración
ANEXO 9: Rendimiento en grano (Y_G), % de reducción del rendimiento e índice de susceptibilidad a la sequía de cinco germoplasmas de *Phaseolus vulgaris* L bajo cinco tratamientos hídricos (valores promedios para tres repeticiones y cinco germoplasmas

Y_{GDH} = rendimiento en déficit hídrico (sequía), kg/ha; Y_{GR} = rendimiento en riego (riego), kg/ha

S = Índice de susceptibilidad a la sequía

<table>
<thead>
<tr>
<th>Germoplasma Evaluado</th>
<th>TH1</th>
<th>TH2</th>
<th>TH3</th>
<th>TH4</th>
<th>TH5</th>
</tr>
</thead>
<tbody>
<tr>
<td>“A” Vr Criolla San Juan</td>
<td>583.5 ab</td>
<td>1442.29</td>
<td>858.44%</td>
<td>59.37%</td>
<td>1.56</td>
</tr>
<tr>
<td>“B” Hr DOR-227</td>
<td>1040.99 ab</td>
<td>1303.24</td>
<td>262.24%</td>
<td>20.07%</td>
<td>0.26</td>
</tr>
<tr>
<td>“D” Hr EXP-145</td>
<td>1067.20 ab</td>
<td>1293.83</td>
<td>226.62%</td>
<td>17.45%</td>
<td>0.22</td>
</tr>
<tr>
<td>“E” Hr EMP-192</td>
<td>809.67 ab</td>
<td>1390.77</td>
<td>581.10%</td>
<td>41.76%</td>
<td>0.79</td>
</tr>
<tr>
<td>“H” Hr ICA-PUAO</td>
<td>1022.18 ab</td>
<td>1348.45</td>
<td>326.27%</td>
<td>23.92%</td>
<td>0.33</td>
</tr>
<tr>
<td>X_50*</td>
<td>904.77 ab</td>
<td>1355.71</td>
<td>450.93%</td>
<td>35.51%</td>
<td>0.63</td>
</tr>
</tbody>
</table>

Entre control y déficit hídrico

a = DMS (p<0.05)
b = DMS (p<0.01)
c = NS

Mediante test de Duncan

(a y b): Rendimiento → reducción por déficit hídrico respecto al control
c: Rendimiento → reducción no significativa
ANEXO 10: Análisis de varianza del rendimiento en grano (Yₜ) para cinco germoplasmas de *Phaseolus vulgaris* L, bajo cinco tratamientos hídricos.

<table>
<thead>
<tr>
<th>Fuente de variación</th>
<th>TH1</th>
<th>TH2</th>
<th>TH3</th>
<th>TH4</th>
<th>TH5</th>
<th>Fₜ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bloques (repeticiones)</td>
<td>2.99(NS)</td>
<td>3.74(NS)</td>
<td>3.59(NS)</td>
<td>1.95(NS)</td>
<td>19.46*(NS)</td>
<td>19.46*(NS)</td>
</tr>
<tr>
<td>TH(DH+C)</td>
<td>527.03**</td>
<td>495.86**</td>
<td>741.01**</td>
<td>152.63**</td>
<td>41.36*</td>
<td>41.36*</td>
</tr>
<tr>
<td>Germoplasma</td>
<td>3.67*(NS)</td>
<td>3.76*(NS)</td>
<td>1.07(NS)</td>
<td>1.33(NS)</td>
<td>67.39*</td>
<td>67.39*</td>
</tr>
<tr>
<td>TH x Germoplasma</td>
<td>11.89*</td>
<td>9.94*</td>
<td>1.48(NS)</td>
<td>1.22(NS)</td>
<td>68.46*</td>
<td>68.46*</td>
</tr>
<tr>
<td>TH1 = DH (64 DDH, 84 DDS) + C(0 DDH, 84 DDS): i_DH = 20 DDS; Última E(FV)y primera E(FR)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TH2 = DH (56 DDH, 84 DDS) + C(0 DDH, 84 DDS): i_DH = 27 DDS; Prefloración</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TH3 = DH (49 DDH, 84 DDS) + C(0 DDH, 84 DDS): i_DH = 34 DDS; Floración</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TH4 = DH (42 DDH, 84 DDS) + C(0 DDH, 84 DDS): i_DH = 41 DDS; Formación de vainas</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TH5 = DH (35 DDH, 84 DDS) + C(0 DDH, 84 DDS): i_DH = 48 DDS; Llenado de vainas</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ANEXO 11: Resumen del análisis de varianza del índice de cosecha (IC) para cinco tratamientos hídricos (particularizados) para cinco germoplasmas de *Phaseolus vulgaris* L

<table>
<thead>
<tr>
<th>Fuente de variación</th>
<th>TH1</th>
<th>TH2</th>
<th>TH3</th>
<th>TH4</th>
<th>TH5</th>
<th>Fₜ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bloques (repeticiones)</td>
<td>0.1(NS)</td>
<td>14.29*(NS)</td>
<td>2.5(NS)</td>
<td>0.018(NS)</td>
<td>1.42(NS)</td>
<td>1.42(NS)</td>
</tr>
<tr>
<td>TH(DH+C)</td>
<td>116**</td>
<td>1014.28**</td>
<td>550**</td>
<td>136.72**</td>
<td>685.71**</td>
<td>685.71**</td>
</tr>
<tr>
<td>Germoplasma</td>
<td>191.25**</td>
<td>353.33**</td>
<td>300**</td>
<td>3118.88**</td>
<td>18.33*</td>
<td>18.33*</td>
</tr>
<tr>
<td>TH x Germoplasma</td>
<td>0.375(NS)</td>
<td>365**</td>
<td>28.33*</td>
<td>388.85**</td>
<td>52.97*</td>
<td>52.97*</td>
</tr>
<tr>
<td>TH1 = DH (64 DDH, 84 DDS) + C(0 DDH, 84 DDS): i_DH = 20 DDS; Última E(FV)y primera E(FR)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TH2 = DH (56 DDH, 84 DDS) + C(0 DDH, 84 DDS): i_DH = 27 DDS; Prefloración</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TH3 = DH (49 DDH, 84 DDS) + C(0 DDH, 84 DDS): i_DH = 34 DDS; Floración</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TH4 = DH (42 DDH, 84 DDS) + C(0 DDH, 84 DDS): i_DH = 41 DDS; Formación de vainas</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TH5 = DH (35 DDH, 84 DDS) + C(0 DDH, 84 DDS): i_DH = 48 DDS; Llenado de vainas</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ANEXO 12: Análisis de varianza múltiple del contenido en %N$_{T}$ (mg/100mg) para (raíz, tallo, hoja, semilla y planta) y % proteína (semilla) en cinco germoplasmas de Phaseolus vulgaris L., sometidos a dos tratamientos hídricos de riego y sequía

<table>
<thead>
<tr>
<th>Fuente de Variación</th>
<th>%N$_{T}$ Raíz</th>
<th>%N$_{T}$ Tallo</th>
<th>%N$_{T}$ Hoja</th>
<th>%N$_{T}$ Semilla</th>
<th>%N$_{T}$ Planta</th>
<th>% Proteína (semilla)</th>
<th>F$_{T}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bloques TH</td>
<td>3.97 (NS)</td>
<td>1.24 (NS)</td>
<td>3.32 (NS)</td>
<td>4.83 (NS)</td>
<td>10.0*(NS)</td>
<td>4.48 (NS)</td>
<td>9.28</td>
</tr>
<tr>
<td></td>
<td>2.15 (NS)</td>
<td>0.77 (NS)</td>
<td>5.99 (NS)</td>
<td>178.86**</td>
<td>4103.5**</td>
<td>100.32**</td>
<td>10.13</td>
</tr>
<tr>
<td>Germoplasma Gx(TH)</td>
<td>4.49*</td>
<td>12.50*</td>
<td>40.62**</td>
<td>148.25**</td>
<td>50520**</td>
<td>54.85**</td>
<td>2.78</td>
</tr>
<tr>
<td></td>
<td>5.52*</td>
<td>5.08*</td>
<td>29.95**</td>
<td>9.25*</td>
<td>6414.4**</td>
<td>32.57**</td>
<td>2.78</td>
</tr>
</tbody>
</table>

ANEXO 13: Análisis de varianza múltiple del contenido en azúcares reductores (mg/gPS) para raíz, tallo, hoja y semilla en cinco germoplasmas de Phaseolus vulgaris L., sometidos a dos tratamientos hídricos de riego y sequía

<table>
<thead>
<tr>
<th>Fuente de Variación</th>
<th>AR (mg/gPS) Raíz</th>
<th>AR (mg/gPS) Tallo</th>
<th>AR (mg/gPS) Hoja</th>
<th>AR (mg/gPS) Semilla</th>
<th>F$_{T}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bloques TH</td>
<td>4.88 (NS)</td>
<td>0.0008 (NS)</td>
<td>8.39 (NS)</td>
<td>4.44 (NS)</td>
<td>9.28</td>
</tr>
<tr>
<td></td>
<td>0.033 (NS)</td>
<td>0.001 (NS)</td>
<td>12.01* (NS)</td>
<td>0.23 (NS)</td>
<td>10.13</td>
</tr>
<tr>
<td>Germoplasmas Gx(TH)</td>
<td>4.06 (NS)</td>
<td>4.49*</td>
<td>3.76* (NS)</td>
<td>6.58*</td>
<td>2.78</td>
</tr>
<tr>
<td></td>
<td>0.86 (NS)</td>
<td>2.19 (NS)</td>
<td>2.36 (NS)</td>
<td>0.58 (NS)</td>
<td>2.78</td>
</tr>
</tbody>
</table>

ANEXO 14: Análisis de varianza múltiple del contenido en azúcares no reductores (mg/gPS) para raíz, tallo, hoja y semilla en cinco germoplasmas de Phaseolus vulgaris L., sometidos a dos tratamientos hídricos de riego y sequía

<table>
<thead>
<tr>
<th>Fuente de Variación</th>
<th>ANR (mg/gPS) Raíz</th>
<th>ANR (mg/gPS) Tallo</th>
<th>ANR (mg/gPS) Hoja</th>
<th>ANR (mg/gPS) Semilla</th>
<th>F$_{T}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bloques TH</td>
<td>0.12 (NS)</td>
<td>4.04 (NS)</td>
<td>0.26 (NS)</td>
<td>2.56 (NS)</td>
<td>9.28</td>
</tr>
<tr>
<td></td>
<td>37.38*</td>
<td>3.31 (NS)</td>
<td>0.046 (NS)</td>
<td>38.81*</td>
<td>10.13</td>
</tr>
<tr>
<td>Germoplasmas Gx(TH)</td>
<td>7.66 (NS)</td>
<td>4.24*</td>
<td>2.57 (NS)</td>
<td>143.93**</td>
<td>2.78</td>
</tr>
<tr>
<td></td>
<td>2.17 (NS)</td>
<td>14.18*</td>
<td>1.31 (NS)</td>
<td>194.81**</td>
<td>2.78</td>
</tr>
</tbody>
</table>
ANEXO 15: Análisis de varianza múltiple del contenido en azúcares totales (mg/gPS) para raíz, tallo, hoja y semilla en cinco germoplasmas de *Phaseolus vulgaris* L, sometidos a dos tratamientos hídricos de riego y sequía.

<table>
<thead>
<tr>
<th>Fuente de Variación</th>
<th>Fc AT (mg/gPS)</th>
<th>Fc AT (mg/gPS)</th>
<th>Fc AT (mg/gPS)</th>
<th>Fc AR (mg/gPS)</th>
<th>Ft</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Raíz</td>
<td>Tallo</td>
<td>Hoja</td>
<td>Semilla</td>
<td></td>
</tr>
<tr>
<td>Bloques TH</td>
<td>1.93 (NS)</td>
<td>4.37 (NS)</td>
<td>0.084 (NS)</td>
<td>6.23 (NS)</td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td>18.96* (NS)</td>
<td>3.42 (NS)</td>
<td>0.20 (NS)</td>
<td>6.76**</td>
<td>0.01</td>
</tr>
<tr>
<td>Germoplasmas Gx(TH)</td>
<td>8.25 *</td>
<td>2.97* (NS)</td>
<td>2.27 (NS)</td>
<td>11.68**</td>
<td>9.28</td>
</tr>
<tr>
<td></td>
<td>1.28 (NS)</td>
<td>11.04*</td>
<td>2.70 (NS)</td>
<td>0.63 (NS)</td>
<td>10.13</td>
</tr>
</tbody>
</table>

ANEXO 16: Análisis de varianza múltiple para productividad de biomasa seca, rendimiento en grano e índice de cosecha para cinco germoplasmas de *Phaseolus vulgaris* L bajo riego y sequía.

<table>
<thead>
<tr>
<th>Variación</th>
<th>Fc Productividad BS Kg/ha (P)</th>
<th>Fc Rendimiento en grano Kg/ha (Yg)</th>
<th>IC:Yg/P</th>
<th>Ft</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bloque (repeticiones)</td>
<td>1.43 (NS)</td>
<td>0.99 (NS)</td>
<td>6.5 (NS)</td>
<td>0.05</td>
</tr>
<tr>
<td>T.h</td>
<td>69.14 **</td>
<td>0.58</td>
<td>62.5 **</td>
<td>0.01</td>
</tr>
<tr>
<td>Germoplasmas</td>
<td>5.14 *</td>
<td>3.74 *</td>
<td>0.72 (NS)</td>
<td>2.78</td>
</tr>
<tr>
<td>Th x G</td>
<td>1.04 (NS)</td>
<td>3.75 *</td>
<td>3.54 *</td>
<td>4.22</td>
</tr>
</tbody>
</table>
ANEXO 17: Mecanismos de resistencia a la sequía identificados en el Ensayo de Invernadero y germoplasmas que los expresan

<table>
<thead>
<tr>
<th>TIPO DE MECANISMO DE RESISTENCIA A LA SEQUÍA</th>
<th>EXPRESIÓN DEL MECANISMO DE RESISTENCIA A LA SEQUÍA</th>
<th>GERMOPLASMA QUE EXPRESA EL MRS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) Escape a la sequía</td>
<td>1.1) Rápido desarrollo Tecnológico por acortamiento de tiempo de floración</td>
<td>DOR-227 EXP-145 EMP-192 Criolla S.J.</td>
</tr>
<tr>
<td></td>
<td>1.2) Aumento del desarrollo de la plasticidad</td>
<td>Criolla S.J. EXP-145 DOR-227</td>
</tr>
<tr>
<td></td>
<td>a) Aumento (R<sub>DH</sub>) Raíz</td>
<td></td>
</tr>
<tr>
<td></td>
<td>b) Aumento (R<sub>DH</sub>) Hoja</td>
<td></td>
</tr>
<tr>
<td></td>
<td>c) Aumento (R<sub>OH</sub>) Tallo</td>
<td>EXP-145</td>
</tr>
<tr>
<td>2) Tolerancia a la sequía a altos potenciales hídricos (Evasión a la sequía)</td>
<td>2.1) Mantenimiento de la absorción radicular por: disminución de la relación (Vástago/Raíz): Por aumento del crecimiento de la raíz</td>
<td>DOR-227</td>
</tr>
<tr>
<td></td>
<td>2.2) Reducción de la pérdida de agua por: Reducción del área foliar</td>
<td>DOR-227 EXP-145 Criolla S.J.</td>
</tr>
</tbody>
</table>
ANEXO 18: Grupos de Germoplasmas según criterios de variación del rendimiento; N° MRS e índice (S) en el Ensayo de Invernadero

| Nº Grupo de Germoplasmas | Tipo Fenológico del grupo | 1) Variación del rendimiento
2) Mecanismos de resistencia a la sequía
3) Índice (S) |
|--------------------------|--------------------------|--|
| **GRUPO 1: Resistentes a la sequía** | CL - FID/Find-AR-ARS (EXP-145)
CL - FD/Find-AR-ARS
* Regional (Criolla S.J.) | Criolla S.J.: (1) Alto bajo sequía
(2) 3 mecanismos
(2) Bajo(S)
EXP-145: (1) Intermedio bajo sequía
(2) 3 mecanismos
(3) Altos(S) |
| **GRUPO 2: Baja resistencia a la sequía** | CL-FID/Find-AR-ARS (ICA-PIJAO)
(EMP-192) | ICA-PIJAO: (1) Bajo en sequía
(2) No se expresan mecanismos
(3) Altos(S)
EMP-192: (1) Bajo en sequía
(2) 1 mecanismo
(3) Alto (S) |
| **GRUPO 3: Resistencia intermedia a la sequía** | CC-FD-AR-ARS | DOR-227: (1) Intermedio
(2) 3 mecanismos
(3) Alto(S) |
ANEXO 19: Grupos germoplasmas según criterios de variación del rendimiento N° MRS e índice de (S) en el ensayo de campo (1992)

<table>
<thead>
<tr>
<th>N° Grupo de Germoplasmas</th>
<th>Tipo Fenológico del Grupo</th>
<th>Germoplasmas pertenecientes al Grupo</th>
<th>1) Floración</th>
<th>2) % de reducción del rendimiento</th>
<th>3) Índice(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grupo 1</td>
<td>CL-FID/Find-AR-ARS</td>
<td>ICA-PIJAO EMP-192 (Baja resistencia)</td>
<td>Retraso en la floración mantiene longitud del ciclo FID</td>
<td>% reducción del rendimiento Alto</td>
<td>Alto índice(S)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EXP-145</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grupo 2</td>
<td>CC-FD-AR-ARS</td>
<td>DOR-227 (Alta resistencia)</td>
<td>Acorta la longitud del ciclo, pero se mantiene en floración determinada</td>
<td>% reducción del rendimiento</td>
<td>Bajo índice(S)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grupo 3</td>
<td>CL-FID/Find-AR-ARS * Regional</td>
<td>Criolla San Juan (Resistencia Intermedia)</td>
<td>Acorta floración pasa a floración determinada</td>
<td>% reducción del rendimiento intermedio</td>
<td>Índice(S): intermedio</td>
</tr>
</tbody>
</table>
ANEXO 20: Mecanismos de resistencia a la sequía, expresión del mecanismo y germoplasma y tratamiento donde se expresa el mecanismo en el ensayo de campo (1993)

<table>
<thead>
<tr>
<th>Mecanismos de Resistencia a la sequía</th>
<th>Expresión del mecanismo de resistencia a la sequía</th>
<th>Germoplasma y tratamiento hídrico donde se expresa el mecanismo</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) Escape a la sequía</td>
<td>Rápido desarrollo fenológico por adelante de la oración</td>
<td>Todos los germoplasmas (mayores adelantos en DOR-227 y EXP-145): TH₁</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Todos los germoplasmas: TH₂ DOR-227 y EXP-145: TH₃</td>
</tr>
<tr>
<td>2) Evasión a la sequía</td>
<td>2.1) Mantenimiento de la absorción de agua</td>
<td>Criolla S.J.: Th (1, 3 y 4) DOR-227: Th (1 y 4) EMP-192: Th (2 y 3) ICA-PIJAO: Th (2 y 3)</td>
</tr>
<tr>
<td></td>
<td>a) Por incremento de la conductividad</td>
<td>DOR-227: Th (1) EXP-145 EMP-192 ICA-PIJAO } Th (2)</td>
</tr>
<tr>
<td></td>
<td>b) Incremento del sistema radicular</td>
<td></td>
</tr>
<tr>
<td>2.2) Reducción de la pérdida de agua por: reducción del área foliar</td>
<td>Todas los germoplasmas en todos los tratamientos</td>
<td></td>
</tr>
</tbody>
</table>