• español
    • English
    • français
    • português (Brasil)
  • español 
    • español
    • English
    • français
    • português (Brasil)
  • Login
Universidad de Los Andes

  • Inicio
  • Facultades
  • Unidades de Investigación
  • Investigadores
  • Revistas
  • Postgrados
  • Eventos
Ver ítem 
  •   SaberULA Repositorio Institucional de la Universidad de Los Andes, Mérida - Venezuela: Página Principal
  • Revistas
  • Economía
  • Economía - Nº 029
  • Ver ítem
  •   SaberULA Repositorio Institucional de la Universidad de Los Andes, Mérida - Venezuela: Página Principal
  • Revistas
  • Economía
  • Economía - Nº 029
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Pronóstico del déficit de viviendas en el estado Mérida, Venezuela mediante redes neuronales artificiales

Thumbnail
Ver/
articulo5.pdf (1.650Mb)
Fecha
2011-05-13
Autor
Colmenares Lacruz, Gerardo Augusto
Gil Ruiz, Annjulie A.
Palabras Clave
Déficit cualitativo, Déficit cuantitativo, Análisis de correspondencia múltiple, Redes neuronales artificiales, Indicadores
Qualitative deficit, Quantitative deficit, Multiple correspondence analysis, Artificial neural networks, Scores
Metadatos
Mostrar el registro completo del ítem
Compartir por...
| | |
Resumen
Se combina Funciones de Bases Radiales (RBF) y Análisis Multivariante para pronosticar el déficit de viviendas en el estado Mérida. Se construyó un indicador alternativo al usado convencionalmente para evaluar este fenómeno. La información primaria se obtuvo de las Encuestas de Hogares por Muestreo (EHM) entre 1994 y 2005. Las variables empleadas fueron el número de hogares, tenencia, hacinamiento, adecuación y condición de la vivienda. Se destaca que mediante RBF se alcanzó un aceptable nivel de efectividad y de adaptación: se adecuó al tipo de problema que se modeló. Los resultados obtenidos en el entrenamiento y generalización alcanzaron valores del error cuadrático medio muy bajos, con un buen nivel de acierto para el pronóstico y, debido a la consistencia de estos resultados, se demostró robustez en el entrenamiento.
URI
http://www.saber.ula.ve/handle/123456789/33071
Colecciones
  • Economía - Nº 029
Información Adicional
Otros TítulosPrediction of insufficient housing supply at Mérida, Venezuela by artificial neural networks
Correo Electrónicogcolmen@ula.ve
kannjulie@hotmail.com
Resumen en otro IdiomaThis work combines the tools of Radial Basis Function (RBF) and Multivariate Analysis to predict insufficient housing supply in the state of Merida, Venezuela. An alternative indicator to the commonly one used was built in order to evaluate this phenomenon. Data covering the number of families at the same house, house property, overcrowding level, housing physical condition, and public utilities condition were extracted from The Household Sampling Survey (HSS), 1994-2005. It is outstanding that RBF showed an acceptable level of effectiveness and capacity of adapting itself to this kind of problem. In general, results obtained during training and generalization stages reached very low average quadratic errors, a good level of success in the prognosis and robustness of the trained models.
Colación109-140
Periodicidadsemestral
Publicación ElectrónicaRevista Economía
SecciónRevista Economía: Artículos

Univesidad de Los Andes

  • Rectorado
  • Vicerectorado Académico
  • Vicerectorado Administrativo
  • Secretaría

Navegación por documentos

  • Por Fecha de Publicación
  • Por Autores
  • Por Títulos
  • Por Palabras Clave

Preguntas Frecuentes

  • ¿Cómo publicar?
  • ¿Cómo enviar o actualizar información?
  • ¿Cuál es la Licencia de Depósito de documentos en SaberULA?
  • ¿Qué es un Repositorio Institucional (RI)?
  • ¿Cómo obtengo RSS por tipo de documentos?

Ubícanos

  • emailsaber@ula.ve
  • +58-0274-240.23.43
  • Mérida - Venezuela

Síguenos

facebook  twitter   

Contacto | Sugerencias

Licencia Creative Commons Todos los documentos publicados en este repositorio se distribuyen bajo una
Licencia Creative Commons Atribución-NoComercial-CompartirIgual 3.0 Venezuela .

SaberULA Repositorio Institucional de la Universidad de Los Andes, Mérida, Venezuela 2018.

DSpaceDSpace software copyright © 2002-2016  DuraSpace.
Theme by  Atmire NV

 

 

Listar

Todo Saber-ULAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasEsta colecciónPor fecha de publicaciónAutoresTítulosMaterias

Mi cuenta

Acceder

Estadísticas

Ver Estadísticas de uso

Univesidad de Los Andes

  • Rectorado
  • Vicerectorado Académico
  • Vicerectorado Administrativo
  • Secretaría

Navegación por documentos

  • Por Fecha de Publicación
  • Por Autores
  • Por Títulos
  • Por Palabras Clave

Preguntas Frecuentes

  • ¿Cómo publicar?
  • ¿Cómo enviar o actualizar información?
  • ¿Cuál es la Licencia de Depósito de documentos en SaberULA?
  • ¿Qué es un Repositorio Institucional (RI)?
  • ¿Cómo obtengo RSS por tipo de documentos?

Ubícanos

  • emailsaber@ula.ve
  • +58-0274-240.23.43
  • Mérida - Venezuela

Síguenos

facebook  twitter   

Contacto | Sugerencias

Licencia Creative Commons Todos los documentos publicados en este repositorio se distribuyen bajo una
Licencia Creative Commons Atribución-NoComercial-CompartirIgual 3.0 Venezuela .

SaberULA Repositorio Institucional de la Universidad de Los Andes, Mérida, Venezuela 2018.

DSpaceDSpace software copyright © 2002-2016  DuraSpace.
Theme by  Atmire NV