CAMBIOS EN LA COMPOSICIÓN DE LOS ÁCIDOS GRASOS DE LA PULPA DE SARDINA (Sardinella aurita) LAVADA CON UNA SOLUCIÓN DE BICARBONATO DE SODIO al 0,5%

Change in Fatty Acids Compositions of Sardine Mince Flesh (Sardinella aurita) Washed with 0,5% of Sodium Bicarbonate Solution

Marinela Barrero y Rafael Bello

Instituto de Ciencia y Tecnología de Alimentos, Escuela de Biología, Facultad de Ciencias, Universidad Central de Venezuela, Apartado 47097. Caracas, Venezuela. E-mail: barrerom@buho.ciens.ucv.ve

RESUMEN

Los cambios en los lípidos del pescado son un parámetro muy importante a estudiar, pues sus ácidos grasos son altamente insaturados, haciéndose susceptibles al ataque por el oxígeno, produciendo rancidez y reduciendo el período de almacenamiento y aceptabilidad de los productos elaborados a partir de esta materia prima. En la pulpa de pescado, estos cambios se hacen más significativos debido a la mayor exposición al oxígeno. Con el lavado se reducen los componentes deteriorativos como son los pigmentos hemo, bases nitrogenadas y lípidos, aumentando el tiempo de anaquele de los productos elaborados a base de pulpa de pescado. El objetivo de este estudio fue, evaluar los cambios en la composición de los ácidos grasos de la pulpa de sardina sometida al tratamiento de lavado con una solución de bicarbonato de sodio al 0,5%. Los análisis mostraron una disminución del contenido de lípidos desde 6,74 en la materia prima, hasta 0,99%, en la pulpa lavada tres veces. La mayor eliminación de ácidos grasos saturados, monoinsaturados y poliinsaturados se presentó en la fracción de ácidos grasos libres, así como en los ácidos grasos poliinsaturados de la fracción de triglicéridos. Los resultados sugieren que el lavado de la pulpa de sardina con una solución de NaHCO₃ al 0,5% puede ser favorable en la disminución de los lípidos y las condiciones utilizadas en este estudio pueden servir para evaluar el comportamiento de los lípidos remanentes, durante el almacenamiento a bajas temperaturas.

Palabras clave: Sardina, pulpa lavada, lípidos, fosfolípidos, trigliceridos.

INTRODUCCIÓN

La sardina (Sardinella aurita) es una especie pelágico costera perteneciente a la familia Clupeidae, una fuente principal de materia prima para la elaboración de conservas y la producción de harina de pescado [16]. Para el año 1995 su
cognac el tiempo de agitación de la pulpa a lavar y consecuentemente de la cantidad de proteína extraída; por lo que una excesiva agitación y largo tiempo de lavado resulta una pulpa muy hidratada, dificultando la remoción de agua en el prensado, siendo las relaciones pulpa-agua 1:3 y 1:4 las más adecuadas y económicas. Roussel y Cheffel [23] caracterizaron el surimi y kamaboko de sardinas, determinando que tres lavados son suficientes para la remoción de proteínas solubles y 80% de los lípidos contenidos originalmente en la pulpa, mejorando así la textura y color de las pastas obtenidas.

En especies de músculo blanco como el Abadejo de Alaska, un simple lavado con agua sirve para obtener pulpas lavadas de buena calidad y colores claros, sin embargo en las especies pelágicas se deben usar soluciones salinas que ayuden a eliminar los pigmentos y lípidos contenidos en ellas. Katoh y col. [10] estudiaron la eficiencia del lavado de pulpa de sardina en estado de rigor mortis con una solución de bicarbonato de sodio y ajustando el pH, concluyendo que la textura en la preparación de productos como surimi, mejora en un 64%. Así mismo Lanier [13], estudió la composición del surimi de mero, encontrando que el lavado en una relación 3:1 agua-pulpa, reduce el 40.6% de los lípidos y el 77.4% de las cenizas contenidas originalmente en el pescado. Así también Bastidas [5] realizó lavados a la pulpa de sardina, obteniendo un efectivo lavado con soluciones de bicarbonato de sodio en cuanto a la disminución del contenido de grasa y un máximo de retención de agua de las proteínas miofibrilares lavando con cloruro de sodio.

Recientemente, Undeland y col. [28] señalaron que los métodos para estabilizar la pulpa de pescado están basados en: la remoción de pro-oxidantes, oxígeno o componentes susceptibles a la oxidación; alteración de pro-oxidantes, antioxidantes u otros componentes que influyen en la oxidación; o la adición de componentes que protejan la oxidación de los lípidos en la pulpa de sardina. El lavado de la pulpa de sardina ayuda a remover varios componentes que influyen en la estabilidad oxidativa, como son los pro-oxidantes acuosos, pigmentos y grasas.

Con respecto a la composición de los lípidos en pescado, Bandarra y col. [4] señalaron que, los lípidos estructurales (fosfolípidos), tienden a ser constantes o más insaturados que los lípidos neutrales cumpliendo una función importante y de estructura en las biomembranas. El triacilglicerol, constituyente principal de los lípidos neutrales, puede presentar cambios acentuados según la dieta y el estado fisiológico del pez. El contenido de fosfolípidos depende del balance entre la posición 2 del ácido graso poli-insaturado y la posición 1 del monoinsaturado o saturado. Por la cual, los ácidos grasos poli-insaturados (AGPI) son esenciales como un elemento estructural en el pescado [4, 29].

Castrillón y col. [6] evaluaron el efecto de diferentes procesamientos sobre los ácidos grasos de la sardina (Clupea pilchardus), encontrando que ésta posee un alto contenido de ácidos grasos saturados y monoinsaturados como el C16:0,
C18:1,(n-9), C22:5,(n-3) y C22:6,(n-3) y, que los porcentajes de AGPI son mayores que los porcentajes de saturados y el doble que los monoisaturados, encontrando asimismo que la relación ácidos grasos poliinsaturados/saturados AGPI(n-3)/AGS(n-6) fue 4:1, lo que indica la excelente calidad nutricional de los lípidos en la materia prima.

El objetivo del presente estudio fue evaluar la composición de los ácidos grasos en las diferentes fracciones como son los fosfolípidos, triglicéridos y ácidos grasos libres de la pulpa de sardina (Sardinella aurita) cuando es sometida al tratamiento de lavado con una solución de NaHCO₃ al 0,5%.

MATERIALES Y MÉTODOS

Materia prima

Para la realización de este trabajo se utilizaron sardinas (Sardinella aurita), obtenidas en los caladeros de sardinas en Cumaná, Edo. Sucre, y trasladadas al Instituto de Ciencia y Tecnología de Alimentos Universidad Central de Venezuela, Caracas, en cavas con suficiente hielo.

Obtención de la pulpa

El proceso para la obtención de la pulpa de sardina se muestra en el diagrama de flujo anexo, FIG. 1.

Una vez en el Instituto, las sardinas se lavaron con abundante agua, para la eliminación de contaminantes del medio. Luego se les eliminó la cabeza y las vísceras realizándose un corte a nivel ventral. Se lavaron de nuevo con abundante agua para eliminar restos de vísceras y otros contaminantes y, fueron colocadas en cavas con hielo.

Para obtener la pulpa, fueron pasadas por la deshuesadora mecánica marca Yanagiyama tipo S, obteniéndose por un lado los desechos (piel y espina) y por otro, la pulpa.

Lavado de la pulpa de sardina

Luego de obtener la pulpa, se realizó el tratamiento de lavado con una solución de bicarbonato de sodio 0,06 M ó 0,5%. Fue colocada en un recipiente de acero inoxidable, con sólo el 0,5% previamente enfriada entre 0-4°C, según metodología propuesta por Flick y col [8]. La relación pulpa-solución fue 1:5. Se realizaron tres (3) lavados en cada experiencia, agitándose la mezcla cada vez durante 5 min, luego se dejó sedentar otros 5 min y se decantó la solución. Al final del lavado, la pulpa se centrífugó a 2000 rpm por 15 min a 5°C en una centrífuga marca Sorvall. Finalmente, la pulpa lavada y el líquido fueron colocados en bolsas plásticas, congeladas a -30°C y almacenadas a -40°C hasta el momento de su análisis.

Métodos analíticos

La determinación de humedad, cenizas, proteína, grasa, se realizó según los métodos reportados por la Association of Official Analytical Chemists (A.O.A.C) [1].

![FIGURA 1. DIAGRAMA DE FLUJO DEL PROCESO PARA LA PRODUCCIÓN DE PULPA DE SARDINA (Sardinella aurita) LAVADA CON NaHCO₃ al 0,5%](image.png)

pH: Según el método propuesto por Nontrapip y col. [19] utilizando un potenciómetro marca HANNA Instruments modelo 8417 y una relación 1:5 pulpa-agua destilada.

Ranciedad oxidativa: Determinando malonaldehído según el método de destilación de Tarladgis y col. [27], modificado por Rhee [22], añadiendo EDTA y Propilgalato al 0,5%. La absorbancia se midió en un espectrofotómetro marca Spectro modelo 22RS, a una longitud de onda de 538 nm. Los resultados son expresados como miligramos de malonaldehído por kilogramos de muestra.

Color: Según el método propuesto por Roussel y Cheftel [23], por medio de un colorímetro Macbeth modelo color-eye 2445, usando una placa estándar y midiendo los parámetros L (luminosidad, claro/oscuro), a (relación rojo/verde) y b (relación amarillo/azul).

Perfil de ácidos grasos de los lípidos (fosfolípidos, triglicéridos): Este análisis se realizó en el Instituto de Medici-
nan Experimental, Universidad Central de Venezuela con la metodología aplicada en la Sección de Lipidología.

Se extrajeron los lípidos totales del músculo de pescado empleando una relación pulpa-cloroformo-metanol de 1:6:3 (p:v:v), según método de Folch y col. [9]. A una alicuota de 1 ml de la fase clorofómica, se le realizó cromatografía de capa fina contra un standard para separar los fosfolípidos, triglicéridos y ácidos grasos libres. Los fosfolípidos y triglicéridos se transesterificaron a ésteres metílicos de ácidos grasos mediante calentamiento a 80°C en reflujo por 1 hora, con una mezcla de 5 ml de metanol:tolueno:H2SO4 en relación 80:10:5 (v:v:v) según el método de Stahl [26].

Los ésteres metílicos obtenidos se analizaron por cromatografía de gases usando un cromatógrafo de gases Hewlett-Packard, modelo 5880-A. La fase móvil fue nitrógeno gaseoso, la temperatura del horno 200°C en condiciones isotérmicas; la temperatura del detector y el inyector fue de 250°C. Para la cuantificación de los diferentes ácidos grasos se usó como estándar el ácido heptanoico (C7H14O2) de SIGMA Chem. Co. en 1,5 µl/ml, antes de la esterificación.

Análisis estadístico: Se realizó mediante el programa gsp. Al promedio de cuatro muestras con sus respectivas desviaciones standar se le realizó un ANOVA de una vía con un nivel de significancia de P<0,05 %.

RESULTADOS Y DISCUSIÓN

Evaluación del lavado por análisis próximo

En la TABLA I se muestran los resultados del análisis físico y químico de la materia prima y la pulpa lavada con una solución de NaHCO3 al 0,5%.

En cuanto a los valores de humedad, se observa que el lavado aumenta el porcentaje de humedad de la pulpa lavada, esto puede ser debido al proceso de absorción de agua por las proteínas (mioglobínicas) señalado por Adu y col. [2] quienes indican que la pulpa absorbe agua hasta niveles de saturación y que el agua forma puentes de hidrógeno con las proteínas, lo que explica que ciertos sólidos sean removidos durante el lavado haciendo que el peso final de la carne lavada sea hasta un 48% superior al peso inicial de la pulpa de pescado. Roussel y Chénet [23] reportaron un aumento de humedad desde 74% hasta 81% en pulpas lavadas con bicarbonato de sodio 0,5%, también Babbitt [3] reportó un aumento de humedad del orden de 7,6% siendo los valores de 81,76% y 88,01% para pulpa de abadejo de Alaska sin lavar y lavada respectivamente.

El lavado de la pulpa de sardina con bicarbonato de sodio reduce también las cenizas (6,78% y 3,89% respectivamente). Esto puede ser debido a la reducción de cenizas de la pulpa (espines, escamas y otros minerales).

El proceso de lavado produce una pérdida de proteínas pertenecientes a la fracción hidrosoluble desde 13,95% hasta 11,97%, coincidiendo con lo señalado por Adu y col. [2], quienes encontraron que hubo una pérdida significativa de proteína con una relación pescado:agua de 1:4 y 5 minutos de agitación, señalando que esta disminución fue debida a un aumento en la retención de agua y pérdida de otros compuestos durante el proceso de lavado.

El contenido de grasa disminuye a medida que aumenta el número de lavados desde 6,74% hasta 0,99%. Esta se elimina por medio del efecto de arrastre del agua del lavado coincidiendo con lo reportado por Susuki [25] quien señaló que el lavado con agua es efectivo para la remoción de grasa de especies pelágicas como la sardina alcanzando un 80% de reducción de la grasa en el músculo entero y Adu y col. [2] señalaron que los lavados sucesivos de la pulpa de pescado ayudan a remover la grasa en un 65%.

<table>
<thead>
<tr>
<th>TABLA I</th>
<th>ANÁLISIS PRÓXIMO DE LA PULPA DE SARDINA (Sardinella aurita) LAVADA CON BICARBONATO DE SODIO AL 0,5%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Análisis Próximo</td>
<td>Materia Prima</td>
</tr>
<tr>
<td>Humedad (%)</td>
<td>72,53 ± 0,22 Co</td>
</tr>
<tr>
<td>Sólidos (%)</td>
<td>22,92 ± 0,22 Co</td>
</tr>
<tr>
<td>Proteínas (%)</td>
<td>13,95 ± 1,69 Co</td>
</tr>
<tr>
<td>Cenizas (%)</td>
<td>6,78 ± 0,03 Co</td>
</tr>
<tr>
<td>Grasa (%)</td>
<td>6,74 ± 0,18 Co</td>
</tr>
<tr>
<td>TBA (mg/Kg)</td>
<td>0,19 ± 0,02 Co</td>
</tr>
<tr>
<td>pH</td>
<td>5,80 ± 0,01 Co</td>
</tr>
<tr>
<td>Color:</td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>4,44 ± 0,01 Co</td>
</tr>
<tr>
<td>b</td>
<td>5,27 ± 0,01 Co</td>
</tr>
<tr>
<td>L</td>
<td>24,55 ± 0,01 Co</td>
</tr>
</tbody>
</table>

Estos valores corresponden al promedio ± el error standar, y cada uno se obtuvo de 4 mediciones. 1, 2 y 3 son referidos al número de lavados. Co, a, b y c en una misma fila significa que existe una diferencia significativa entre los valores promedios (P<0,001) según ANOVA de una vía.
Una medida de la oxidación de lípidos son los valores de malonaldehído formado. Este es formado por la reacción de compuestos carbonilos producidos por oxidación de la grasa que reaccionan con el aceite tiobarbitúrico (TBA) dando malonaldehídos y otras sustancias de bajo peso molecular como cetónas y ésteres reactivas con el TBA. Se observa que esta reducción es mayor a medida que aumenta el número de lavados, siendo más significativa en el primer lavado. Al comparar los valores de TBA de la pulpa de cachamala lavada y sin lavar almacenada a -20°C, Eide y col. [7] encontraron que la pulpa lavada desarrolló niveles de rancidez oxidativa por debajo de los valores obtenidos para la pulpa sin lavar. Por lo que el lavado es efectivo en la eliminación de compuestos pro-oxidantes.

Un efecto observado en el lavado de la pulpa con soluciones de bicarbonato de sodio es el aumento del pH de 5,8 a 8,32 respecto a la materia prima. Eide y col. [7] señalan que el pH influye en la extracción de lípidos, encontrando que a pH menores la extracción de estos es mayor, obteniéndose un máximo de extracción a pH 4.0. Así también la extracción de las proteínas se incrementa cuando los valores de pH aumentan de 5,0 a 8,0.

La TABLA I muestra los parámetros de color obtenidos para las pulpas lavadas con diferentes tratamientos. El parámetro L representa la luminosidad de la muestra (relación claro/oscuro) por lo que a medida que este aumenta la muestra será más clara. Se observa que la pulpa lavada con bicarbonato de sodio presenta valores altos de L en el tercer tratamiento de lavado, lo cual es indicativo de menor cantidad de compuestos coloreados en la pulpa. Roussel y Cheffel [23] reportaron un valor alrededor de 60 para pulpa de sardina lavada tres veces con bicarbonato de sodio 0,5% y un último lavado con solución de NaCl al 0,5%, con agitación de 10 min. El parámetro "a" el cual representa la relación rojo/amarillo disminuye desde 4,44 en la materia prima, hasta 0,4 en la pulpa lavada con bicarbonato, lo que es indicativo de la eliminación de los pigmentos responsables del color rojo en la pulpa como son los compuestos hemo entre otros. En este caso también se observa que la eliminación en el lavado es significativa para la pulpa lavada con bicarbonato de sodio al 0,5%. Roussel y Cheffel [23] reportaron una disminución desde 6 hasta 1 concluyendo que esto se debe a la remoción progresiva de pigmentos tales como hemoglobina y mioglobina y pigmentos de la piel, resultando en el tercer lavado una pulpa de color grísáceo, lo cual favorece la elaboración de productos tipo KAMABOKO.

Evaluación de los lípidos y ácidos grasos por cromatografía de gases

En las TABLAS II, III y IV se muestran los resultados de las diferentes fracciones de lípidos fosfolipídicos (FL), triglicéridos (TG) y ácidos grasos libres (AGL) obtenidos para la pulpa lavada con una solución de NaHCO₃ al 0,5%. Se observa que el porcentaje de área de los ácidos grasos saturados (AGS) en las fracciones de FL y TG disminuye con el primer lavado en alrededor del 5% y 15% respectivamente, con respecto a la materia prima. En la fracción de FL el porcentaje de área del C16:0 disminuye desde 29,61% hasta 24,28% en el primer lavado, aumentando luego del segundo y tercer lavado hasta 28,65% y 32,33% respectivamente. Este mismo efecto se presenta en la fracción de TG, donde los AGS representados por el C12:0, C16:0 y C18:0 disminuyen su porcentaje de área.

TABLA II

CONTENIDO DE ÁCIDOS GRASOS (% ÁREA) EN LA FRACCIÓN DE FOSFOLÍPIDOS (FL) DE LA PULPA DE SARDINA (Sardinella aurita) LAVADA CON SOLUCIÓN DE BICARBONATO DE SODIO AL 0,5%

<table>
<thead>
<tr>
<th>Ácidos Grasos</th>
<th>Materia Prima</th>
<th>1er. Lavado</th>
<th>2do. Lavado</th>
<th>3er. Lavado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Palmítico C16:0</td>
<td>29,61 ± 0,41</td>
<td>24,28 ± 0,46</td>
<td>28,85 ± 0,72</td>
<td>32,33 ± 0,98</td>
</tr>
<tr>
<td>Total saturados</td>
<td>29,61 ± 0,41</td>
<td>24,28 ± 0,46</td>
<td>28,85 ± 0,72</td>
<td>32,33 ± 0,98</td>
</tr>
<tr>
<td>Palmitoleico C16:1 (n-7)</td>
<td>9,51 ± 0,39</td>
<td>20,18 ± 1,12</td>
<td>15,79 ± 1,02</td>
<td>16,75 ± 0,49</td>
</tr>
<tr>
<td>Oleico C18:1 (n-9)</td>
<td>7,49 ± 0,27</td>
<td>14,77 ± 1,34</td>
<td>16,63 ± 1,46</td>
<td>18,82 ± 1,96</td>
</tr>
<tr>
<td>Tetracosenoenoico C24:1 (n-9)</td>
<td>0,79 ± 0,09</td>
<td>1,17 ± 0,15</td>
<td>1,17 ± 0,15</td>
<td>1,17 ± 0,15</td>
</tr>
<tr>
<td>Total mono-insaturados</td>
<td>16,99 ± 0,75</td>
<td>34,95 ± 2,61</td>
<td>32,42 ± 2,48</td>
<td>35,57 ± 2,45</td>
</tr>
<tr>
<td>Linoleico C18:2 (n-6)</td>
<td>0,98 ± 0,09</td>
<td>2,41 ± 0,22</td>
<td>2,83 ± 0,39</td>
<td>4,16 ± 1,12</td>
</tr>
<tr>
<td>Eicosatrenoico C20:3 (n-6)</td>
<td>1,74 ± 0,08</td>
<td>0,41 ± 0,14</td>
<td>1,27 ± 0,29</td>
<td>8,32 ± 0,94</td>
</tr>
<tr>
<td>Araquidónico C20:4 (n-6)</td>
<td>2,44 ± 0,15</td>
<td>2,68 ± 0,46</td>
<td>3,42 ± 0,36</td>
<td>3,42 ± 0,36</td>
</tr>
<tr>
<td>Eicosapentrenoico C20:5 (n-3)</td>
<td>12,81 ± 0,39</td>
<td>26,18 ± 1,12</td>
<td>17,65 ± 2,01</td>
<td>16,21 ± 0,54</td>
</tr>
<tr>
<td>Docosahexenoico C22:6 (n-3)</td>
<td>14,59 ± 0,56</td>
<td>7,39 ± 0,57</td>
<td>5,51 ± 1,23</td>
<td>16,21 ± 0,54</td>
</tr>
<tr>
<td>Total poli-insaturados</td>
<td>32,57 ± 1,27</td>
<td>39,07 ± 2,51</td>
<td>38,75 ± 3,91</td>
<td>32,11 ± 2,96</td>
</tr>
<tr>
<td>PUFAs/SUFAs</td>
<td>1,1</td>
<td>1,6</td>
<td>1,3</td>
<td>0,99</td>
</tr>
</tbody>
</table>

Estos valores corresponden al promedio ± el error estandar, y cada uno se obtuvo de 4 mediciones. 1, 2 y 3 son referidos al número de lavados. Co, a, b y c en una misma fila significa que existe una diferencia significativa entre los valores promedios (P<0,001) según ANOVA de una vía.
<table>
<thead>
<tr>
<th>Ácidos Grasos</th>
<th>Materia Prima</th>
<th>1er. Lavado</th>
<th>2do. Lavado</th>
<th>3er. Lavado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Láurico C12:0</td>
<td>0,19 ± 0,02</td>
<td>0,97 ± 0,015</td>
<td>2,43 ± 0,12</td>
<td>36,97 ± 0,87</td>
</tr>
<tr>
<td>Mirístico C14:0</td>
<td>14,35 ± 0,32</td>
<td>33,86 ± 0,56</td>
<td>17,14 ± 0,23</td>
<td>36,02 ± 0,62</td>
</tr>
<tr>
<td>Palmitico C16:0</td>
<td>19,86 ± 0,98</td>
<td>23,42 ± 0,65</td>
<td>54,11 ± 1,10c</td>
<td>33,19 ± 0,90c</td>
</tr>
<tr>
<td>Estéarico C18:0</td>
<td>3,37 ± 0,47</td>
<td>17,14 ± 0,23</td>
<td>36,02 ± 0,62</td>
<td>8,4 ± 0,2</td>
</tr>
<tr>
<td>Total saturados</td>
<td>37,79 ± 1,79c</td>
<td>24,39 ± 0,661a</td>
<td>36,30 ± 0,682b</td>
<td>12,7 ± 0,45c</td>
</tr>
<tr>
<td>Palmitoleico C16:1 (n-7)</td>
<td>15,32 ± 0,54</td>
<td>28,05 ± 0,32</td>
<td>9,05 ± 0,58</td>
<td>2,74 ± 0,036</td>
</tr>
<tr>
<td>Oleico C18:1 (n-9)</td>
<td>11,82 ± 0,69</td>
<td>14,21 ± 0,45</td>
<td>24,14 ± 0,32</td>
<td>11,16 ± 0,54</td>
</tr>
<tr>
<td>Total mono-insaturados</td>
<td>27,14 ± 1,23c</td>
<td>42,25 ± 0,771a</td>
<td>36,02 ± 0,622b</td>
<td>8,4 ± 0,2</td>
</tr>
<tr>
<td>Linoleico C18:2 (n-6)</td>
<td>2,05 ± 0,04</td>
<td>1,44 ± 0,10</td>
<td>5,20 ± 0,23</td>
<td>1,56 ± 0,21</td>
</tr>
<tr>
<td>Linoelénico C18:3 (n-3)</td>
<td>0,63 ± 0,02</td>
<td>1,16 ± 0,30</td>
<td>7,00 ± 0,69</td>
<td>2,74 ± 0,036</td>
</tr>
<tr>
<td>Eicosatrentioico C20:3 (n-6)</td>
<td>0,56 ± 0,02</td>
<td>3,15 ± 0,30</td>
<td>2,74 ± 0,036</td>
<td>8,4 ± 0,2</td>
</tr>
<tr>
<td>Araquidónico C20:4 (n-6)</td>
<td>2,33 ± 0,1</td>
<td>2,09 ± 0,30</td>
<td>2,74 ± 0,036</td>
<td>8,4 ± 0,2</td>
</tr>
<tr>
<td>Eicosapentaenico C20:5 (n-3)</td>
<td>23,05 ± 0,21</td>
<td>19,52 ± 0,32</td>
<td>12,7 ± 0,45c</td>
<td>8,4 ± 0,2</td>
</tr>
<tr>
<td>Docosahexaenico C22:6 (n-3)</td>
<td>6,42 ± 0,87</td>
<td>7,16 ± 0,32</td>
<td>8,4 ± 0,2</td>
<td></td>
</tr>
<tr>
<td>Total poli-insaturados</td>
<td>35,06 ± 1,26c</td>
<td>33,36 ± 1,341a</td>
<td>27,66 ± 2,332b</td>
<td>8,4 ± 0,2</td>
</tr>
</tbody>
</table>

TABLA IV

<table>
<thead>
<tr>
<th>Ácidos Grasos</th>
<th>Materia Prima</th>
<th>Primer Lavado</th>
<th>Segundo Lavado</th>
<th>Tercer Lavado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mirístico C14:0</td>
<td>17,03 ± 0,46</td>
<td>10,72 ± 0,44</td>
<td>7,01 ± 0,12</td>
<td>5,2 ± 0,12</td>
</tr>
<tr>
<td>Palmítico C16:0</td>
<td>25,53 ± 0,32</td>
<td>12,09 ± 0,36</td>
<td>2,82 ± 0,19</td>
<td>2,82 ± 0,19</td>
</tr>
<tr>
<td>Estéarico C18:0</td>
<td>3,95 ± 0,64</td>
<td>12,09 ± 0,36</td>
<td>2,82 ± 0,19</td>
<td>2,82 ± 0,19</td>
</tr>
<tr>
<td>Total saturados</td>
<td>46,51 ± 1,42c</td>
<td>12,49 ± 1,242b</td>
<td>7,89 ± 0,143c</td>
<td>7,89 ± 0,143c</td>
</tr>
<tr>
<td>Palmitoleico C16:1 (n-7)</td>
<td>20,09 ± 0,17</td>
<td>4,02 ± 0,21</td>
<td>3,24 ± 0,46</td>
<td>3,24 ± 0,46</td>
</tr>
<tr>
<td>Oleico C18:1 (n-9)</td>
<td>17,21 ± 0,25</td>
<td>4,73 ± 0,13</td>
<td>3,24 ± 0,46</td>
<td>3,24 ± 0,46</td>
</tr>
<tr>
<td>Total mono-insaturados</td>
<td>37,31 ± 0,42c</td>
<td>8,75 ± 0,342b</td>
<td>6,06 ± 0,653c</td>
<td>6,06 ± 0,653c</td>
</tr>
<tr>
<td>Linoleico C18:2 (n-6)</td>
<td>2,86 ± 0,32</td>
<td>2,88 ± 0,012</td>
<td>0,56 ± 0,014</td>
<td>0,56 ± 0,014</td>
</tr>
<tr>
<td>Eicosatrentioico C20:3 (n-6)</td>
<td>0,52 ± 0,12</td>
<td>2,51 ± 0,15</td>
<td>3,23 ± 0,15</td>
<td>3,23 ± 0,15</td>
</tr>
<tr>
<td>Araquidónico C20:4 (n-6)</td>
<td>2,61 ± 0,20</td>
<td>5,05 ± 0,21</td>
<td>5,05 ± 0,21</td>
<td>5,05 ± 0,21</td>
</tr>
<tr>
<td>Total poli-insaturados</td>
<td>5,99 ± 0,64c</td>
<td>2,88 ± 0,0121a</td>
<td>8,84 ± 0,373c</td>
<td>8,84 ± 0,373c</td>
</tr>
<tr>
<td>Desconocido 1 TR= 2-4 min</td>
<td>10,19 ± 0,34</td>
<td>82,26 ± 1,12</td>
<td>82,26 ± 1,12</td>
<td></td>
</tr>
<tr>
<td>Desconocido 2 TR= 2-4 min</td>
<td>82,26 ± 1,12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Desconocido 3 TR= 44-45 min</td>
<td>82,26 ± 1,12</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Estos valores corresponden al promedio ± el error estándar, y cada uno se obtuvo de 4 mediciones. 1, 2 y 3 son referidos al número de lavados. Co, a, b y c en una misma fila significa que existe una diferencia significativa entre los valores promedios (P<0,001) según ANOVA de una vía.
desde 37,80% hasta 24,40% en el primer lavado y a medida que se incrementa el número de lavados este porcentaje de área aumenta hasta 54,11% respecto a la muestra sin lavar (materia prima). El C16:0 es el que representa la mayor concentración en esta fracción y va desde 23,42% hasta 36,97%. No se detectaron el C12:0 y C14:0 luego del tercer lavado. Estas variaciones pueden ser debido a que se van removiendo el C12:0 y C14:0 por el lavado, el resto de los AGS se concentran, aumentando así su porcentaje de área.

En la fracción de AGL se presenta un comportamiento similar, los AGS disminuyen su porcentaje de área desde 46,51% hasta 7,89% luego del tercer lavado, siendo el C16:0 el ácido graso de mayor concentración (44,56%). El C14:0 no se detecta y el C18:0 incrementa desde 3,95% hasta 10,27% respecto a la materia prima y primer lavado.

De acuerdo a los resultados señalados en las tres fracciones FL, TG y AGL se observa que, los ácidos grasos que permanecen luego del lavado son el C16:0 y C18:0 los cuales aumentan su porcentaje de área o concentración a medida que el resto de los AGS son eliminados con el tratamiento de lavado siendo la concentración de estos dos ácidos grasos mayor en la fracción de triglicéridos, coincidiendo con los resultados de Ooizumi y col. [20] quienes reportaron un contien- do de lípidos totales para el surimi de sardina, donde la pulpa fue lavada dos veces con una solución de NaHCO₃ 0,2% y NaCl 0,15%, seguida de dos lavados con agua, de 32,1% y 32,6% para la pulpa sin lavar y lavada respectivamente, reportando un incremento desde 19,3% en la materia prima hasta 22,9% para el C16:0 en la pulpa lavada y el C18:0 incrementó desde 3,7% y 3,8% en la materia prima y pulpa lavada; sin embargo el C14:0 disminuyó desde 7,1% hasta 4,9% luego del lavado.

Los ácidos grasos mono-insaturados (AGMI) se concentran o incrementan su porcentaje de área con el tratamiento de lavado, observándose que en la fracción de FL aumenta respecto a la materia prima desde 16,99% hasta 35,57% luego del tercer lavado, lo cual se debe principalmente al incremento del C18:1 (n-9) desde 7,49% hasta 18,82% en el tercer lavado y al C16:1 (n-7) que se concentra desde 9,51% hasta 16,75% en el tercer lavado. En la fracción de TG también se observa que los AGMI incrementan con el lavado desde 27,14% en la materia prima hasta 33,19% en el tercer lavado, siendo el C18:1 (n-9) el que presenta la mayor concentración en el tercer lavado (24,14%).

En la fracción de AGL se observa un efecto contrario a las fracciones de FL y TG, los AGMI disminuyen con el lavado de NaHCO₃ al 0,5%, desde 37,31% en la materia prima hasta 6,06% en el tercer lavado. Esta disminución se debe posiblemente a la remoción, por efecto del lavado, tanto del C16:1(n-7) como del C18:1(n-9) los cuales son eliminados en alrededor del 15%, coincidiendo con los resultados reportados por Ooizumi y col. [20] donde los ácidos grasos monoinsaturados para la pulpa de sardina lavada y sin lavar están en 23,0% y 29,3% respectivamente, siendo el C18:1(n-9) el que presenta la mayor concentración (10,6% y 12,4%) y el C16:1 se aumenta desde 4,8% hasta 6,3% respectivamente. También Kwang-Su y col. [11] reportaron 22,3% para la pulpa de sardina lavada, donde el C18:1(n-9) se encuentra en la mayor concentración (12,0%) y el C16:1(n-7) con 8,9%.

Con respecto a los AGPI se observa que en la fracción de FL el C20:5 (n-3) (EPA, ácidos eicosapentaenoico) es removido en el tercer lavado con NaHCO₃ al 0,5%, de la pulpa de sardina y posiblemente debido a que se remueve el C12:0 y C14:0 por el lavado, el resto de los AGS se concentran, aumentando así su porcentaje de área.

En la fracción de TG se observa la misma tendencia que en la fracción de FL, el porcentaje en área de AGPI disminuye a medida que aumenta el número de lavados desde 33,36% en el primer lavado hasta 12,7% en el tercero. El ácido graso de mayor concentración es el EPA en el primer lavado y luego es removido en los lavados sucesivos. El porcentaje de C22:6 (n-3) (ácido docosahexaenoico,DHA) incrementa de 7,17% hasta 8,4% en el primer y tercer lavado respectivamente.

En la fracción de AGL el porcentaje de AGPI aumenta su concentración desde 5,99% hasta 8,84% respecto a la materia prima y tercer lavado. Así también se observó el incremento de un pico a un tiempo de retención (TR) entre 44-45 min desde 10,19 hasta 82,26% con respecto a la materia prima, el cual puede ser debido posiblemente a la polimerización de áci- dos grasos polinsaturados, enmascarando la concentración del resto de ácidos grasos en esta fracción. Kwang-So y col. [11] reportaron 46,2% de los AGPI en los lípidos totales de la pulpa de sardina lavada, donde el EPA se encontró en una concentración de 12,3% y el DHA 17,9%, seguidos del C18:2(n-6) en 8,9%. Contrario a los resultados obtenidos en el presente trabajo, Ooizumi y col [20] reportaron 38,6% y 45,8% para la pulpa de sardina sin lavar y lavada respectivamente, donde el porcentaje en área del EPA aumenta desde 15,2% hasta 24,2% respectivamente, el C22:6 (n-3) sin embargo disminuye ligeramente desde 12,6% hasta 11,7%, el resto de los AGPI los autores reportan concentraciones menores a 2% y disminuyen ligeramente con el lavado. Esta contradicción pue- de deberse al efecto de polimerización antes mencionado, es decir, el lavado produce una concentración de AGPI los cuales interaccionan entre si formando compuestos poliienicos de alto peso molecular.
CONCLUSIONES

En base a los resultados obtenidos se puede concluir que la pulpa lavada con una solución de bicarbonato de sodio al 0.5% produce una reducción de los lípidos, cenizas, proteínas solubles e índice de TBA, pero aumenta el contenido de humedad y pH. A la vez que se obtiene una pulpa más clara.

El lavado elimina gran cantidad de lípidos, a la vez que concentra los lípidos remanentes, siendo la fracción de ácidos grasos libres la que presenta la mayor eliminación. En la fracción de fosfolípidos y triglicéricidos la mayor remoción la presentan los ácidos grasos polinsaturados a la vez que se concentran la fracción de saturados.

RECOMENDACIONES

Evaluar el tratamiento de la pulpa con otras soluciones de lavado y evaluar su almacenamiento en congelación.

AGRADECIMIENTO

Al Consejo de Desarrollo Científico y Humanístico (CDCH) de la Universidad Central de Venezuela (UCV) por el soporte económico del proyecto N° 03-32-3843.97.

REFERENCIAS BIBLIOGRÁFICAS

