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Abstract

In this paper we present a necessary and sufficient conditions for the exact and approximate

controllability of the following linear difference equation

z(n + 1) = A(n)z(n) + B(n)u(n), n ∈ IN∗, z(n) ∈ Z, u(n) ∈ U,

where Z, U are Hilbert spaces, IN∗ = IN ∪ {0}, A ∈ l∞(IN, L(Z)), B ∈ l∞(IN, L(U, Z)),
u ∈ l2(IN, U). As a particular case we consider the discretization on flow of the following

controlled evolution equation

z′ = Az + Bu, z ∈ Z, u ∈ U, t > 0,

where Z, U are Hilbert spaces, B ∈ L(U, Z), u ∈ L2(0, τ ; U) and A is the infinitesimal

generator of a strongly continuous semigroup {T (t)}t≥0 in Z, given by:

T (t)z =
∞∑

j=1

eAjtPjz, z ∈ Z, t ≥ 0,

according to lemma 1.1. We apply these results to a flow-discretization of the heat equation

and the wave equation.

Resumen

En este articulo presentamos condiciones necesarias y suficientes para la controlabilidad ex-

acta y aproximada de la siguiente ecuación en diferencias lineal

z(n + 1) = A(n)z(n) + B(n)u(n), n ∈ IN∗, z(n) ∈ Z, u(n) ∈ U,

donde Z, U son espacios de Hilbert, IN∗ = IN ∪{0}, A ∈ l∞(IN, L(Z)), B ∈ l∞(IN, L(U, Z)),
u ∈ l2(IN, U). Como un caso particular consideramos la discretización en el flujo de la siguiente

ecuación de evolución controlada

z′ = Az + Bu, z ∈ Z, u ∈ U, t > 0,

donde Z, U son espacios de Hilbert , B ∈ L(U, Z), u ∈ L2(0, τ ; U) y A es el generador

infinitesimal de un semigrupo fuertemente continuo {T (t)}t≥0 in Z, dado por:

T (t)z =
∞∑

j=1

eAjtPjz, z ∈ Z, t ≥ 0

de acuerdo con el lema 1.1. Aplicamos esos resultados a una discretización en el flujo de la

ecuación del calor y la ecuación de onda.
1
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1 Introduction.

One way to obtain Difference Equation in Banach Spaces is making discretization on flow of the

evolution equation, this method was used in [3], [5] and [9] to characterize exponential dichotomy

of evolution operators and skew product semiflows respectively.

In general, for a controlled evolution equation of the form

z′ = Az + Bu, z ∈ Z, u ∈ U, t > 0, (1.1)

where Z, U are Banach spaces, B ∈ L(U,Z), u ∈ L2(0, τ ;U) and A is the infinitesimal generator

of a strongly continuous semigroup {T (t)}t≥0 in Z, we considere the following discretization on

flow:

z(n + 1) = T (n)z(n) + B(n)u(n), n ∈ IN∗, (1.2)

where the control u = {u(n)}n≥1 belong to l2(IN,U).

In particular, we shall work here with those infinitesimal generator A given by the following

Lemma from [6].

Lemma 1.1 Let Z be a Hilbert separable space and {An}n≥1, {Pn}n≥1 two families of bounded

linear operator in Z, with {Pn}n≥1 a family of complete orthogonal projection such that:

AnPn = PnAn, n ≥ 1.

Define the following family of linear operators

T (t)z =

∞∑

n=1

eAntPnz, z ∈ Z, t ≥ 0.

Then:

(a) T (t) is a linear and bounded operator if ‖eAnt‖ ≤ g(t), n = 1, 2, .., with g(t) ≥ 0, continuos

for t ≥ 0.
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(b) Under the same condition the above, {T (t)}t≥0 is a strongly continuous semigruop in the

Hilbert space Z, whose infinitesimal generator A is given by

Az =

∞∑

n=1

AnPnz, z ∈ D(A)

with

D(A) =

{
z ∈ Z :

∞∑

n=1

‖AnPnz‖2 < ∞

}
.

(c) The spectrum σ(A) of A is given by

σ(A) =
∞⋃

n=1

σ(An),

where An = AnPn.

We shall assume through this paper the following hypothesis:

PjBB∗ = BB∗Pj , j = 1, 2, ... (1.3)

Under this condition, in lemma 3.1, we characterize the exact and approximate controllability of

the general system (1.2) in terms of the following family of control systems

z(n + 1) = eAjnz(n) + Bju(n), n ∈ IN∗, j = 1, 2, ...

where Bj = PjB and u ∈ l2(IN,U).

Finally, we apply these results to a discrete version of the heat and wave equation.

2 Preliminaries Results.

In this section we shall present a discrete version of theorem 4.1.7 from [2] for the following general

controlled difference equation in Hilbert spaces

z(n + 1) = A(n)z(n) + B(n)u(n), n ∈ IN, z(0) = z0, (2.4)

where z(n) ∈ Z, u(n) ∈ U , where Z, U are Hilbert spaces, IN∗ = IN ∪ {0}, A ∈ l∞(IN,L(Z)),

B ∈ l∞(IN,L(U,Z)), u ∈ l2(IN,U).

To this end, we shall give the definition of exact and approximate controllability for the system

(2.4).
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Consider the set ∆ = {(m,n) ∈ IN × IN : m ≥ n} and let Φ = {Φ(m,n)}(m,n)∈∆ be the

evolution operator associated to A, i.e., Φ(m,n) = A(m − 1) · · ·A(n) and Φ(m,n) = I, for

m = n.

Then, the solution of (2.4) is given by the discrete variation constant formula:

z(n) = Φ(n, 0)z(0) +

n∑

k=1

Φ(n, k)B(k − 1)u(k − 1), n ∈ IN. (2.5)

Definition 2.1 (Exact Controllability) The system (2.4) is said to be exactly controlable if

there is n0 ∈ IN such that for every z0, z1 ∈ Z there exists u ∈ l2(IN,U) such that z(0) = z0 and

z(n0) = z1.

Definition 2.2 (Approximate Controllability) The system (2.4) is said to be approximately

controlable if there is n0 ∈ IN such that for every z0, z1 ∈ Z, ε > 0 there exists u ∈ l2(IN,U)

such that z(0) = z0 and ‖z(n0) − z1‖ < ε.

Definition 2.3 For the system (2.4) we define the following concepts:

a) The controllability map (for n ∈ IN) is define as follows Bn : l2(IN,U) −→ Z by

Bnu =

n∑

k=1

Φ(n, k)B(k − 1)u(k − 1) (2.6)

b) The grammian map (for n ∈ IN) is define by LBn = BnBn∗

Proposition 2.1 The adjoint Bn0∗ of the operator Bn0 is given by

Bn0∗ : Z −→ l2(IN,U)

(Bn0∗z)(k − 1) =

{
B∗(k − 1)Φ∗(n0, k)z, k ≤ n0

0, k > n0,
(2.7)

and

LBn0 z =

n0∑

k=1

Φ(n0, k)B(k − 1)B∗(k − 1)Φ∗(n0, k)z, z ∈ Z. (2.8)
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Proof

〈Bn0z, z〉 =

〈
n0∑

k=1

Φ(n0, k)B(k − 1)u(k − 1), z

〉

Z,Z

=

n0∑

k=1

〈Φ(n0, k)B(k − 1)u(k − 1), z〉Z,Z

=

n0∑

k=1

〈u(k − 1), B∗(k − 1)Φ∗(n0, k)z〉U,U

=

n0∑

k=1

〈u(k − 1), B∗(k − 1)Φ∗(n0, k)z〉U,U +
∞∑

k=n0+1

〈u(k − 1), 0〉U,U

= 〈u,Bn0∗z〉l2(IN,U),l2(IN,U),

which prove (2.1). Clearly, (2.8) follows immediately from definition 2.2 and (2.1).

The following theorem is a discrete version of theorem 4.1.7 from [2].

Theorem 2.1 (a) The equation (2.4) is exactly controllable for some n0 ∈ IN if, and only if,

one of the following statements holds:

(i) Rang(Bn0) = Z

(ii) There exists γ > 0 such that

〈LBn0 z, z〉 ≥ γ‖z‖2
Z , ∀z ∈ Z,

(iii) There exists γ > 0 such that

‖Bn0∗z‖l2(IN,U) ≥ γ‖z‖Z , ∀z ∈ Z,

(b) The equation (2.4) is approximately controllable for some n0 ∈ IN if, and only if, one of the

following statements holds:

(i) Ker(Bn0∗) = {0}.

(ii) 〈LBn0 z, z〉 > 0, z 6= 0 in Z.

(iii) B∗(k − 1)Φ∗(n0, k)z = 0, k ≤ n0, ⇒ z = 0.

(iv) Rang(Bn0) = Z.

Proof

(a) Since LBn0 = Bn0Bn0∗, we have that

〈LBn0z, z〉 = 〈Bn0Bn0∗z, z〉 = 〈Bn0∗z,Bn0∗z〉 = ‖Bn0∗z‖2,∀z ∈ Z, (2.9)
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which shows the equivalence between (ii) and (iii).

If (ii) holds, then LBn0 is boundedly invertible. Hence,

Rang(LBn0 ) = D((LBn0 )−1) = Z. The fact that LBn0 = Bn0Bn0∗ shows that Rang(LBn0 ) ⊂

Rang(Bn0). Thus Rang(Bn0) = Z, which shows (i).

Let us suppose that Rang(Bn0) = Z. Then, we shall prove that (iii) holds. First, we assume

that Bn0 is injective; then (Bn0)−1 ∈ L(Z, l2(IN,U)) and (Bn0∗)−1 ∈ L(l2(IN,U), Z). Thus,

there exists β > 0 such that

‖(Bn0∗)−1u‖Z ≤ β‖u‖Z , ∀u ∈ l2(IN,U),

and with z = (Bn0∗)−1u we obtain

‖z‖Z ≤ β‖Bn0∗z‖Z ,

which is equivalent to (iii) considering γ = 1/β.

For the general case, we define the Hilbert space X = [KerBn0]⊥ endowed with the norm

defined by ‖u‖X = ‖u‖l2 .

Then, we define B̂n0u = Bn0u, u ∈ X, which makes B̂n0 a bijective map on X, and our

above argument applied to B̂n0 shows that there exist β > 0 such that for all z ∈ Z

β‖B̂n0∗z‖X ≥ ‖z‖Z .

From Lemma A.3.30 [2], the Riesz Representation Theorem and Hahn Banach’s Theorem

we deduce

‖B̂n0∗z‖ = sup
{u∈X:‖u‖≤1}

〈u, B̂n0∗z〉 = sup
{u∈X:‖u‖≤1}

〈B̂n0u, z〉

= sup
{u∈X:‖u‖≤1}

〈Bn0u, z〉 = sup
{u∈l2(IN,U):‖u‖≤1}

〈Bn0u, z〉 = ‖Bn0∗z‖l2 .

Hence, we have that

‖Bn0∗z‖l2 = ‖B̂n0∗z‖X ≥
1

β
‖z‖Z .

Once more, with γ = 1/β, we have (iii).

Now, we shall prove that the exact controllability of (2.4) implies (i). Suppose that (2.4) is

exactly controllable for some n0. Given z ∈ Z we can find z0 and z1 in Z such that

z1 = Φ(n0, 0)z0 + z. (2.10)
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Then there exist u ∈ l2(IN,U) such that z0(0) = z0 and zu(n0) = z1. Thus,

z1 = zu(n0) = Φ(n0, 0)z0 +

n0∑

k=1

Φ(n0, k)B(k − 1)u(k − 1) (2.11)

Substituting (2.10) in (2.11), we obtain

Φ(n0, 0)z0 + z = Φ(n0, 0)z0 +

n0∑

k=1

Φ(n0, k)B(k − 1)u(k − 1).

Then,

z =

n0∑

k=1

Φ(n0, k)B(k − 1)u(k − 1) = Bn0u.

So, Rang(Bn0) = Z.

Next, we shall show that (i) implies exact controllability of (2.4). Assume that Rang(Bn0) =

Z. Consider z in Z such that

z = z1 − Φ(n0, 0)z0, (2.12)

with z0, z1 in Z. Then there exist a control u such that

Bn0u = z. (2.13)

Then, substituting (2.12) in (2.13), we obtain

z = z1 − Φ(n0, 0)z0 =

n0∑

k=1

Φ(n0, k)B(k − 1)u(k − 1).

Hence

zu(n0) = Φ(n0, 0)z0 +

n0∑

k=1

Φ(n0, k)B(k − 1)u(k − 1).

So, we have obtained a solution zu(·) of (2.4) such that zu(n0) = z1 and zu(0) = z0, i.e.,

(2.4) is exactly controllable. This conclude the prove of part (a).

(b) From proposition 2.1 follows that (i) and (iii) are equivalent, and (2.9) shows that (i) and

(ii) are equivalent. We know that (Ker(Bn0∗))⊥ = Rang(Bn0). From this it follows that:

Rang(Bn0) = Z iff (Ker(Bn0∗))⊥ = Z iff Ker(Bn0∗) = {0}, which shows that (i) and (iv)

are equivalent.

Now, suppose that (2.4) is approximately controllable; then for ε > 0, z, z0, z1 in Z, such

that z1 = Φ(n0, 0)z0 + z, there exist u ∈ l2(IN,U) with zu(0) = z0 and ‖zu(n0) − z1‖ < ε.

Thus,

zu(n0) = Φ(n0, 0)z0 +

n0∑

k=1

Φ(n0, k)B(k − 1)u(k − 1).
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Therefore

‖Bn0u − z‖ = ‖

n0∑

k=1

Φ(n0, k)B(k − 1)u(k − 1) − z‖

= ‖

n0∑

k=1

Φ(n0, k)B(k − 1)u(k − 1) + Φ(n0, 0)z0 − z1‖

= ‖zu(n0) − z1‖ < ε,

which implies (iv).

Assume that Rang(Bn0) = Z. Let z ∈ Z such that z = z1 − Φ(n0, 0) with z0, z1 in Z.

Then, there exist a control u such that ‖Bn0u − z‖ < ε. Thus,

‖Bn0u + Φ(n0, 0)z0 − z1‖ = ‖zu(n0) − z1‖ < ε.

Hence, we have obtained a solution zu(·) of (2.4) such that zu(0) = z0 and ‖zu(n0)−z1‖ < ε;

this let us conclude that (2.4) is approximately controllable and finish the prove of part (b).

Lemma 2.1 The equation (2.4) is exactly controllable for n0 ∈ IN if, and only if, LBn0 is

invertible. Moreover, in this case S = Bn0∗L−1
Bn0

is a right inverse of Bn0 and the control u ∈

l2(IN,U) steering an initial state z0 to a final state z1 is given by:

u = Bn0∗L−1
Bn0

(z1 − Φ(n0, 0)z0). (2.14)

Proof Suppose the system (2.4) is exactly controlable. Then, from theorem 2.1 part (a) − (iii),

there is γ > 0 such that ‖Bn0∗z‖ ≥ γ‖z‖, for all z ∈ Z, i.e.,

‖Bn0∗z‖2 ≥ γ2‖z‖2, z ∈ Z.

i.e.,

〈Bn0Bn0∗z, z〉 ≥ γ2‖z‖2, z ∈ Z.

i.e.,

〈LBn0 z, z〉 ≥ γ2‖z‖2, z ∈ Z (2.15)

This implies that LBn0 is one to one. Now, we shall prove that LBn0 is surjective. That is to say

R(LBn0 ) = Rang(LBn0 ) = Z.
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For the purpose of contradiction, let us assume that R(LBn0 ) is strictly contained in Z. On the

other hand, using Cauchy Schwarz’s inequality and (2.15) we get

‖LBn0 z‖l2 ≥ γ2‖z‖2, z ∈ Z,

which implies that R(LBn0 ) is closed. Then, from Hahn Banach’s Theorem there exist z0 6= 0

such that

〈LBn0 z, z0〉 = 0,∀z ∈ Z.

In particular, putting z = z0 we get from (2.15) that

0 = 〈LBn0 z0, z0〉 ≥ γ2‖z0‖
2.

Then z0 = 0, which is a contradiction. Hence, LBn0 is a bijection and from the Open Mapping

Theorem, L−1
Bn0

is a bounded linear operator.

Now suppose LBn0 is invertible. Then, from Theorem (2.1) it is enough to prove that

R(Bn0) = Z. For z ∈ Z we define the control uz ∈ l2(IN,U) as follows

uz = Sz = Bn0∗L−1
Bn0

z.

Then Bn0uz = z. The rest of the proof follows from here.

Lemma 2.2 The equation (2.4) is approximately controllable for n0 ∈ IN if, and only if, Rang(LBn0 ) =

Z.

Proof Suppose the system (2.4) is approximately controlable for some n0 ∈ IN∗. Then, from

Theorem 2.1 part (b) − (ii) we have that

〈LBn
0
z, z〉 > 0, ∀z ∈ Z, z 6= 0. (2.16)

For the purpose of contradiction, let us assume that

Rang(LBn
0
) ⊂ Z.

Then, from Hanh Banach’s Theorem there exists z0 6= 0 such that

〈LBn0 z, z0〉 = 0, ∀z ∈ Z.

In particular, if we put z = z0, then 〈LBn0 z0, z0〉 = 0, which contradicts (2.16).

Now, suppose that Rang(LBn0 ) = Z, i.e., Rang(Bn0Bn0∗) = Z, so Rang(Bn0) = Z. Then, from

Theorem 2.1 we have that (2.4) is approximately controllable.
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3 Main Results.

Now, we study the controllability of the system

z(n + 1) = T (n)z(n) + B(n)u(n), n ∈ IN∗, z(n) ∈ Z, u(n) ∈ U, (3.17)

where Z, U are Hilbert spaces, IN∗ = IN ∪{0}, B ∈ l∞(IN,L(U,Z)), u ∈ l2(IN,U) and {T (t)}t≥0

is a strongly continuous semigroup given by:

T (t)z =

∞∑

j=1

eAjtPjz, z ∈ Z, t ≥ 0

according to lemma 1.1.

Proposition 3.1 The evolution operator Φ = {Φ(m,n)}(m,n)∈Λ associated to the equation (3.17),

is given by the formula Φ(m,n) = T (Θ(m,n)), where

Θ(m,n) =
m2 − n2 − m + n

2
∈ IN,m ≥ n.

Proof We know that

Φ(m,n) = T (m − 1)T (m − 2) · · · T (n) = T (m − 1)T (m − 2) · · · T (m − k),

where m = n + k. Then,

Φ(m,n) = T (m − 1 + m − 2 + · · · + m − k) = T

(
km −

k∑

i=1

i

)

= T

(
km −

k(k + 1)

2

)
= T

(
2km − kk − k

2

)

= T

(
k(2m − k) − k

2

)
= T

(
k(m + n) − k

2

)

= T

(
k(m + n − 1)

2

)
= T

(
(m − n)(m + n − 1)

2

)

= T

(
m2 − n2 − m + n

2

)
= T (Θ(m,n)).

Proposition 3.2 Under the hypothesis (1.3) the operator

LBn0 z = Bn0Bn0∗z =

n0∑

k=1

Φ(n0, k)B(k − 1)B∗(k − 1)Φ∗(n0, k)z,
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can be written as follows

LBn0 =

∞∑

j=1

LB
n0

j
Pj ,

where

LB
n0

j
= Bn0

j Bn0∗
j =

n0∑

k=1

eAjΘ(n0,k)BB∗eA∗

j Θ(n0,k)

and Θ(n0, k) =
n2

0 − k2 − n0 + k

2
∈ IN .

Lemma 3.1 (a) System (1.2) is exactly controllable if, and only if, there exist γ >0 such that

〈LBn
j
Pjz, Pjz〉 ≥ γ‖Pjz‖

2, ∀z ∈ Z, j = 1, 2, 3, . . .

(b) System (1.2) is approximately controllable if, and only if, each of the following system

z(n + 1) = eAjnz(n) + Bju(n), z(n) ∈ Rang(Pj), n ∈ IN, j = 1, 2, 3, . . . (3.18)

is approximately controllable.

(c) System (1.2) is approximately controllable if, and only if,

〈LBn
j
Pjz, Pjz〉 > 0, ∀z 6= 0 in Z, j = 1, 2, 3, . . .

Proof

(a) Suppose that there exist γ > 0 such that 〈LBn
j
Pjz, Pjz〉 ≥ γ‖Pjz‖

2. Then

〈LBn0 z, z〉 =

〈
∞∑

j=1

LB
n0

j
Pjz,

∞∑

j=1

Pjz

〉

=

〈
∞∑

j=1

(
n0∑

k=1

eAjΘ(n0,k)BB∗eA∗

j Θ(n0,k)

)
Pjz,

∞∑

j=1

Pjz

〉

=

∞∑

j=1

∞∑

m=1

〈
n0∑

k=1

eAjΘ(n0,k)BB∗eA∗

j Θ(n0,k)Pjz, Pmz

〉

=

∞∑

j=1

〈
n0∑

k=1

eAjΘ(n0,k)BB∗eA∗

j Θ(n0,k)Pjz, Pjz

〉

=

∞∑

j=1

〈LB
n0

j
Pjz, Pjz〉 ≥ γ

∞∑

j=1

‖Pjz‖
2 = γ‖z‖2
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So, (1.2) is exactly controllable by Theorem 2.1 part (a) − (ii). Conversely, suppose that

(1.2) is exactly controllable , then by Theorem 2.1 part (a) − (ii), there exist γ > 0 such

that 〈LBn0 z, z〉 ≥ γ‖z‖2. In particular,

〈LB
n0

j
Pjz, Pjz〉 =

〈
∞∑

i=1

LB
n0

i
PiPjz, Pjz

〉
= 〈LBn0 Pjz, Pjz〉 ≥ γ‖Pjz‖

2,

which conclude the proof of (a).

(b) Assume that (1.2) is approximately controllable and there exists j such that

z(n + 1) = eAjnz(n)Bju(n), z(n) ∈ R(Pj), n ∈ IN

is not approximately controllable. Then by theorem 2.1 part (b) − (iii), there exist zj ∈

R(Pj), zj 6= 0 such that

B∗
j eA∗

j nzj = 0.

Moreover, since (1.2) is approximately controllable, we have

B∗T ∗(n)z = B∗Φ∗(n)z = 0 ⇒ z = 0.

Now, if we put z = Pjzj = zj , then

B∗T ∗(n)z = B∗
∞∑

k=1

eA∗

k
Θ(n,k)Pkz = B∗eA∗

j Θ(n,k)Pjz = (Bj)
∗eA∗

j Θ(n,k)zj = 0,

which implies that zj = 0, and this contradicts the assumption. Therefore, (3.18) is ap-

proximately controllable for all j.

If (3.18) is approximately controllable for all j, then, by Theorem 2.1 part (b) − (ii),

〈LB
n0

j
Pjz, Pjz〉 > 0, z 6= 0.

So,

〈LBn0 z, z〉 =

〈
∞∑

j=1

LB
n0

j
Pjz,

∞∑

j=1

Pjz

〉

=

〈
∞∑

j=1

(
n0∑

k=1

eAjΘ(n0,k)BB∗eA∗

j Θ(n0,k)

)
Pjz,

∞∑

j=1

Pjz

〉

=

∞∑

j=1

∞∑

m=1

〈
n0∑

k=1

eAjΘ(n0,k)BB∗eA∗

j Θ(n0,k)Pjz, Pmz

〉

=

∞∑

j=1

〈
n0∑

k=1

eAjΘ(n0,k)BB∗eA∗

j Θ(n0,k)Pjz, Pjz

〉

=
∞∑

j=1

〈LB
n0

j
Pjz, Pjz〉 > 0, z 6= 0
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Hence, (1.2) is approximately controllable and (b) is proved.

(c) follows immediately from (b) and Theorem 2.1 part (b).

4 Applications

Now, as an application of the main results of this paper we shall consider two important examples,

a flow-discretization of the controlled heat equation and the controlled wave equation.

Example 4.1 Heat Equation

Considere the heat equation





yt = yxx + u(t, x)
y(0, x) = y0(x)
yx(t, 0) = yx(t, 1) = 0

(4.19)

The system (4.19) can be written as an abstract equation in the space Z = L2[0, 1]

{
z′ = −Az + Bu(t), z ∈ Z
z(0) = z0

(4.20)

where B = I, the control function u belong to L2[0, r, Z] and the operator A is given by Aφ =

−φxx with domain D(A) = H2 ∩ H1
0 , and has the following spectral decomposition.

a) For all z ∈ D(A) we have

Az =
∞∑

j=1

j2π2〈z, φj〉φj ,

where φj(x) = sin(jπx).

b) −A is the infinitesimal generator of a C0-semigroup {T (t)}t≥0 given by

T (t)z =
∞∑

j=1

e−λjtEjz, z ∈ Z, t ≥ 0, (4.21)

where Ejz = 〈φj , z〉 and λj = j2π2.

So, {Ej} is a family of complete orthogonal projections in Z and

z =
∞∑

j=1

Ejz, z ∈ Z.
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Now, the discretization of (4.20) on flow is given by

{
z(n + 1) = T (n)z(n) + B(n)u(n), z ∈ Z
z(0) = z0

(4.22)

In this case, T ∗(t) = T (t) and B = I. We shall see that (4.22) is exactly controllable. In fact,

in this case we have that:

Bn0 : l2(IN,U) −→ Z, Bn0u =

n0∑

k=1

T (Θ(n0, k))u(k − 1)

and

LBn0 : Z −→ Z, LBn0 = Bn0Bn0∗ =
∞∑

j=1

LB
n0

j
Ejz,

where LB
n0

j
=

n0∑

k=1

e−2λjΘ(n0,k).

Now, we shall prove the existence of γ > 0 such that

〈LB
n0

j
Ejz,Ejz〉 ≥ γ‖Ejz‖

2.

This is equivalent to the existence of γ > 0 such that

[
n0∑

k=1

e−2λjΘ(n0,k) − γ

]
‖Ejz‖

2 ≥ 0,

which is obviously true for 0 < γ < 1 since e−2λjΘ(n0,n0) = 1.

Then, for such γ we have

〈LBn0 z, z〉 = 〈
∞∑

j=1

LB
n0

j
Ejz,Ejz〉 =

∞∑

j=1

〈LB
n0

j
Ejz,Ejz〉 ≥ γ

∞∑

j=1

‖Ejz‖
2 = γ‖z‖2.

Thus, 〈LBn0 z, z〉 ≥ γ‖z‖2, z ∈ Z. Therefore, applying Theorem 2.1 part (a)− (ii) we obtain that

(4.22) is exactly controllable.

Example 4.2 Wave Equation

Considere the wave equation





ytt = yxx + u(t, x)
y(t, 0) = y(t, 1) = 0
y(0, x) = y0, yt(0, x) = y1(x)

(4.23)
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The system (4.23) can be written as an abstract second order equation in the Hilbert space

X = L2[0, 1] as follows:

{
y′′ = −Ay + u(t)
y(0) = y0, y

′(0) = y1
(4.24)

where the operator A is given by Aφ = −φxx with domain D(A) = H2∩H1
0 , and has the following

spectral decomposition.

For all x ∈ D(A) we have

Ax =

∞∑

j=1

λj〈x, φj〉φj =

∞∑

j=1

λjEjx,

where λj = j2π2, φj(x) = sin(jπx), 〈·, ·〉 is the inner product in X and Ejx = 〈x, φj〉φj .

So, {Ej} is a family of complete orthogonal projections in X and x =

∞∑

j=1

Ejx, x ∈ X.

Using the change of variables y′ = v. the second order equation (4.24) can be written as a

first order system of ordinary differential equations in the Hilbert space Z = X1/2 × X as

{
z′ = Az + Bu(t), z ∈ Z
z(0) = z0

(4.25)

where

z =

[
w
v

]
, B =

[
0
I

]
, A =

[
0 I

−A 0

]
, (4.26)

A is an unbounded linear operator with domain D(A) = D(A)×X and u∈ L2(0, τ,X) = U . The

proof of the following theorem follows from Theorem 3.1 (see, [7]) by putting c = 0 and d = 1.

Theorem 4.1 The operator A given by (4.26), is the infinitesimal generator of a strongly con-

tinuous semigroup {T (t)}t∈IR given by

T (t)z =

∞∑

j=1

eAjtPjz, z ∈ Z, t ≥ 0, (4.27)

where {Pj}j≥1 is a complete family of orthogonal projections in the Hilbert space Z given by

Pj = diag[Ej , Ej ], j ≥ 1 (4.28)

and

Aj = B̃jPj , B̃j =

[
0 1

−λj 0

]
, j ≥ 1. (4.29)
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Now, the discretization of (4.25) on flow is given by
{

z(n + 1) = T (n)z(n) + B(n)u(n), z ∈ Z
z(0) = z0

(4.30)

where

B : U −→ Z, Bu =

[
0
I

]
u

We want to show that (4.30) is approximately controllable. In this case, we have

Bn0 : l2(IN,U) −→ Z, Bn0u =

n0∑

k=1

T (Θ(n0, k))Bu(k − 1)

and

LBn0 : Z −→ Z, LBn0 = Bn0Bn0∗

Since

BB∗ =

[
0 0
0 I

]
,

we have that

PjBB∗ = BB∗Pj , j = 1, 2, 3, . . . . (4.31)

On the other hand, we have that T ∗(t) = T (−t). Then

LBn0 z =

n0∑

k=1

T (Θ(n0, k))BB∗T ∗(Θ(n0, k))z

=

n0∑

k=1

∞∑

j=1

eAjΘ(n0,k)PjBB∗
∞∑

i=1

e−AjΘ(n0,k)Pjz

=

∞∑

j=1

n0∑

k=1

eAjΘ(n0,k)BB∗e−AjΘ(n0,k)Pjz

=
∞∑

j=1

LB
n0

j
Pjz.

where LB
n0

j
= Bn0

j Bn0∗
j =

n0∑

k=1

eAjΘ(n0,k)BB∗e−AjΘ(n0,k).

Hence, LBn0 =
∞∑

j=1

LB
n0

j
.

Let z = [z1, z2]
T in Z. It is not difficult to verify that

LB
n0

j
Pjz =

n0∑

k=1

n0[0, Ejz2]
T .
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Then

〈LB
n0

j
Pjz, Pjz〉 = 〈n0[0, Ejz2]

T , [Ejz1, Ejz2]
T 〉 = n0‖Ejz2‖

2 > 0, ∀j

Hence, using (4.31), we have for z 6= 0 in Z that

〈LBn0 z, z〉 = 〈

∞∑

j=1

LB
n0

j
Pjz,

∞∑

j=1

Pjz〉 =

∞∑

j=1

〈LB
n0

j
Pjz, Pjz〉 = n0

∞∑

j=1

‖Ejz2‖
2 = n0‖z2‖

2 > 0.

In consequence, by Lemma 3.1 part (c), the equation (4.30) is approximately controllable.
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