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Abstract

We extend the concept of energy to directed graphs in such a way that Coulson’s Integral

Formula remains valid. As a consequence, it is shown that the energy is increasing over the

set Dn,h of digraphs with n vertices and cycles of length h, with respect to a quasi-order

relation. Applications to the problem of extremal values of the energy in various classes of

digraphs are considered.

1 Introduction and terminology

A digraph (or directed graph) G = (V,D) is defined to be a finite set V and a set D of ordered

pairs of elements of V. The elements of V are called vertices and the elements of D are called

directed edges or arcs. Sometimes we denote by VG and DG the set of vertices and arcs of G,

respectively. We consider here simple digraphs.

Two vertices are called adjacent if they are connected by an arc. If there is an arc from vertex

x to vertex y we indicate this by writing xy. A path of length n − 1 (n ≥ 2), denoted by Pn, is

a graph with n vertices {v1, . . . , vn} and with n − 1 arcs vivi+1, where i = 1, . . . , n − 1. A cycle

of length n, denoted by Cn, is the digraph with the vertex set {v1, . . . , vn} having arcs vivi+1,

i = 1, . . . , n − 1 and vnv1. A linear digraph is a digraph in which every vertex has indegree and

outdegree equal to 1. Clearly, a linear digraph consists of cycles.

The adjacency matrix A of a digraph G whose vertex set is {v1, . . . , vn} is the n × n matrix

whose entry aij is defined as

aij =

{

1 if vivj ∈ D
0 otherwise

The characteristic polynomial |xI − A| of the adjacency matrix A of G is called the characteristic

polynomial of G and it is denoted by ΦG. The eigenvalues of A are called the eigenvalues of G.

The coefficients of the characteristic polynomial contain information on the structure of the

digraph, as we can see in the Coefficient Theorem for Digraphs [1, Theorem 1.2]

Theorem 1.1 Let G be a digraph with characteristic polynomial

ΦG = xn + b1x
n−1 + · · · + bn−1x + bn
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Then

bk =
∑

L∈Lk

(−1)comp(L)

for every k = 1, . . . , n, where Lk is the set of all linear subdigraphs L of G with exactly k vertices;

comp (L) denotes the number of components of L.

If G is an undirected graph then G can be viewed as a digraph G by identifying each edge of

G with a cycle of length 2 in G. Then Theorem 1.1 can be reformulated for undirected graphs as

follows [1, Theorem 1.3]:

Theorem 1.2 Let G be a graph with characteristic polynomial

ΦG = xn + b1x
n−1 + · · · + bn−1x + bn

Then

bj =
∑

L

(−1)comp(L) 2cyc(L)

where the sum is over all subgraphs L of G consisting of disjoint edges and cycles, having j

vertices; comp (L) is the number of components and cyc (L) is the number of cycles in L.

It follows from Theorem 1.2 that if G is a bipartite graph then the characteristic polynomial

of G can be expressed in the form

ΦG = xn +
∑

k≥1

(−1)k b (G, 2k)xn−2k (1)

where b (G, 2k) ≥ 0 for all k ≥ 1. This expression for ΦG induces in a natural way a quasi-order

relation “ � ” (i.e. a reflexive and transitive relation) over the set of all bipartite graphs: if G1

and G2 are bipartite graphs whose characteristic polynomials are in the form (1)

G1 � G2 ⇐⇒ b (G1, 2k) ≤ b (G2, 2k) for all k ≥ 1 (2)

If G1 � G2 and there exists a k such that b (G1, 2k) < b (G2, 2k) then we write G1 ≺ G2.

Gutman [3] introduced this quasi-order relation in order to compare the energies of different

graphs. The energy of a graph G, denoted by E (G), is defined to be the sum of the absolute

values of the eigenvalues of A. For a survey of the mathematical properties of the energy we refer

to [5]. Other recent results can be found in ([10],[11],[12],[13]).
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It is well known that if G is a bipartite graph, then the energy of G can be expressed by

means of the Coulson integral formula ([4] and [5])

E (G) =
2

π

∞
∫

0

x−2 ln






1 +

[ p

2
]

∑

k=0

b (G, k)x2k






dx (3)

which implies

G1 � G2 ⇒ E (G1) ≤ E (G2) (4)

G1 ≺ G2 ⇒ E (G1) < E (G2)

This increasing property of E have been successfully applied in the study of the extremal values

of the energy over a significant class of graphs ([6]-[9],[14]-[18]).

In this paper we extend the concept of energy to directed graphs in such a way that Coulson’s

Integral Formula remains valid. As a consequence, it is shown that the energy is increasing

over the set Dn,h of digraphs with n vertices and cycles of length h, with respect to a quasi-

order relation. Applications to the problem of extremal values of the energy in various classes of

digraphs are considered.

2 Energy of digraphs

In this section we generalize the concept of energy to digraphs. Note that in the case of digraphs,

the adjacency matrix is not necessarily symmetric and so the eigenvalues can be complex numbers.

Definition 2.1 Let G be a digraph with n vertices and eigenvalues z1, . . . , zn. The energy of G

is defined as

E (G) =
n

∑

i=1

|Re (zi)|

where Re (zi) denotes the real part of zi.

Example 2.2 Let G be the digraph shown in Figure 1. By Theorem 1.1, the characteristic

polynomial of G is

ΦG = x10 − x7 − 2x6 + 2x3 = x3
(

x4 − 2
) (

x3 − 1
)

The eigenvalues of G are 0, 0, 0,± 4
√

2,± 4
√

2i, 1 and −1
2 ±

√
3

2 i. Consequently,

E (G) = 2
4
√

2 + 2
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G

Figure 1

Of course, there are different ways to generalize the energy to digraphs. However, as we shall

see later, this generalization is consistent with some of the fundamental results in the theory.

Example 2.3 If G is a (undirected) graph we define a directed graph G with the same adjacency

matrix of G: VG = VG and every edge of G is replaced by a directed cycle of length 2. Clearly

AG = AG and so E (G) = E
(

G
)

. In this way, Definition 2.1 generalizes the concept of energy of

(undirected) graphs.

In the following examples we use Theorem 1.1 to calculate the characteristic polynomial of

the digraphs.

Example 2.4 Let G be an acyclic digraph (i.e., G has no cycles). Then E (G) = 0. In fact, the

characteristic polynomial of G is ΦG = xn, where n is the number of vertices of G. Consequently,

0 is the unique eigenvalue of G (of multiplicity n) and so E (G) = 0.

Example 2.5 Let Cn be the cycle of n vertices. Then the characteristic polynomial of Cn is

ΦC = xn − 1. Therefore,

E (Cn) =
n−1
∑

k=0

∣

∣

∣

∣

cos

(

2kπ

n

)∣

∣

∣

∣

Example 2.6 Let G be a digraph with n vertices and unique cycle Cr of length r, where 2 ≤ r ≤
n. Then

ΦG = xn − xn−r = xn−r (xr − 1)

Hence, the eigenvalues of G are the r-th roots of unity, each with multiplicity 1, and 0 with

multiplicity n − r. It follows that

E (G) = E (Cr) =

r−1
∑

k=0

∣

∣

∣

∣

cos

(

2kπ

r

)
∣

∣

∣

∣



Coulson’s integral formula for digraphs 5

In [7] and [9] the authors considered the problem of finding the maximal and minimal energy

among unicyclic graphs with a fixed number of vertices. It is natural to consider the same problem

for unicyclic digraphs.

Theorem 2.7 Among all unicyclic digraphs with n vertices, the minimal energy is attained in

digraphs which contain a cycle of length 2, 3 or 4. The maximal energy is attained in the cycle

Cn of length n.

Proof. Let G be a digraph with n vertices and unique cycle Cr of length r ≥ 2. It follows

from Example 2.6 that

E (G) = E (Cr) =
r−1
∑

k=0

∣

∣

∣

∣

cos

(

2kπ

r

)
∣

∣

∣

∣

If r = 2, 3 or 4 then E (Cr) = 2. Assume that r ≥ 5. We will show that

E (Cr) > 2

Recall that for every positive integer p

p−1
∑

k=0

cos

(

2kπ

p

)

= 0

which implies that

[ p

4
]

∑

k=0

cos

(

2kπ

p

)

= −
[ p

2
]

∑

k=[ p

4
]+1

cos

(

2kπ

p

)

(5)

Since r ≥ 5 then

cos

(

2π

r

)

> 0

Hence

1 < 1 + cos

(

2π

r

)

≤
r−1
∑

k=2

∣

∣

∣

∣

cos

(

2kπ

r

)∣

∣

∣

∣

Then

E (Cr) =
r−1
∑

k=0

∣

∣

∣

∣

cos

(

2kπ

r

)
∣

∣

∣

∣

= 1 + cos

(

2π

r

)

+

r−1
∑

k=2

∣

∣

∣

∣

cos

(

2kπ

r

)∣

∣

∣

∣

≥ 2

(

1 + cos

(

2π

r

))

> 2
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Now we show that if n > r ≥ 5 then

E (Cr) < E (Cn)

If n > r ≥ 5 and k = 1, . . . ,
[

r
4

]

then 2kπ
n

< 2kπ
r

which implies cos
(

2kπ
r

)

< cos
(

2kπ
n

)

since

2kπ
n

, 2kπ
r

∈ (0, π
2 ]. Hence

[ r
4
]

∑

k=0

cos

(

2kπ

r

)

<

[ r
4
]

∑

k=0

cos

(

2kπ

n

)

≤
[n
4
]

∑

k=0

cos

(

2kπ

n

)

(6)

On the other hand

1

2
E (Cr) =

[ r
2
]

∑

k=0

∣

∣

∣

∣

cos

(

2kπ

r

)
∣

∣

∣

∣

=

=

[ r
4
]

∑

k=0

∣

∣

∣

∣

cos

(

2kπ

r

)∣

∣

∣

∣

+

[ r
2
]

∑

k=[ r
4
]+1

∣

∣

∣

∣

cos

(

2kπ

r

)∣

∣

∣

∣

so the result follows applying (5) and (6).

Example 2.6 shows that the energy of a unicyclic digraph is equal to the energy of its unique

cycle. This situation can be generalized.

Definition 2.8 Let G be a digraph. We define the cyclic part of G, denoted by Gc, as the

subdigraph of G induced by the set of arcs which belong to a cycle of G.

Example 2.9 Figure 2 shows the cyclic part Gc of the digraph G in Figure 1.

Gc

Figure 2



Coulson’s integral formula for digraphs 7

Theorem 2.10 Let G be a digraph. Then E (G) = E (Gc).

Proof. By Theorem 1.1, if a ∈ DG does not belong to a cycle of G then ΦG = ΦG−a.

More generally, let W = {a ∈ DG : a does not belong to a cycle of G}. Then it is clear that

Gc = G − W and ΦG = ΦG−W = ΦGc
. It follows that E (G) = E (Gc).

It is clear now that Example 2.6 is a particular case of Theorem 2.10.

Definition 2.11 A digraph G es pure-cyclic (abbreviated as pc) if G is weakly connected and

Gc = G.

In other words, a weakly connected digraph G is pc if every arc belongs to a cycle of G.

Recall that the direct sum G1

·
+ G2 of the digraphs G1 = (V1,D1) y G2 = (V2,D2), where V1

and V2 are disjoint, is the digraph (V,D) such that V = V1 ∪ V2 and D = D1 ∪ D2.

Proposition 2.12 Let G = G1

·
+ G2. Then E (G) = E (G1) + E (G2).

Proof. The adjacency matrix of G has the form

(

A (G1) 0
0 A (G2)

)

where A (G1) and A (G2) are the adjacency matrices of G1 and G2, respectively. It follows

immediately that Φ
G1

·

+G2

= ΦG1
ΦG2

and so E (G) = E (G1) + E (G2).

Theorem 2.13 Let G be a digraph. Then Gc is a direct sum of (unique) pc subdigraphs of G.

In particular, if Gc = P1

·
+ P2

·
+ · · ·

·
+ Ps, where each Pk is pc, then E (G) =

s
∑

k=1

E (Pk).

Proof. Keeping the notation in the proof of Theorem 2.10, it is clear that

Gc = G − W = P1

·
+ P2

·
+ · · ·

·
+ Ps,

where each Pk is pc. Therefore, by Theorem 2.10 and Proposition 2.12, we conclude that

E (G) = E (Gc) =

s
∑

k=1

E (Pk)
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3 Coulson’s integral formula for the energy of a digraph

Let G be a digraph with n vertices and eigenvalues z1, . . . , zn. If A is the adjacency matrix of G

then

Tr (A) =

n
∑

k=1

zk = 0

which implies

n
∑

k=1

Re (zk) = 0 =
n

∑

k=1

Im (zk)

and consequently,

E (G) = 2
∑

+

Re (zk) (7)

where
∑

+
indicates the summation over all eigenvalues with positive real part.

Theorem 3.1 (Coulson’s integral formula for digraphs) Let G be a digraph with n vertices. Then

E (G) =
1

π

+∞
∫

−∞

[

n − ixΦ′
G (ix)

ΦG (ix)

]

dx (8)

In the above formula,
+∞
∫

−∞
F (x) dx stands for the principal value of the respective integral, i.e.,

lim
t→∞

t
∫

−t

F (x) dx

Proof. The proof is similar to the graph version with some modifications. If

ΦG (z) =

p
∏

j=1

(z − wj)
µj

is the characteristic polynomial of the digraph G then the eigenvalues w1, . . . , wp are in general

complex numbers. Since the coefficients of ΦG (z) are real numbers (integers) we know that if wk is

an eigenvalue then wk is also an eigenvalue. Furthermore, these can appear on the imaginary axis.

Bearing in mind that it is not possible to integrate along a curve passing through a singularity,

the contour Γ is changed to the one shown in Figure 3



Coulson’s integral formula for digraphs 9

−r

r

r
w1

wk

wk

ε

ε′

ε

ε′

C2

C3

C1

Γ

x

y

Figure 3
In this contour we choose r > ‖w1‖, where w1 has maximal module among all wk, k = 1, . . . , p.

As we can see, Γ consists of the counterclockwise oriented semicircles C1, C2 and C3, with radius

r, ε and ε′, respectively, and three line segments.

As a consequence of the Cauchy integral formula [2] applied to the function

f (z) := z
Φ′

G (z)

ΦG (z)
= z

p
∑

j=1

µj

z − wj

we deduce

1

2πi

∮

Γ

f (z) dz =
∑

+

µjwj =
∑

+

zj =
∑

+

Re (zj) =
1

2
E (G) (9)

On the other hand, evaluating the above integral along each of the curves which conform Γ, and

letting r → ∞, ε → 0 and ε′ → 0 then

1

2πi

∮

Γ

f (z) dz =
1

2πi

∮

Γ

[f (z) − n] dz

=
1

2π

+∞
∫

−∞

[n − f (iy)] dy (10)

since
∫

C1

[f (z) − n] dz = 0 if r → +∞ and
∫

C2

[f (z) − n] dz +
∫

C3

[f (z) − n] dz = 0 if ε → 0 and

ε′ → 0. The result follows from (9) and (10). In case there are more eigenvalues on the imaginary

axis we proceed similarly.

Remark 3.2 It is easy to see that Coulson’s formula for the energy of digraphs is also valid for

multidigraphs in general.
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Corollary 3.3 If G be a digraph with n vertices then

E (G) =
1

π

+∞
∫

−∞

dx

x2
log

[

xnΦG

(

i

x

)]

Proof. By Theorem 3.1,

E (G) =
1

π

+∞
∫

−∞

[

n − ixΦ′
G (ix)

ΦG (ix)

]

dx

=
1

π

0
∫

−∞

[

n − ixΦ′
G (ix)

ΦG (ix)

]

dx +
1

π

+∞
∫

0

[

n − ixΦ′
G (ix)

ΦG (ix)

]

dx

Setting x = 1
t

it follows that

E (G) =
1

π

+∞
∫

−∞

[

n − i1
t
Φ′

G

(

i1
t

)

ΦG

(

i1
t

)

]

dt

t2

Integrating by parts and considering

u =
1

t
and dv =

[

n

t
− i 1

t2
Φ′

G

(

i1
t

)

ΦG

(

i1
t

)

]

dt

we deduce that

du = − 1

t2
dt y v = log

[

tnΦG

(

i

t

)]

and so

E (G) =
1

π

(

1

t
log

[

tnΦG

(

i

t

)])+∞

−∞

+
1

π

+∞
∫

−∞

1

t2
log

[

tnΦG

(

i

t

)]

dt

=
1

π

+∞
∫

−∞

1

t2
log

[

tnΦG

(

i

t

)]
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4 Increasing property of the energy of digraphs

Consider the set Dn,h consisting of digraphs with n vertices and every cycle has length h.

Theorem 4.1 If G ∈ Dn,h then the characteristic polynomial of G has the form

ΦG = xn +
∑

k≥1

(−1)k b (G, kh) xn−kh (11)

where b (G, kh) ≥ 0 for every k ≥ 1.

Proof. By Theorem 1.1, the companion coefficient of xn−kh is given by

bkh =
∑

L∈Lkh

(−1)comp(L)

Since every cycle of G has length h, it follows that

L ∈ Lkh ⇔ L is a direct sum of k cycles of length h of G

Hence bkh = (−1)k b (G, kh), where b (G, kh) ≥ 0 is the number of linear subdigraphs of G

consisting of k cycles of length h. Furthermore, it is clear that bj = 0 if j is not a multiple of h,

because in this case Lj = ∅.

Now we define a quasi-order relation over Dn,h.

Definition 4.2 Let G1 and G2 elements of Dn,h. Then we define G1 � G2 if the following

condition holds:

b (G1, kh) ≤ b (G2, kh) for every k ≥ 1.

If G1 � G2 and there exists k such that b (G1, kh) < b (G2, kh) then G1 ≺ G2.

Clearly, this is a reflexive and transitive relation over Dn,h.

Theorem 4.3 Let h be an integer of the form h = 4l−2, where l ≥ 1. Then the energy increases

with respect to the quasi-order relation defined over Dn,h. In other words, if G1, G2 ∈ Dn,h then

G1 � G2 ⇒ E (G1) ≤ E (G2)

and

G1 ≺ G2 ⇒ E (G1) < E (G2)
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Proof. Let B ∈ Dn,h. Then by Theorem 4.1

ΦB = xn +
∑

k≥1

(−1)k b (B, kh) xn−kh

Then

ΦB

(

i

x

)

=
in

xn
+

∑

k≥1

(−1)k b (B, kh)
in−kh

x
n−kh

=
in

xn



1 +
∑

k≥1

(−1)k b (B, kh) xkhi−k(4l−2)





=
in

xn



1 +
∑

k≥1

(−1)k b (B, kh) xkh (−1)−k





=
in

xn



1 +
∑

k≥1

b (B, kh) xkh





By Corollary 3.3

E (B) =
1

π

+∞
∫

−∞

dx

x2
log



xn in

xn



1 +
∑

k≥1

b (B, kh) xkh









=
1

π

+∞
∫

−∞

dx

x2
log



in



1 +
∑

k≥1

b (B, kh) xkh









Since

1

π
p.v.

+∞
∫

−∞

log [in]
dx

x2
= 0

where p.v. is the principal value of Cauchy’s integral, it follows that

E (B) =
1

π

+∞
∫

−∞

log



1 +
∑

k≥1

b (B, kh)xkh





dx

x2

This clearly implies that the energy increases with respect to the quasi-order relation defined over

Dn,h.

We next use Theorem 4.3 to study the problem of extremal values of the energy for various

classes of digraphs. As we mentioned before, a graph G can be considered as a digraph G, where

each edge of G corresponds to a cycle of length 2 in G. We can extend this idea: let h ≥ 2 an
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integer and G a graph. We construct a family of digraphs from G as follows: to each edge uv of

G corresponds a directed path of length r from u to v and a directed path of length s form v to

u, in such a way that r + s = h. This family of digraphs associated to G is denoted by Dh (G).

It is clear that if h = 2 then D2 (G) =
{

G
}

.

Example 4.4 Figure 4 shows some elements of D5 (G) for the given graph G.

Figure 4

When T is a tree then Dh (T ) has interesting properties.

Proposition 4.5 Let h ≥ 2 an integer and T a tree with n vertices. Then

1. Dh (T ) ⊆ Dp,h, where p = (n − 1) (h − 2) + n;

2. If

ΦT = xn +
∑

k≥1

(−1)k b (T, 2k) xn−2k

then for every X ∈ Dh (T )

ΦX = xp +
∑

k≥1

(−1)k b (T, 2k) xn−hk

In particular, all digraphs in Dh (T ) are cospectral.

Proof. 1. By definition, it is clear that the unique cycles in X ∈ Dh (T ) correspond to the

edges in T , and these have length h. Moreover, for each edge there are h−2 new vertices, together

with the vertices in T gives p = (n − 1) (h − 2) + n vertices in X.

2. By Theorem 1.1, the companion coefficient of xn−hk in ΦX is
∑

L∈Lhk

(−1)comp(L). Since

X ∈ Dp,h, every cycle of X has length h and consequently, L ∈ Lhk if and only if L is a direct
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sum of k disjoint cycles of length h. From the definition of X, this number is equal to the number

of k independent edges in T , which is exactly b (T, 2k).

Theorem 4.6 Let h be an integer and T a family of trees with n vertices. Assume that L is a

minimal element and M is a maximal element of T with respect to the quasi-order defined in

(2). Then every X ∈ Dh (L) and Y ∈ Dh (M) are, respectively, minimal and maximal elements

of

Dh (T ) = {Dh (T ) : T ∈ T }

Proof. Let Z ∈ Dh (T ) for some T ∈ T . Since L � T � M , it follows from the second part

of Proposition 4.5 that X � Z � Y .

Corollary 4.7 Let h be an integer of the form h = 4k − 2, where k ≥ 1 and T a family of trees

with n vertices. If L is a minimal element and M is a maximal element of T with respect to the

quasi-order relation, then the minimal energy in Dh (T ) is attained in Dh (L) and the maximal

energy is attained in Dh (M).

The previous Corollary states that if the extremal values (with respect to the quasi-order) of a

family of trees T are known then the extremal values of the energy in Dh (T ) can be determined.

Example 4.8 Let T be the family of all trees with n vertices. It is well known that the star Sn

and the path Pn are minimal and maximal elements, respectively [3]. It follows that the digraphs

in Dh (Sn) and Dh (Pn) have minimal and maximal energy, respectively, in Dh (T ).
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