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On represent at ion theorems for nonmonotonic 
consequence relations 

Ram6n Pino Pkrez and  Carlos UzcAtegui 

One of the main tools in the study of nonmonotonic consequence relations is the represen- 
tation of such relations in terms of preferential models. In this paper we give an unified and 
simpler framework to obtain such representation theorems. 

1 Introduction 

A consequence relation k is a binary relation between formulas on a classical propositional language. 
We are interested in nonmonotonic consequence relations, i .e .  those relations that  do not satisfy the 
monotonicity rule: If sky then o A Pky. Several systems of postulates (cumulative, preferential, 
rational and others) for classifying nonmonotonic consequence relations has been investigated [6, 
7, 4, 3, 2, 51. One of the main features of these systems is the amount of monotony that  is required 
from the consequence relation. The study of non monotonic reasoning has been motivated by 
problems arising in artificial intelligence (knowledge representation, belief revision, etc). There is a 
vast literature concerning nonmonotonity, for the particular approach dealt with in this paper we 
refer the reader t o  [9, 61 and the references therein. 

An important tool for the study and classification of nonmonotonic consequence relations is the 
representation of such relations in terms of preferential models. A preferential model M is a triple 
(S, 2 ,  +), where S is a set of states, z is function assigning t o  each state a valuation and + is a binary 
relation over S. M is said to  be a model of k when okp iff Z(S) + p for all s which are +-minimal 
among all states t such that  z(t) 1 o ( the details are given in $2). A consequence relation k is 
preferential relation k if and only if it is of the form k M  for some preferential model M ([6]). If t- 
is rational then the model can be found ranked ([7]). Disjunctive relations were studied in [2] and 
shown to  be those relations represented by filtered models. When the relation also satisfies rational 
transitivity then M can be found quasi-linear ([I, 51). These results are referred t o  as representation 
theorems and they can be regarded as a sort of a soundness and completeness theorems. These 
representations, besides providing a semantic interpretation of k ,  are also quite useful to establish 
most properties of k by model theoretic arguments instead of proof theoretic ones. 

In this paper we give simpler proofs of all representation theorems for injective relations men- 
tioned above. The key idea is the notion of the essential relation <, (defined in $3) associated with 
a preferential consequence relation k .  We will show that  if t- is preferential and disjunctive, then 
<, is a transitive strict order defined on a set of valiations such that  the models of { P  : crt-p) are 
the <,-minimal valuations that  satisfy a. In other words, <, provides a representation of k .  We 
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will show also that if b is disjunctive (resp. rational, rational transitive), then <, is filtered (resp. 
ranked, quasi-linear). Most of these results were known but they were proved by quite different 
means (see [6, 7, 2, 4, 51). We think our proofs are easier and in a sense "canonical7'. One interesting 
feature of our approach is that <, provides a direct way of "ordering" the valuations without using 
an auxiliary order over formulas, as is the case of other proofs of representation theorems. Freund 
introduced a property (that we denote by WDR) weaker than disjunctiveness. We show that if b 
is preferential and satisfies WDR, then <, represents b. We will see in 44 that in spite of the fact 
that in some cases <, is not transitive, it still provides a good representation of some preferential 
relations for which other methods do not work. 

A preliminary version of this work appears as a technical report N IT-300, Universite de Lille 
I. April 1997. 

2 Preliminaries 

We recall some basic definitions and results from Kraus, Lehmann and Magidor [6], Lehmann and 
Magidor [7] and Freund [2] which will be used in the paper. 

We consider formulas of classical propositional calculus built over a set of variables denoted 
Var plus two constants T and I (the formulas true and false respectively). Let L be the set of 
formulas. If Var is finite we will say that the languagk L is finite. Let U be the set of valuations (or 
worlds), i.e. functions M : VarU {T, I) + {0,1) such that M ( T )  = 1 and M ( I )  = 0. We use 
lower case letters of the Greek alphabet to  denote formulas, and the letters M,  N, P, MI,  M2, .  . . to 
denote worlds. As usual, I- a means that a is a tautology and M + a means that M satisfies a 
where compound formulas are evaluated using the usual truth-functional rules. We consider certain 
binary relations between formulas. These relations will be called consequence relations and will be 
written b. 

Definition 2.1 A relation b is said to be cumulative iff the following rules hold 

REF aka 1 
L L E  va,P,r[abP& t-a+)r*rbPl 
RW va,P,r[abP& t-P+r*abrl  
CUT yo,  P, r [ a~Pbr  & abP * I 
CM yo,  P, r [ okP & a b y  * I 

These rules are known as the rules of the system C. The abbreviations above are read as follows: 
REF -reflexivity, LLE -left logical equivalence, RW -right weakening, CM -cautious monotony. CUT 
is self-explanatory, but it should be noted that this form of cut, which plays an important role in 
nonmonotonic logic, is weaker than the form of cut usually studied in Gentzen-style formulations of 
classical and intuitionistic logic. The latter implies transitivity of the inference relation; the former 
does not. 

It is well known [6] that the following rules (And, Reciprocity) are derivable from system C: 

AND yo7 P, r [ abb' & abr * 0bPA-Y 1 
RECIP  v a , P , r [ a b P & P b a & a b y * P k y l  



Definition 2.2 A relation t - ~  is said to be preferential ifl it is cumulative and satisfies the following 
rule (or): 

OR V a , P , r [ a k ~ & P k ~ ~ a v P k ~ l  

A relation k is said to be disjunctive rational ifl it is preferential and the following rule (dis- 
junctive rationality) holds 

DR V a l P 7 Y  [ avPkY & QFY 3 PkY 1 

A relation k is said to be rational i f l i t  is preferential and the following rule (rational monotony) 
holds 

It is well known [6, 91 that given the preferential rules (system C plus OR), RM implies DR and 
also that any preferential relation satisfies the following rule 

Let k be a consequence relation. As usual, C k ( a )  = {p : akP). If there is no ambiguity we 
shall write C(a) instead of Cb(a). If U (a) is a set of formulas (a formula) then Cn(U) (Cn(a) )  
will denote the set of classical consequences of U (a). 

We recall the definition of preferential models. 

Definition 2.3 A structure M is a triple (S, z ,  +) where S is a set (called the set of states), + 
is a strict order 0.e. transitive and irreflexive) on S and z : S -+ U is a function (called the 
interpretation function). 

Let M = (S, z ,  +) be a structure. We adopt the following notations: if T c S ,  then min(T) = 
{ t  E T : 73t' E T ,  t' 4 t ) ,  i.e. min(T) is the set of all minimal elements of T with respect to +; 
modM (a )  = { s  E S : z(s) + a); minM (a) = min(modM (a)). 

Definition 2.4 Let M = (S, z, +) be a structure and T c S. We say that T is smooth i f  it 
satisfies the following 

Vs E T \ min(T)  3s' E min(T)  s' + s 

M is said to be a preferential model if modM(&) is smooth for any formula a. 

Each preferential model has associated a consequence relation given by the following: 

Definition 2.5 Let M = (S, z, 4) be a preferential model. The inference relation kM is defined 
by the following 

The following representation theorems are one of the basic tools in the study of nonmonotonic 
consequence relations. The if part of them are not difficult to establish. The main subject of this 
paper consists in providing, for a large class of preferential relations, a 'canonical' way of proving 
the only i f  part. 
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Theorem 2.6 (h'rauss, Lehmann and Magidor [6]) A consequence relation b is preferential iff 
there is a preferential model M such that b = bM. 

A structure M = (S, 2 ,  <) is said to be a ranked model if it is a preferential model and there 
exists a strict linear order (R, <) and a function r : S + R such that for any s ,  s' E S, s < s' iff 
r ( s )  < r (s') . 
Theorem 2.7 (Lehmann and Magidor [7]) A consequence relation is rational iff there is a 
ranked model M such that b = b M .  

In general, it is not easy to  grasp the intuition behind the set of states S and the interpretation 
function 2.  A particular case, which is intuitively easy to  handle, is when the function z is injective 
(in this case, M is said t o  be an injective model). If a preferential model is injective one does not 
need to mention the interpretation function z ,  instead one can assume that S is a set of valuations 
and < is a strict smooth order over S, so z would be the identity function. In this case the notion 
of a smooth relation says that for every M E S and for every formula cr if M b cr and M is not in 
min(mod(cr) n S, <), then there is N E S such that N < M and N E min(mod(cr) n S, <) (where 
the notion of a <-minimal element is defined as in the paragraph following 2.3). The relation < is 
understood as a preference relation over valuations. Thus (I)  says that to  compute the consequences 
of a formula a we need to look only at  the preferred valuations of cr according to  <, i.e. those 
valuations belonging to  min (mod(&) n S) . 

Freund [2] studied some consequence relations admitting injective models. He observed that 
one can always assume that S is certain collection of valuations which we defined next 

Definition 2.8 Let k be a consequence relation. A valuation N is called normal w.r.t. k if there 
is a formula a such that N b C ( a ) .  

If there is not ambiguity we shall say that an interpretation is normal instead of normal with 
respect to k (in [2] normal valuations were called b-consistent). Freund showed (see remark 
3.1 in [2]) that if b is represented by an injective model then it can also be represented by an 
injective model where the set S is the collection of all normal valuation w.r.t. b .  Taking all this 
considerations into account we introduce the following 

Definition 2.9 Let b be a consequence relation and S the collection of normal valuation w.r.t b. 
W e  say that b is represented by an injective model if there is a smooth strict order < over S 
such that 

Let us observe that (2) can be restated in the following way: min(mod(a)nS, <) 2 mod(C(a)). 
Some consequence relations admit an injective representation where the equality holds. They were 
called standard in [2], the formal definition is the following 

Definition 2.10 Let b be a consequence relation and S the collection of normal valuation w.r.t 
b. W e  say that k is represented by a standard mo'del if there is a smooth strict order < over S 
such that 

mod(C(a)) = min(mod(a)  n S, <) 
Such order < will be called a standard order that represents k .  



3 The essential relation and standard representations 

It is not difficult to show that if the language is finite the notions of an injective and a standard 
models coincide (see [2]) but this is not the case if the language is infinite (an example will be given 
in §4). Freund characterized some preferential relations that admit a standard representation. In 
the case of a finite language his characterization is quite easy to state. The following property is 
called Weak Disjunctive Rationality 

WDR C(avP) 5 Cn(C(a )  U C(P)) 

Freund showed that for a finite language, a preferential relation admits an injective (thps standard) 
model iff it satisfies WDR. However, for infinite languages, he introduced a property stronger than 
WDR which.is based in the notion of a trace of a formula. The aim of this section is to give simple 
and uniform proofs of representation theorems for consequence relations that satisfy WDR. 

We define next the essential relation, which will play a key role in this paper. We will show 
that this relation can be considered the canonical relation that represents a given preferential 
consequence relation that satisfies WDR. The essential relation seems easier to handle than the 
relation defined by Freund. We will see in §4 that they are equal under some conditions. However, 
we will also give an example of a preferential relatibn b represented by our relation but not by 
Freund's. The idea behind the definition of the essential relation seems to be quite general and 
turns out to be also useful in a different context (see [ l C I ] ) .  

Notation: Given a consequence relation b we will always denote by S(b) the collection of normal 
valuation w.r.t b, when there is no ambiguity about which consequence relation is used we will just 
write S .  If M is a valuation, Th(M) will denote the theory of M ,  i.e. Th(M) = { a  : M + a}. For 

a fixed inference relation b and a valuation M ,  T ~ ( M )  will denote the set { a  : M + C(a)}, i.e. a 

sort of "nonmonotonic theory" of M .  If there is no ambiguity we write T ( M )  instead of T ~ ( M ) .  

Definition 3.1 Let b be a consequence relation. The essential relation is defined by the following: 
Let N and M normal valuations, 

In other words, M <, N iff Th(M) n T ( N )  = 0. 

The essential relation is not in general transitive (he  will see an example in §4). It is not difficult 
to show that transitivity of + is not necessary in order to get the easy half of 2.6 (but smoothness 
can not be avoided). This was already observed in [6]) and we state it for later reference. 

Lemma 3.2 ([6]) Let < be a binary non-reflexive (but not necessarily transitive) smooth relation 
over a set T of valuations. Define b by abP iff min(mod(a) r l  T, <) C mod@). Then b is 
preferential. M 

We will see that under the presence of WDR the relation <, is smooth and still represents 
in the sense that equation in 2.10 holds. For this reason we will use the following notion, which is 
more permissive than that of a standard model. 
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Definition 3.3 Let + a consequence relation and 4 a binary relation over S .  W e  say that 4 is  a 
standard relation that represents + if the following holds 

We emphasize that we do not ask the relation to be a strict smooth order, but in most interesting 
cases the relation will be smooth. We show next that (3) implies that + satisfies WDR. 

Lemma 3.4 Suppose + is  a consequence relation and < is  a standard relation that represents +. 
Then  + satisfies WDR. 

Proof: Let N b C(a) U C(P), we have to show that N + C(a V P). From (3) wk have that 
N E min(mod(a)) n min (mod(P)). It is easy to check that N E min(mod(a V P)). I 

The following observation shows that the essential relation associated with + is finer than any 
standard relation representing +. 
Lemma 3.5 Let + be a consequence relation and < a standard relation that represents +. Then  
for all normal valuation N and M ,  if N < M ,  then N <, M .  

Proof: Suppose N and M are normal valuation such that N+,M. That is to say, there is a such 

that N b a and M b C ( a ) .  By hypothesis M E min(mod(a) n S, <), therefore N + M .  I 

The following observation is obvious and says that <, satisfies one half of (3) without any 
hypothesis about +. 
Lemma 3.6 Let + be a consequence relation. If M b C(a) then M E m i n ( m o d ( a )  n S ,  <,). 

The following observation is well known [9] 

Lemma 3.7 Let + be a cumulative relation. If a+P then C(a) = C(ar\P). 

Lemma 3.8 Let + be a preferential relation. If M b a and M b C(P) then M b C(ar\P), 

Proof: Suppose a ~ P + y .  We want to show that M b y.  By the S rule, P+a -+ y,  since M b C(P) 
then M b a -+ y. Since M b a, then M + y. I 

Since we are dealing with non monotonic consequence relations we can not expect the set T (M)  
to be closed under A (not even in the case of a rational consequence relation). On the other hand, 
in general, T ( M )  is not closed under V. The next lemma establish under which condition T ( M )  is 
closed under V. 

Lemma 3.9 + satisfies WDR if and only i f  for any  M ,  T ( M )  is  closed under the connective v,  

i.e. for any  Pl , P2 E T (M) ,  (P1 vP2) E T ( M )  - 
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Proof: Suppose that P1,P2 E T ( M ) ,  so M + C(P;) for i = 1,2. Thus M + Cn(C(Pl) u C(P2)). 
BY WDR, C(PivP2) C Cn(C(P1) uC(P~) ) ,  then we have M + C(P1vP2), i.e. (P1vP2) E T(M) .  The 
other direction is also straightforward. I 

The following result is the basic representation thkorem in this paper. All others representation 
theorems that we will show are based on it and will only add that <, has nicer properties (like 
being transitive, filtered, modular or quasi-linear) when the preferential relation k satisfies some 
extra postulates besides WDR. This theorem is a generalization of Freund's main representation 
theorem (see his theorem 4.11 in [2]). 

Theorem 3.10 Let k be a consequence relation. T h e n  k is  a preferential relation satkfying WDR 
if, and only if <, is  a smooth standard relation representing k .  

Proof: The if part follows from 3.2 and 3.4. For the only if part we start by showing that <, is 
irreflexive. If M is normal then there exists a! such that M + C(o), so Th(M) n T ( M )  {a) f 0, 
i.e. M St, M .  

Now we show that <, is smooth. Let M E mod(o) n S .  We want to show that either 
M E min(mod(o) n S, <,) or there exists N E min(mod(o) n S, <,) with N <, M. We con- 
sider two cases: M + C(o) or M k C(o). In the former case, by lemma 3.6, we have M E 
min(mod(o) n S, <,). In the latter case define U = C(o) U {-.P : ,f3 E T(M)) .  We claim that U is 
consistent. Otherwise by compactness there are o l , ,  . . , om in C(o) and P I , .  . . , P, in T ( M )  such 
that {al ,..., om,-.P1 ,..., -.Pn) I- I. Hence o l ~ . - . ~ o ,  I- ,Blv...v/3, Put ,f3 = ,f31v...v/3n. By 
AND, o k o l ~ - . . ~ o , ,  SO by RW, o k P .  Hence, by lemma 3.7, C(o) = C(QA/~) .  By lemma 3.9, 
,f3 E T (M) .  Thus by lemma 3.8, M + C ( o ~ p ) ,  i.e. M + C(o), a contradiction. Now consider N 
such that N + U. By definition of U, N + C(o) so by lemma 3.6, N E min(mod(o) nS, <,). Also 
by definition of U it is clear that N <, M .  

To see that <, is a standard relation that represents k it suffices to show that if M E 
min(mod(o) n S, <,) then M + C(o), the other direction is given by 3.6. But this was already 

shown above, since we have proved that if M k C(o), then M 6 min(mod(o) n S, <,). I 

Since the usual definition of a standard model requires transitivity of the relation, it is quite 
natural to ask when is <, transitive. We will see in 54 an example of a preferential relation satisfying 
WDR for which <, is not transitive. The next lemma says that for the case of a finite language 
it suffices that k satisfies WDR. Later we will see that, in general, if k is disjunctive, then <, is 
transitive. 

Lemma 3.11 Suppose that the language is  finite and k is  preferential and satisfies WDR, then <, 
is  transitive. 

Proof: Suppose that M <, N and N <, P; we want to show that M <, P .  Since the language 
is finite for every valuation Q there is a formula y~ such that mod(yQ) = {Q). Now consider the 
formula a! = y ~ v y ~ v y p .  Note that mod(o) = {M, N,  P). By the assumptions, M is the only 
element of {M, N,  P) which can be minimal in mod(o). Therefore by the smoothness of mod(o), 
M <, P. I 
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Putting together 3.2, 3.4, 3.10 and 3.11 we obtain the following result which is essentially the 
same result of Freund (see his theorem 4.13 in [2]) but with a different proof. 

Theorem 3.12 Assume the language is finite. Then b is a preferential relation satisfying WDR 
if and only if <, is a standard order that represents b. I 

Now we will look at  stronger consequence relations. We start with relation that satisfies dis- 
junctive rationality DR. Next remark is trivial but useful 

Lemma 3.13 DR is equivalent to saying that C(crv/3) C(cr) U C ( P )  for all formulas cr and /3. 
In particular, any consequence relation satisfying DR satisfies WDR. I 

Lemma 3.14 The following properties are equivale?t for a cumulative relation b :  

(i) The relation b satisfies DR. 

(ii) For any valuations M ,  N and for any formulas a ,  /3 if M + C(cr) and N + C ( P )  then 
either M + C(crv/3) or N + C(crv/3). 

Proof: ( i  + i i )  Suppose M + C(cr) and N + C(/3).  For reductio, suppose M k C(crv/3) and 
N k C(crv/3). Then there are formulas yl, yz E C(crv/3) such that M k yl and N k 72. By 
AND, y l ~ y z  E C(crv/3), so by 3.13 y l ~ y z  E C(cr) or y l ~ y z  E C(/3). But in both cases we get a 
contradiction because neither M nor N are models of y l~yz .  

( i i  + i) Suppose y  E C(crv/3). We want to show that y  E C(cr) or y  E C(/3). Suppose not. 
Then there are valuations M ,  N such that M + C(cr),  N + C(/3),  M k y  and N k y. By (ii),  
M + C(crv/3) or N + C(crv/3). But in both cases we get a contradiction because neither M nor N 
are models of y. I 

The following relation between valuations was defined in [8]. We came up with the definition 
of <, by trying to extend the results in [8] to the case of an infinite language and to  a larger class 
of consequence relations. 

Definition 3.15 Let b a consequence relation. We define the relation <, over the normal valua- 
tions by: 

M <, N e VaV/3(M + C(cr) and N + C ( P )  + M + C(crv/3) and N k C(crv/3)) 

The relation <, is quite more intuitive and we show next that it is equal to <, under the 
presence of DR. 

Lemma 3.16 Let b a disjunctive rational relation. Then <, is equal to <,. 
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Proof: (<, <,) Suppose M <, N ,  M b C(cr),  N b C(/3). We want to show that M b C(crv/3) 
and N k C(crv/3). Since M b a,  M b crvp and M <, N ,  then N k C(crv/3). Therefore by 
proposition 3.14, M b C(crv/3). 

(<, <,) Suppose M <, N .  We want to show that T h ( M )  n T ( N )  = 0.  Suppose not, then 
there is a formula /3 such that M b /3 and N b C(/3). Let cr be a formula such that M b C(cr). 
By lemma 3.8, M b C(cr~ /3) ;  and since M <, N ,  then N k C((cr~P)v /3 ) .  But k ( (cr~P)v/3)  H /3, 
so N k C(/3),  a contradiction. I 

Lemma 3.17 If the relation + is disjunctive rational then <, is transitive. 

Proof: Suppose N <, M and M <, P but N {, P .  Let cr be such that P b C(cr) Bnd N b a. 
Let /3 be such that M b C(/3),  then it follows from the definition of <, that P k C(cr v /3) and 
M k C(cr v 0). By 3.14 + does not satisfy DR. I 

The following definition is due to Freund [2] 

Definition 3.18 A n  order 4 over valuations is filtered iff for any formula cr and any valuations 
M ,  N E mod(cr) such that M 6 min(cr) and N 6 min(cr) there exists P E min(cr) such that P 4 M 
and P 4  N .  

Lemma 3.19 If is disjunctive rational then <, is filtered. 

Proof: The argument is very close to  that in the proof of the smoothness of <, (cf. proof 
of proposition 3.10). By hypothesis and lemma 316, M k C ( a )  and N k C(cr).  Put U = 
C(cr) U {7/3 : /3 E T ( M ) )  U { l y  : y E T ( N ) ) .  We claim that U is consistent. Suppose not, then by 
compactness there are crl,. . . ,arn in C(cr),  p l , .  . . ,Pn in T ( M )  and 71, .  . ., y, in T ( N )  such that 
{ a l , .  . . , a,, 1/31, . . . , 7 p n ,  171,. . . , 77,)  k I. Hence . .AQ, k P l v .  v/3,vylv. . . vy,. Put 
/3 = /31v . . .~ /3n  and y = y l v . . . v y ,  . By AND, c r + c r l ~ . . - ~ c r r n  and by RW, cr+pvy. By obser- 
vation 3.9, /3 E T ( M )  and y E T ( N ) .  Thus by proposition 3.14 M b C(/3vy) or N b C(/3vy).  
Without lost of generality suppose that M b C(/3vy) (the other case is similar). By lemma 3.8, 
M b C ( c r ~ ( p v y ) )  and since cr+pvy, then by lemma 3.7, C(cr) = C ( c r ~ ( p v y ) ) ,  hence M b C(cr),  
a contradiction. Hence U is consistent. Let P be a model of U .  By definition of U ,  P b C(cr),  
P <, M and P <, N .  So by 3.6 P E min(cr) I 

Freund [2] has shown that a consequence relation is disjunctive rational if and only if it has a 
standard filtered model. The next theorem is the hard half of his result with a different proof. The 
theorem follows from 3.10, 3.17, and 3.19. 

Theorem 3.20 Let be a disjunctive rational relation. Then <, is a standard filtered order rep- 
resenting +. I 

Now we look at  the properties that <, would have in the presence of rational monotony RM. It 
is not difficult to check the well known fact (see [6])  that any rational relation satisfies DR. Thus, 
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if k is rational then  <, is filtered a n d  in particular.  transit ive.  W e  have a l ready mentioned t h a t  
rational relations a r e  represented by ranked models (see 2.7). A preferential model is ranked when 
t h e  order relation is modular .  W e  recall t h e  definition of modular  relation (see [7]):  

Definition 3.21 A relation < on E is said to be modular iff there exists a strict linear order + 
on some set 52 and a function r : E + 52 such that a < b e r ( a )  + r ( b ) .  

T h e  following characterization of modular i ty  is well-known a n d  easy t o  verify. 

Lemma 3.22 A n  order < on E is modular iff for any a ,  b, c E E if a and b are incomparable and 
a < c then b < c. I 

T h e  following result is well known a n d  we include i t s  proof for t h e  sake of completeness. 

Lemma 3.23 Let k be a rational relation. If a fi+, then C(ar\P) = C n ( C ( a )  U { P ) )  

Proof: Let 6 E C ( a )  then  by RM we have 6 E C(ar\P).  T h u s  C n ( C ( a )  U { P ) )  C C(ar\P). For t h e  
o the r  inclusion, if ar\Pk6 then  by t h e  rule S we have ak/3 + 6. Therefore 6 E C n ( C ( a )  U { P ) ) .  I 

T h e  next  result shows t h a t  under  t h e  presence of RM i t  is qu i t e  easy t o  check t h a t  N <, M. 

Lemma 3.24 Let k be a rational relation and N ,  M be normal models. Then N <, M if and only 
if there are a and /3 formulas such that N b C ( a ) ,  M b C ( P )  and N b C ( a v P )  but M k C(av/3).  

Proof: T h e  only i f  p a r t  comes f rom 3.16 (recall t h a t  rational relations a r e  in particular disjunctive 
rational) .  For  t h e  if p a r t ,  suppose t h a t  such a a n d  /3 exist ,  we will show t h a t  N <, M. Let y 
a n d  6 be  any  formulas  such t h a t  N b C ( y )  a n d  M b C ( 6 ) .  From proposition 3.14 we ge t  t h a t  
yv6 f iy(av/3)  a n d  also a v p  f i y ( y v 6 ) .  Hence f rom l e m m a  3.23 we g e t  t h a t  

and  from this  t h e  result  follows because N b C n (  C ( a v P )  U ( y v 6 ) )  s o  N b C ( y v 6 )  and  since 
M k C n (  C ( a v P )  U ( y v 6 ) )  a n d  M b a v p ,  we have M k C ( y v 6 ) .  I 

A straightforward consequence of th is  l e m m a  is t h e  following 

Lemma 3.25 Let k be a rational relation and N ,  M be normal models. N{,M and M{,N if and 
only if N ,  M b C ( y v 6 )  for all formulas y and 6 such that N b C ( y ) ,  M b C ( 6 ) .  I 

Lemma 3.26 If the relation k is rational then <, is modular. 



Proof: Let MI N ,  P be  normal  valuations. Suppose N{,M, M{,N a n d  M <, P. By 3.22 i t  suf- 
fices t o  show t h a t  N <, P. Let  a,  p , y  be  formulas such t h a t  M b C ( a ) ,  N b C ( p )  a n d  P b C ( y ) .  
Since M a n d  N a r e  incomparable,  by l emma 3.25 we have M b C ( a v p )  a n d  N b C ( a v p ) .  We 
claim t h a t  P &Cr C ( a v p v y )  a n d  N b C ( a v p v y ) ,  which implies, by l emma 3.24, t h a t  N <, P. 
T o  prove t h e  claim i t  suffices (by l emma 3.14) t o  see t h a t  P &Cr C ( a v p v y ) .  Since M <, P and  
M b C ( a v p )  a n d  P b C ( y ) ,  then  P &Cr C ( a v p v y ) .  I 

Now pu t t ing  together  3.20 a n d  3.26 we ge t  t h e  following well known theorem which has  been 
proved in many  different ways ([7, 4,  21). W e  will see in $4, t h a t  <, is in fact  t h e  unique s t andard  
modular order  t h a t  represents a given rational relation. 

Theorem 3.27 If b is a rational relation then <, is a standard and modular relation that repre- 
sents b. . 

T o  finish th is  section we will comment  a b o u t  a postula te  s t ronger  t h a n  rational monotony. A 
relation b is ra t ional  transit ive,  if i t  is preferential a n d  t h e  following rule (RT) holds 

I t  is known t h a t  rational transit ive consequence relations satisfies RM a n d  t h a t  rational transit ive 
consequence relations a r e  represented by 'quasi-linear' s t andard  relations ( a  relation < is quasi- 
linear if M is a valuation t h a t  is n o t  minimal then  for any  valuation N different of M we have 
N < M o r  M < N )  (see [I, 51). If b is rational transit ive then  <, is  quasi-linear (this follows from 
proposition 5.6 of [5]). 

4 Further properties of <, and some comments about standard 
models. 

In th is  section we address  t h e  problem of when a consequence relation has  a unique representation. 
Let u s  make  first s o m e  simple observations t o  p u t  t h e  question in t h e  right sett ing. O u r  definition 
of a n  injective model for a consequence relation b (see definition 2.9) requires t h a t  t h e  order 
relation 4 has  t o  be  on  t h e  collection S of all normal  valuations w.r. t .  b. We observed (just  before 
introducing definition 2.9) t h a t  th is  requirement can  be  assumed without  any  lost of generality. In 
other  words, the re  a r e  consequence relations b t h a t  can  be  represented (as  in 2.5) by various order 
relations defined o n  different se t s  of valuations. B u t  the re  is always at least o n e  such relation defined 
on  t h e  ent i re  s e t  S. I t  is nothing s t range  t h a t  the re  a r e  s o  many  representations,  jus t  recall t h a t  
only countable many  valuations a r e  needed t o  define t h e  semant ic  coun te rpar t  b of t h e  classical 
entailment relation t-. Taking th i s  considerations in to  account ,  t h e  question we want  t o  address  is  
whether for a given preferential relation b (admi t t ing  a n  injective model) the re  is  a unique order 
on  S representing b. In th i s  generality, th i s  uniqueness seems t o  be  qu i t e  rare  when t h e  language 
is infinite (it holds when i t  is finite). S o  we will also address  a more  restrictive question: if there  is 
a s tandard  model,  when is i t  unique? 
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It is well known that a subset T of the collection of valuations U suffices to define the classical 
relation b iff T is topologically dense in U with respect to a natural topology associated with U. 
This topology turns out to be quite useful in relation with the problems we address in this section. 
Its use will make some proofs short and simple, and more important, we will show that <, has a 
topological property that makes it unique among other standard relation. 

We will use the natural topology on the set of valuations coming from the identification of a 
valuation with the characteristic function of a set of propositional variables. In other words, each 
valuation N is viewed as a function N : Var + ( 0 , l ) .  The collection of all such functions is 
usually denoted by (0, I ) ~ " ' .  This set is endowed with the usual product topology where ( 0 , l )  is 
given the discrete topology. We will assume that Var is countable, so (0, 1)'"' is a metric space 
(in fact, homeomorphic to the classical Cantor space). The topology on (0, I ) ~ " '  is then defined 
by declaring mod(@) as the basic open sets for every formula a (in fact, mod(a) is also closed). 
We will regard S as a topological space by using its subspace topology. The well known basic facts 
that will be needed about this topology are stated in the following lemma. 

Lemma 4.1 (i) Let N and N; with i > 1 be valuations. The following two conditions are equiv- 
alent: (a) N, converges to N .  (b) for all formula a, N + cr if and only if there is a j such that 
Ni + a  for all i 2 j. 

(ii) A set F S is closed in S iff given N, E F converging to a normal valuation N ,  then 
N E F .  

(iii) If F C S is closed in S and N E S \ F ,  then there is a formula cr such that N b a and 
P cr for all P E F. 

(iv) Let C be a set of formulas and V C mod(C). Then Th(V) = Cn(C)  iff V is topologically 
dense in mod(C) (i.e. for all M E mod(C) and all formula a with M + a ,  there is N E V such 
that N b a). I 

It is convenient to have a quick way of checking when an injective representation is in fact 
standard. The following lemma will be useful. 

Lemma 4.2 Let < be a relation over S representing k. 
(i) If N min(mod(a)nS, <) and N b C(a), then there is a sequence N, E min(mod(a)nS, <) 

converging to N .  
(ii) < is standard iff min(mod(a) n S, <) is topologically closed for all cr. In particular, if 

min(mod(cr) n S, <) is finite for all a, then < is standard. 

Proof: From 4.l(ii) we have that mod(C(a)) is closed and by 4.l(iv) we have that min(mod(cr) n 
S, <) is dense in mod(C(a).  From this the result foll'ows. I 

We will present next an example of a consequence relation that has an injective model but 
does not satisfy WDR. In particular, by 3.4 this consequence relation does not have a standard 
representation. This result stands in contrast to what happens when the language is finite (see 
3.12). 
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Example 4.3 (A preferential relation not satisfying WDR and with an injective model) 

Let {pl, p2, . . . , p,, .) denote the set of propositional variables. Let P be the valuation identically 
equal to one, i.e. P b p, for all i. Let Q be the valuation satisfying Q b pl and Q b 7p; for i > 1. 
Let N be the valuation identically equal to zero, that is to  say, N + yp, for all i. Let N, and Mi 
be such that Ni b ypl A . . . A ypi and N, b pj for all j > i; Mi + ypl A . . . A ypi A pi+l A yp;+z 
and Mi b pj for all j > i + 2. Notice that both sequences converge to  N.  

We define a strict order + over S = {N, P, Q, N,, M,) by letting P + N ,  Q + N ,  P + N, ,  
Q + Mi, Ni + N and Mi + N .  Let b be the preferential consequence relation defined by (S, 4). 

It is easy to check that S is the collection of all normal valuations w.r.t. b. First we prove that 
every valuation in S is normal. Note that min(mod(ypl) n S, +) = {N,, Mi) so N; and M, are 
normal and since mod (C(7pl))  is closed then N b C(ypl ) .  Notice that N $! min (mod(ypl) n S, +) 
and therefore + is not standard. It is not difficult to see that P b C(plhp2) and Q b C(plh7p2). 
Conversely, suppose that R /= C ( a ) .  We want to show that R E S .  We know that C(a) = 
Th(min(mod(0) n S)). By 4.2 there exists a sequence R; E min(mod(a) n S) converging to  R. But 
it is easy to see that S is closed, so R E S .  

We will show that b does not satisfies WDR. For 'this end, it suffices to  find two formulas a and 
psuch that N FC(a)uC(P)  but N k C ( a ~ p ) .  Let a = y p l V ( p l ~ y p 2 )  and p =  y p l v ( p l ~ p 2 ) .  
It is easy to  verify that 

min(mod(a) nS ,  4) = {Q)u{Ni  : i > 1) 
min(mod(P) n S, +) = { P )  U {Mi : i > 1) 

min(mod(a V p) n S, 4) = {P, Q). 

Therefore N b C(a) U C(P), but N k C(a V P). I 

We will introduce next a property that <, has and in fact it is the unique standard relation 
(with this property) that represents b. 

Definition 4.4 Let < be a binary relation over S, we will say < is downward-closed is for all 
N in S the set { M  E S : M < N} is (topologically) closed in S. 

Lemma 4.5 Let be a consequence relation. Then <, is downward-closed, 

Proof: Let N,  M,  Mi be normal valuations with Mi converging to M .  Suppose that Mi <, N for 
all i. We will show that M <, N. Let a be a formula such that N b C(a), then by assumption 
Mi b ~ a .  Since Mi converges to M ,  then M b ya, i.e. M <, N .  I 

Lemma 4.6 Let b be a consequence relation. Suppose that < is a standard relation that represents 
b. If < is downward-closed then <=<,. 

Proof:  from 3.5 we already know that < C <,. For the other direction, let N, M be normal 
valuations such that M # N.  We will show that M #, N .  Since F = { P  E S : P < N )  is closed 
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and M 6 F, then by 4.l(iii) there is a formula cr such that M b cr and P k cr for all P E F .  Let /3 
be such that N  b C(,f3). It suffices to show that N  b C ( c r ~ p ) .  Since < is standard and represents 
b, then N  E min (mod(,f3) n S, <). Hence P k p for all P < N .  On the other hand, by the choice 
of a, we also have that P k cr for all P < N .  Therefore N  E min(mod(cr V ,f3) n S, <) and since < 
represents b then N  b C(cr V p) .  I 

From the previous results we immediately get the following 

Theorem 4.7 Let b be a preferential relation satisfying WDR. Then <, is the unique downward- 
closed standard relation that represents b .  I 

A valuation N  E S is said to  be isolated in S, if there is a formula cr such that mod(&) n S = 
{ N ) .  We will say that S is discrete if every N  E S is isolated in S. These notions correspond 
to the topological notion of an isolated point and discrete space. In particular, every finite set 
is discrete. In every discrete space the only converging sequences are the eventually constant 
sequences, therefore every relation over a discrete space is trivially downward-closed. On the other 
hand, by using the same argument as in the proof of 3.11 it can be easily checked that if S is discrete 
and b satisfies WDR, then <, is transitive. Moreover, by 4.2(i) we have also that any injective 
model defined on a discrete set is necessarily standard. Thus we have the following generalization 
of an analogous result known for finite languages. 

Corollary 4.8 Let b be a preferential consequence relation satisfying WDR. If the collection of 
normal valuations is discrete, then <, is the unique (and in  fact standard) order representing b .  

I 

The following result might be known but it is now quite easy to show 

Corollary 4.9 Let b be a rational relation. Then <, is the unique standard modular order repre- 
senting b .  

Proof: It suffices to show that every modular standard order representing b is downward-closed. 
Let < be such modular relation and M,  N ,  N ,  be normal valuations with N,  converging to N  and 
Ni < M for all i. Let a l p  be formulas such that M b C(cr) and N  b C(,f3). It suffices to show 
that M k C(cr V p) .  Since in this case, there must exists a normal valuation P < M such that 
P b p. Since N  b C(P) and < is modular, standard and represents b then N  < M .  To see that 
M k C(cr V p) we need to  show that M 6 min(mod(cr V p) n S, <). Since N  b ,f3 and N,  converges 
to N ,  then there is (in fact, infinitely many) i such that N,  b P. Since Ni < M ,  then M is not 
minimal in mod(& V p) .  I 

Since having a standard representation is a more restrictive condition we expected that it 
might imply that in this case <, should be transitive. In other words, if b admits a standard 
representation (in particular, WDR holds) then <, must be transitive (and thus it would be a 
standard order representing b). Our second example~shows that this is not the case. This example 
will be used later also to  show that in spite of the fact that <, might not be transitive it provides 
a very good representation of b (even in some cases where other methods do not work). 
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Example 4.10 A preferential relation b with a standard model (in particular WDR holds) and <, 
not transitive 
Let {pl, p2, . , p,, . a )  denote the set of propositional variables. We will define valuations N ,  M ,  
P, N; and Mi (for i > 1) viewing them as characteristic functions (i.e. as sequences of 0 and 1): 

M, = < 0 , 0 , - . .  , 0 , 1 ,1 ,1 , .  - . , 1 ,  > It starts with i ceros and then follows only 1's 
Ni = < 0,0, - . . , 0 , 1 , 0 , 1 , ~  - . , 1, . > It starts with i ceros, then 1, 0 and then follows only 1's 
P = < 1 , 0 , . . . , >  1,O periodically repeated. 

M = < 0,0;. . ,> Only 0's 
N = < 1 , 1 , . . . , >  Only 1's 

The order among this valuation is the transitive closure of the following pairs 

In particular we have that Ni < P and also that Ni < Nj and N, < Mj for all i < j. Notice 
that M # P. Let S = {N, M,  P) U {N,, Mi : i 2 1). Since < is clearly wellfounded then it is 
smooth. Let b be the preferential relation defined by (S, <). We claim that S is the collection of 
normal valuation w.r.t. b .  First, we show that the.elements of S are normal. Notice that every 
valuation isolated in S is clearly normal. Since M is the only not isolated point of S it suffices to 
check that M is a normal valuation. In fact, it is easy to verify that M E min(mod(lpl) n S, <). 
Conversely, suppose R b C(a). We want to show that R E S .  To see that it is enough to prove 
that min(mod(a) il S, <) is finite for every formula a and then we apply 4.2. This also shows 
that < is standard. Suppose that a uses only the letters pl ,  ... ,p,. We consider two cases: (a) 
min(mod(a) n S, <) C {M, N,  P). In this case we are obviously done. (b) Suppose that for some i 
either Ni b a or Mi b a .  If N, b a for some i ,  then it is easy to verify that 

min(mod(a) n S, <) c {M, N )  U {Nj, Mj : j <_ i) (4) 

and we will be done. Suppose then that Mi b a for some i. Let y = -pl  A lp2  A . . . A  l p , ,  then 
Nil Mi b y for all i > s. Observe that if Mi b a for some i 2 s, then y F a ,  thus N, b a and 
therefore by (4) we are done. From this it follows that min(mod(a) n S, <) is finite for all a .  

Since < is standard then from 3.4 we know that b satisfies WDR and therefore by 3.10 <, is also 
a standard relation representing b .  By 3.5 we have that < <,. However, <, is not transitive. 
We have that N <, M (as N < M )  and we claim that M <, P but N #, P. In fact, it is easy to 
check that N,  P b C(pl)  and therefore N #, P .  On the other hand, Mi converges to M ,  Mi < P 
and since <, is downward-closed (by 4.5) then M <, P .  I 

To finish this section we will compare <, with the relation <s defined by Freund [2]. In 
particular, we will show that under some conditions (for instance if DR holds) <, is equal to <s. 
Let b be a preferential relation. We say that a is b-consistent if ap  I. The trace of a formula a 
is denote by a+ and is defined as the set of all formulas /3 such that a V +b/3. The relation <s 
is defined over S by 
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For b preferential, Freund showed that  <s is transitive and irreflexive and also that  C ( a )  = 
Cn({a)  U a+) for all a. Now it is easy to  verify that  <s <, and that  <s is a downward-closed 
relation. 

A consequence relation is said to  have the (**) property if the following holds for every pair of 
b-consistent formulas a and 0: 

The (**) property seems t o  be tailor-made for getting part (i) of the following result 

Theorem 4.11 (Freund [2]) ( i )  A preferential relation b has the (**) property iff <s i s  a standard 
order representing k. 

(ii)  Every disjunctive relation has the (**) property. 
(iii) The  (**) property implies WDR and they are equivalent when the language is finite. 
(iv) DR is strictly stronger than WDR. 

Since <s is downward-closed then from 4.6 and the previous theorem we conclude that  <,=<s 
for every preferential relation with the (**)  property (notice, that  in this case <, is transitive). To 
complete the picture we have the following 

Proposition 4.12 The  (**) property is strictly stronger than WDR. Moreover, there is a prefer- 
ential relation represented by <, but not by <s. 

Proof: We will show that  the consequence relation k given in 4.10 does not have the (**) property. 
Recall that  k was defined by a strict order that  in fact is a standard model of b .  In particular, + 
satisfies WDR. Since k is preferential then <s is transitive. But <, is not transitive, thus <, # <s. 
Therefore, b does not have the (**) property (otherwise <s would be equal to  <,). Moreover, by 
part (i) in Freund's theorem we conclude that  <s does not represent k, but by 3.10 <, does (even 
though (S, <,) is not a standard model of k because it is not transitive). I 

A final question: is there a postulate that  cha~acterize when a preferential relation has an 
injective model or a standard model? By the example 4.3 we know that  WDR is not a necessary 
condition to  have an injective model. The example 4.10 shows tha t  the (**) property is not 
a necessary condition (but it is sufficient) to  have a standard model. None of our examples have 
ruled out that  WDR suffices to  obtain an standard model. Given a preferential relation k satisfying 
WDR by 3.5 we know that  any (if it exists) standard order representing b has to  be contained in 
<,. Thus we have to remove from <, some pairs in order t o  make it transitive.We have tried (so 
far without success) the following strategy to  get an injective (hopefully standard) model of b :  
start  with <, and remove all instances of non transitivity and get <:C<,. It is quite curious that  
this process indeed leads t o  a transitive relation. In principle, one would expect that  when a pair 
is removed, then other instances of non transitivity might appear, but this is not the case with <,. 
However, we have not been able t o  show that  this 'pruned" relation <; still represents k (we even 
don't know if <: is still smooth). These two families of consequence relations seems so complex 
that  we will not be surprised if there is no such a characterization (at least in terms of the type of 
postulates used so far t o  classify consequence relations). 
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