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Abst rac t  

Let R be a ring of subsets of a nonempty set R and C(R) the Banach space of uniform limits 
of sequences of R-simple functions in 0. Let X be a quasicomplete locally convex Hausdorff 
space (briefly, IcHs). Given a bounded X-valued vector measure m on R, the concepts of m- 
integrability of functions in C(R) and of representing measure of a continuous linear mapping 
u : C(R) + X are introduced. Based on these concepts and a theorem of Grothendieck on 
the range of the biadjoint u" of u E C(C(R), X ) ,  it is shown that such a mapping u is weakly 
compact if and only if its representing measure is strongly additive (which is the quasicomplete 
IcHs version of Theorem VI.l. l  of [3]). The result subsumes the range theorems of Tweddle [12] 
and Kluvinek [9]. Also is deduced the theorem on extension in [lo]. The methods of proof for 
all these results in vector measures is more natural than the known ones. 

Dedicated to the memory of Professor I .  Kluv6nek 

Let X be a quasicomplete locally convex Hausdorff space (briefly, a quasicomplete 1cHs). Using 
,lames' criterion for weak compactness of a set, Tweddle [12] showed that  the closed convex hull of 
the range of a a-additive X-valued vector measure defined on a a-ring of sets is weakly compact. 
His proof is first given for the  case of a a-algebra, and then, by appealing t o  the Eberlein theorem 
([6, Theorem 8.12.7]), is extended t o  the case of a-rings. This result subsumes the  Bartle-Dunford- 
Schwartz theorem [l] on the range of a a-additive Banach space-valued vector measure defined on 
a u-algebra of sets. 

Later, an alternative proof of Tweddle's theorem was given by Kluvinek in [9]. His proof is 
based on the theory of a-additive X-valued closed vector measures developed in the  first part of 
191. He showed that  the  closed balanced convex hull of the range of a a-additive X-valued vector 
measure defined on a a-algebra of sets is weakly compact, which, as observed in [lo], also extends 

- - 

to  the case of a-rings. 
The range theorem of Tweddle [12] or of Kluvinek [9], plays a key role in the proof of the 

theorem on extension given on pp.178-179 of [lo], which gives several necessary and sufficient 
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conditions for an  X-valued weakly a-additive vector measure defined on a ring of sets R t o  admit 
an X-valued a-additive extension t o  the a-ring generated by R. 

For a ring of sets R let C ( R )  be the Banach space of all uniform limits of sequences of 72-simple 
functions. Then appealing t o  the range theorem of Tweddle [12] and the  theorem on extension 
in [lo] and using an argument similar t o  tha t  in the proofs of Theorem 1.5.2 and Corollary 1.5.3 
of [3] regarding the  involvement of the Stone representation space of R, one can show tha t  an 
X-valued vector measure defined on R is strongly additive if and only if its range is relatively 
weakly compact. Then the  proof of Theorem VI.l.l  of [3] can suitably be modified t o  show that  a 
continuous linear mapping T : C(R)  + X is weakly compact if and only if its representing measure 
is strongly additive. 

The aim of the present note is t o  give a direct proof of the  quasicomplete IcHs-version of 
Theorem VI.l.l  of [3] for the  case of a ring of sets, without appealing t o  the range theorem of 
Tweddle [12] and the  theorem on extension in [lo]. For this we shall use the equivalence of (1) and 
(3) of Corollary 9.3.2 of [6], which is essentially due t o  Lemmas 1 and 2 of Grothendieck [7]. Then 
the range theorems of Tweddle [12] and Kluvinek [9] are immediate. By invoking the  equivalence 
of (1) and (2) of'Corollary 9.3.2 of [6] and our principal result, we also deduce the  theorem on 
extension in [lo], by providing a new proof t o  show (x) + (vii) + (i) (see Corollary 2). The 
reader can observe tha t  our method of proof for all these principal results in vector measures is 
very natural, elegant and powerful, in contrast t o  the earlier proofs. 

Finally, we also include a generalization of the second part of Corollary VI.1.2 of [3] t o  quasi- 
complete IcHs. 

For the convenience of the  reader, we shall recall some definitions and results from the theory 
of vector measures and give some lemmas extending the  results known for algebras or a-algebras 
of sets to  rings or a-rings of sets, respectively. 

In the sequel, X denotes a lcHs (over C) with topology r and R and S denote respectively a 
ring and a a-ring of subsets of a non empty set $2. ca(S) is the  Banach space of all a-additive 
complex measures p on S with ( (p ( (  = S U P E ~ ~ V ~ ~ ( ~ ,  E) and ba(R) is the  Banach space of all 
complex-valued bounded additive set functions v on R with 1 lvll = SUPE~R var(v, E). Let a ( R )  be 
the a-ring generated by R. Let ba+(R) = {v E ba(R) : v 2 0). 

A vector measure is an  additive set function defined on a ring of sets with values in a IcHs. 
An X-valued vector measure m on R is said t o  be strongly additive (resp. exhausting) on R if 
Cr==l m(En)  is r-convergent (resp. limn m(En)  = 0) for each disjoint sequence (En) in R. A 
family {mi : i E I) of exhausting X-valued vector measures is said t o  be uniformly exhausting if, 
for each disjoint sequence (En)  in R, limn mi(En)  = 0 uniformly in i E I. A family {mi : i E I} 
of X-valued strongly additive vector measures on R is said t o  be uniformly strongly additive on R, 
if, given E > 0, a r-continuous seminorm p on X and a disjoint sequence (En)  in R, there exists 
no such that  supiEI p ( C g n  mi(Ek)) < E for all n 2 no. A family (ma)aEI of X-valued a-additive 
vector measures on R is said t o  be uniformly a-additive on R, if, given E > 0, a decreasing se- 
quence En \ 0 in R and a r-continuous seminorm p on X ,  there exists n~ such tha t  p(ma(En)) < E 

for all n > no and for all a E I. A subset A of ba(R) is said t o  be uniformly p-continuous for 
some p E ba'-(R), if, given E > 0, there exists 6 > 0 such tha t  supvE* Iv(E)( < E whenever p ( E )  < 6. 



The following result is well known when S is a a-algebra (see, for example, Theorem IV.9.1 of 

[51). 

Lemma 1. Let S be a a-ring of subsets of a non empty set R. A subset A of ca(S) is relatively 
weakly compact if and only if A is bounded and uniformly a-additive. 

Proof. By the ~berlein-Smulian theorem and by the fact that, for each sequence (p,) c ca(S), 
there exists E E S such that var(p,, F) = 0 for each F E S with F n E = 0 and for each n, we can 
replace the space cats ,  C, A) in the proof of Theorem IV.9.1 of [5] by the space ca(R n E, S n E, A) 
of all A-continuous set functions in ca(R n E, S n E). Since S n E is a a-algebra, the rest of the 
argument in the proof of Theorem IV.9.1 of [5] holds here t o  show that the conditions are necessary 
and sufficient. 

Since the CarathCodory-Hahn extension theorem for a-additive positive measures and Proposi- 
tion 1.1.17 of [3] hold for a ring of sets R, Lemma 1.5.1 of [3] holds also for R and hence we have 
the following result. 

Lemma 2. Let {p; : i E I )  be a family of a-additive complez measures on a (R) .  Then {p; : i E I )  
is uniformly a-additive on a(72) if and only if the family of the restrictions {p;ln : i E I )  is uni- 
formly strongly additive on R .  

Since a quasicomplete lcHs is sequentially complete the following result is obvious. The reader 
can also refer to  Theorem 4.3 of [4]. 

Lemma 3. Let X be a quasicomplete lcHs. Then an X-valued vector measure m (resp. a family 
3 = {rn; : i E I )  of X-valued strongly additive vector measures ) on R is strongly additive (resp. 
uniformly strongly additive) if and only if m is ezhausting (resp. if and only if F is uniformly 
exhausting). 

Let S be the Stone representation space of R .  Then there exists a ring isomorphism from 
R onto the ring %! of all compact-open subsets of S. For each p E ba(72), let ji(@(E)) = p(E) for 
each E E R. Then, for p E ba(72), clearly ji is a-additive on 2 aiid hence has a unique a-additive 
extension ji on a(&). Moreover, I IpI 1 = I ljill = I IjiI I for p E ba (72). These observations and Lemmas 
1, 2 and 3 can be used to  extend Theorem 1.4.6 of Bombal [2], given for algebras of sets, t o  rings 
of sets. Thus we have the following result. 

Lemma 4. For a bounded subset A of ba(R) the following statements are equivalent: 

(i) A is relatively weakly compact. 

(ii) A is uniformly strongly additive on R .  

(iii) A is uniformly ezhausting on R .  

(iv) There exists p E ba+(R) such that A is uniformly p-continuous. 



The following result is well known when S is a a-algebra (see, for example, Theorem IV.9.1 of 

P I ) -  

Lemma 1. Let S be a a-ring of subsets of a non empty set R. A subset A of ca(S) is relatively 
weakly compact if and only if A is bounded and uniformly a-additive. 

Proof. By the ~berlein-Smulian theorem and by the fact that,  for each sequence (p,) C ca(S), 
there exists E E S such that var(p,, F) = 0 for each F E S with F n E = 0 and for each n, we can 
replace the space ca(S, C, A) in the proof of Theorem IV.9.1 of [5] by the space ca(R f l  E, S n E, A) 
of all A-continuous set functions in ca(R n E, S n E). Since S n E is a a-algebra, the rest of the 
argument in the proof of Theorem IV.9.1 of [5] holds here t o  show that the conditions are necessary 
and sufficient. 

Since the Carath6odory-Hahn extension theorem for a-additive positive measures and Proposi- 
tion 1.1.17 of [3] hold for a ring of sets R ,  Lemma 1.5.1 of [3] holds also for R and hence we have 
the following result. 

Lemma 2. Let {p; : i E I )  be a family of a-additive complex measures on a ( R ) .  Then {p; : i E I )  
is uniformly a-additive on a ( R )  if and only if the family of the restrictions {p;ln : i E I )  is uni- 
formly strongly additive on R .  

Since a quasicomplete lcHs is sequentially complete the following result is obvious. The reader 
can also refer to  Theorem 4.3 of [4]. 

Lemma 3. Let X be a quasicomplete 1cHs. Then an X-valued vector measure m (resp. a family 
3 = {m; : i E I )  of X-valued strongly additive vector measures ) on R is strongly additive (resp. 
uniformly strongly additive) if and only if m is exhausting (resp. if and only if 3 is uniformly 
ezhausting). 

Let S be the Stone representation space of R .  Then there exists a ring isomorphism from 
R onto the ring & of all compact-open subsets of S. For each p E ba(R), let b(@(E)) = p(E)  for 
each E E R. Then, for p E ba(R), clearly 9 is a-additive on & a i d  hence has a unique a-additive 
extension fi on a(&). Moreover, I Ip(I = 1 (fill = 1 ( f i)  1 for p E ba(R). These observations and Lemmas 
1, 2 and 3 can be used to  extend Theorem 1.4.6 of Bombal [2], given for algebras of sets, to  rings 
of sets. Thus we have the following result. 

Lemma 4. For a bounded subset A of ba(R) the following statements are equivalent: 

(i) A is relatively weakly compact. 

(ii) A is uniformly strongly additive on R .  

(iii) A is uniformly exhausting on R .  

(iv) There esists p E ba+(R) such that A is uniformly p-continuous. 



To give the notion of the integral of bounded scalar functions with respect t o  a bounded vector 
measure defined on R, we introduce the following additional notation and terminology. 

For each T-continuous seminorm p on X ,  let p(x)  = Ilxllp, x E X ,  and let X p  = ( X ,  ) I  . ( 1 , )  
be the associated seminormed space. The completion of the  quotient normed space X/p- ' (0)  is 
denoted by xP. Let T I p  : X p  + XIp-'(0) C xp be the canonical quotient map. 

Given a vector measure m : R + X ,  for each T-continuous seminorm p on X let mp : R + xP 
be given by m p ( E )  = IIp o m ( E )  for E E 72. Then mp is a Banach space-valued vector measure on 
R.We define the psemivariation 1 lmllp of m by 

and 

where Ilmpll is the semivariation of the vector measure mp : 72 + xp. Obviously, the range of m is 
bounded in X if and only if Ilmllp(fi) < w for each T-continuous seminorm p on X .  In that  case, 
the vector measure m is said t o  be bounded. 

For an R-simple complex function s = XixE,, X i  # 0 ,  E; E S ,  E ; n  E j  = 0 for i # j, i ,  j = 
1,2, ..., r ,  and for an X-valued bounded vector measure m we define 

It is easy t a  verify that  Jn sdm is well defined. If S ( R )  denotes the  normed space of all R-simple 
complex functions with pointwise addition and scalar multiplication and with norm the  supremum 
norm ( 1  . I l n ,  then the map u : S ( R )  + X given by us = Jn sdm is linear and continuous. 

Lemma 5. Let (s,) and (sk) be sequences of R-simple complex functions, converging uniformly to 
a function f in 0. Suppose m : R + X is a bounded vector measure, where X is a quasicomplete 
1cHs. Then: 

(i) (J, sndm) is Cauchy in  X . 

(ii) limn J' sndm = limn Jn skdm E X .  

Proof, Let p be a T-continuous seminorm on X and let E > 0. Since Ilmpl((fi) < w, we can choose 
no such that  llsn - selln < for n,! > no. Then 

mp 

for n ,  ! > no. Hence (i) holds. 



As X is sequentially complete, by (i) there exist vectors s, s1 in X such that limn S, sndm = x 
and limn & shdm = s t .  Then 

as n -+ oo, since 

~I /nSndm-Li:dmllp < IIsn -inllnllmpll(fl) -+ 0 

as n -+ w. As the T-continuous seminorm p is arbitrary, it follows that x = st. Hence (ii) hokls. 

Definition 1. Let C(R)  be the Banach space of all bounded complex functions which are uniform 
limits of sequences of R-simple functions, with pointwise addition and scalar multiplication and 
with norm the supremum norm 1 ) .  [ I n .  Given f E C(72), let the sequence (s,) of 72-simple complex 
functions converge uniformly to  f in 0. If m : S -+ X is additive and bounded, and if X is a 
quasicomplete lcHs, then we say that f is m-integrable and define 

/n f dm = l i p  /n sndm. 

In the light of Lemma 5, Js2 f dm is well defined for f E C(R).  

The following result is immediate from Definition 1. 

Lemma 6. Let X be a quasicomplete IcHs. Iff and g belong to C(R),  a, P are scalars and 
m : R -+ X is additive and bounded, then the following hold: 

(ii) 1 1  Js2 f dm(Ip < 1 1  f lls21 Imp[ [ ( a )  = ( 1  f 1 l s2J  lmlJp(fl) for each T-continuous seminom p on X .  

(iii) For each x* E X*, x*(Jsz f dm) = Ja fd(s*m).  

Consequently, the map u : C(72) -+ X given by u f = Js2 fdm is continuous and linear. 

The following result can easily be proved by an argument analogous t o  that on pp.5-6 of [3]. 

Lemma 7. Let X be a quasicomplete lcHs and let ba(72, X )  be the vector space of all X-valued 
bounded vector measures on R .  Then there exists a vector space isomorphism @ from ba(R, X) 
onto the vector space of all continuous linear maps C(C(72), X)  such that, for each T-continuous 
seminom p on X and m E ba(R, X )  , 

and 



In particular, the dual of C(72) is ba(72). 

Definition 2. For each u E L ( C ( R ) ,  X ) ,  the unique bounded vector measure m with u f = JS1 fdm 
for f E C ( R )  is called the representing measure of the continuous linear map u. 

The following result is well known (see, for example, Corollary 4.12 of [4]).  However. we shall 
give a direct proof. 

Lemma 8. Let m be an X-valued strongly additive vector measure on 72. Then m has a bounced 
range. 

Proof. I f  m is not a bounded vector measure, then there exists a T-continuous seminorm p such that 
IJmJ(,(fi) = oo. Then there exists El E 72 such that I)m(El)  [ I p  > 1. Since 72 n El is an algebra o f  
subsets of E l ,  by Corollary 1.1.19 o f  [3], it follows that sup{)lm(F)llp : F E R, F n El = 0) = oo. 
Then there exists E2 E 72 with E2 n El = 0 such that (Im(E2)lJp > 2. Thus proceeding step by 
step, and applying Corollary 1.1.19 of [3], we can choose a disjoint sequence (En)  in R such that 
Ilm(En)llp > n for each n. On the other hand, as m is strongly additive on R, I lm(En)llp + 0 
when n -+ oo. This contradiction shows that m is bounded. 

Theorem 1. Let 72 be a ring of subsets of a non empty set f i  and let X be a quasicomplete IcHs. 
Then the following assertions hold: 

(a) If u : C ( R )  + X is a continuous linear map, then u is weakly compact if and only if its 
representing measure is strongly additive on R. 

(ii) If m is an X -valued strongly additive vector measure on R and if m(R) denotes the mnge of 
m ,  then the closed balanced convex hull of m ( R )  is weakly compact and is contained in the 
T-closure of the set H = {J ,  fdm : f E C ( R ) ,  ( I f  l l n  5 1).  Moreover, the'closed convex hull 
of m(72) is the same as the T-closure of the set {u f  : f E r ) ,  where I' = { f  E C ( R )  : 0 5 
f ( t )  5 1 , t  E fi). 

(iii) If m : R + X is additive, then m is strongly additive i f  and only if m(R) is relatively weakly 
compact. 

Proof. ( i )  Let m be the representing measure o f  u. Then m is bounded by Lemma 7. Let E be an 
equicontinuous set in X* . Let llxllpE = s u P ~ . ~ E ~ x * ( x ) ) ,  x E X ,  and let GE = {x* o m :  x* E E ) .  
Then clearly the set GE is bounded in ba(R) if and only i f  

Since u : C ( R )  -+ X is linear and continuous, its adjoint u* : X* -+ (C(72))' = ba(72) is a well 
defined linear map. Then by Lemma 6 we have 

< u*x*, f >=< x*,u f  >=< %*,In f d m  >= I n f d ( x *  o m )  =< f , x*  o m  > 



for all f E C(R) and z* E X*. Then, by the Hahn-Banach theorem, u*z* = z* o m. Thus 
GE = u*(E). 

Suppose m is strongly additive on 72. As the topology T is the same as the topology of uniform 
convergence in equicontinuous subsets of X*, it follows that, for a given E > 0 and a disjoint se- 
quence (A,) in R, there exists n, such that ( 1  Cgn m(Ak)((,, < E for all n > n,. In other words, 
SUP,.E~ 1 Cgn (z* o m) (Ak)( < E for all n _> no. Thus GE is uniformly strongly additive on R. 
Since m has bounded range in X ,  (1) implies that GE is bounded in ba(72). Consequently, by 
Lemma 4, the set u*(E) = GE is relatively weakly compact. Since E is an arbitrary equicontinuous 
set in X*, by Corollary 9.3.2 of [6] (which is essentially due to  Lemmas 1 and 2 of [7]), we conclude 
that u is weakly compact. 

Conversely, let u be weakly compact. Then for each equicontinuous subset E of X:, by Corol- 
lary 9.3.2 of [6], u*E is relatively weakly compact in ba(72). Then u*(E) = GE is bounded, and 
moreover, by Lemma 4, the set GE is uniformly exhausting on 72. In other words, given a disjoint 
sequence (A,) in 72, lim,(z* o m)(A,) = 0 uniformly in z* E E. Thus, limn Ilm(A,) I I,, = 0. As E 
is an arbitrary equicontinuous set in X*, it follows that limn m(A,) = 0 and hence m is exhausting 
on R. Then by Lemma 3, m is strongly additive on R. 

(ii) Let the vector measure m : 72 + X be strongly additive. Then by Lemma 8, m is bounded 
and hence is the representing measure of the continuous linear map u : C(R) + X given by 
u( f )  = Jn f dm for f E C(72). Therefore, by (i), u is weakly compact and consequently, H = {u f : 

1 1  f [ I n  5 1) is a relatively weakly compact balanced convex subset of X .  Since H contains the 
range of m, it follows by the Hahn-Banach theorem that the closed balanced convex hull of m(R) 
is weakly compact and is contained in the T-closure of H. 

Moreover, by considering Abells partial sums as in the proof of Theorem VI.l.l of [3], one can 
show that uf belongs to the convex hull of m(R) for each R-simple scalar function f E T. Then 
it follows that the T-closure of {u f : f E r) coincides with the r-closure of the convex hull of m(R).  

(iii) The condition is necessary by (ii). Conversely, let m(R) be relatively weakly compact. Then 
m is bounded and hence is the representing measure of u wherc 3 f = J, fdm, f E C(R). Then 
by considering Abel's partial sums as in the proof of Theorem VI.l.l of [3] and appealing to the 
Krein theorem ([6, Theorem 8.3.1]), it follows that {u f : 1 1  f / I s 2  5 1) is relatively weakly compact. 
Hence u is weakly compact and then (i) implies that m is strongly additive. 

This completes the proof of the theorem. 

Since a a-additive vector measure on a a-ring is strongly additive, we have the following corollary 
which gives the results of Tweddle [12] and Kluvdnek [9] on the range of a-additive vector measures. 

Corollary I .  Let X be a quasicomplete 1cHs. If m is a a-additive X-valued vector measure on a 
a-ring S, then the mnge m(S) and its balanced convez hull are relatively weakly compact. 



As a corollary of Theorem 1, we also deduce the following theorem on extension in [lo]. We 
provide a new operator theoretic proof to show (vii) + (i) , by invoking Lemma 1 of [7]. Though 
the proof of (x) + (viii) is new, our proof of (i) =+ (ix) is based on Theorem 1.2.4 of [3] whose proof 
is also valid for a-rings. 

Corollary 2 (Theroem on extension in [lo]). Let X be a quasicomplete lcHs and let m be an 
X-valued weakly a-additive vector measure on the ring R.. Then the following statements are 
equivalent: 

(i) There exists a a-additive vector measure m : a(R) + X such that miR = m. 

(ii) There is a weakly compact set Y C X such that m(R) C Y .  

(iii) m is bounded and there is a weakly sequentially complete set Y C X such that ~ ( R ) ' c  Y 

(iv) If En 7 in-R, then there exists an element z E X such that m(En) + z weakly. 

(v) If (En) is a disjoint sequence in 72, then there exists an element z E X such that Cz=, m(En) 
converges weakly to z .  

(vi) If En 7 in R, then limn m(En) E X ezists. 

(vii) m is strongly additive on R. 

(viii) m is ezhausting on R. 

(iz) For every continuous seminorm p on X ,  there is a bounded non negative a-additive measure 
pp on R such that pp(E) + 0, E E R ,  implies ( (m(E)JJp  + 0. 

(x) For every continuous seminorm p on X ,  there is a bounded non negative finitely additive set 
function pp on R such that p, ( E )  + 0, E E 72, implies (Im(E)I(, + 0.  

Proof. By the Orlicz-Pettis theorem, m is a-additive on R. It  suffices to show that (i) =+ (ii) + 
(iii) =+ (vii) + (i) and (x) 3 (viii) . Observing that the proofs of Theorems 1.2.1 and 1.2.4 of [3] 
also hold for a-rings, we have (i) + (ix). (vii) is equivalent to (viii) by Lemma 3. The rest of the 
equivalences are obvious or are based on the Orlicz-Pettis theorem. 

(i) (ii) Since a a-additive vector measure on a ( R )  is also strongly additive, by Theorem 1 m(R) 
is relatively weakly compact and hence (i) implies (ii). 

(ii) + (iii) Obvious. 

(iii) 3 (vii) Let (En) be a disjoint sequence in R .  By hypothesis, m(R) is bounded. Then, for each 
z* E X*, x* o m is a bounded a-additive complex measure on 72 and hence is strongly additive. 
Thus C,"==, ((x* o m)(En)I < oo. On the other hand, Y is weakly sequentially complete and hence 
there exists z E Y such that C';O m(En) converges weakly t o  z. Then by the Orlicz-Pettis theorem 



(vii) holds. 

(vii) =+ (i) Let Z be the set of all bounded a-additive complex measures on 72. Then Z is a subspace 
of ba(R). Let W = ba(72). It is well known that  each p E Z has a unique a-additive complex-valued 
extension p" t o  a(72) and 11p(( = 1 lpA)). 

AFFIRMATION. Let p, p1 and pz E Z and cr E C. Then the following hold. 

(b) (crp)" = crp". 

In fact, let Jp;1 = uar(p;, 72) and [piA( = uar(piA, a(72)), i = 1,2.  Given A E a ( R )  and n E N, by 
ej.8, 5 13 of [8] there exists Bn E 72 such that  (1p1IA + Ip2IA)(AABn) < i. Then 

Similarly, 

for i = 1,2.  Hence piA(A) = limn pi(Bn) for i = 1 , 2  and consequently, 
' 

( ~ 1  + p2)"(A) = plA(A) + p2"(A) 

for A E a ( R ) .  Thus (a) holds. Similarly, m e  can prove (b). 

For each A E a ( R ) ,  let zA(p) = pA(A),  p E Z. By Affirmation we have 

for p, pi, p2 E Z and a,P E C. Hence ZA E Z*. As Z is a subspace of W ,  by the  Hahn-Banach 
theorem there exists a WA E W* such that  llzA 1 1  = 1 lwAl 1 and WA l z  = ZA for each A E a ( R ) .  

By hypothesis and Lemma 8, m is bounded and weakly a-additive on 72 and hence, for each 
x* E X *, there exists a unique a-additive extension (x* om)" of (x* om)  t o  a ( R ) .  Let u f = Jn f dm, 
for f E C(72). By Theorem 1 and (vii), u : C(R)  -+ X is weakly compact. Hence by the 
equivalence of (1) and (2) of Corollary 9.3.2 of [6] (which is due to  Lemma 1 of Grothendieck [7]) 
u** : W* -+ X** has range in X ,  where X ** is the dual of ( X  *, P(X*, X ) ) .  Thus, for each A 6 a ( R ) ,  



let u**(wA) = ml (A) E X .  Then as shown in the proof of Theorem l(i) ,  we have u*x* = x* o m 
a.nd 

x*ml(A) =< u**(wA), x* >=< W A ,  x* o m  >=< ZA,  x* o m  >= (x* o m)"(A) (2) 

for x* E X *  and for A E ~ ( 7 2 ) .  Now, let {A,)T be a disjoint sequence in a (R)  with A = U r  A,. 
Then by (2) we have 

x*ml (A) = (x* o m)"(A) = C ( x n  o m)"(A,) = C x*ml (A,) 

for each x* E X*. Thus by the Orlicz-Pettis theorem we conclude that 

m 

ml (A) = C mi (An) 
1 

and hence ml is a-additive on a (R) .  Moreover, for A E 72, we have 

x*ml (A) = (x* o m ) " ( ~ )  = (x* o m)(A) = x*m(A) 

for all x* E X*. Then, by the Hahn-Banach theorem, ml (R = m. Thus (i) holds. 

(x) + (viii) First we observe that for each continuolls seminorm p on X ,  pp is exhausting . Then 
limnpp(An) = 0 for any disjoint sequence (A,) in R and hence limn (Irn(A,)I(, = 0. Since p is 
arbitrary, it follows that limn m(A,) = 0 and hence the vector measure m is exhausting on R. Thus 
(viii) holds. 

Remark 1. If X is a Banach space, then Theorem 1 and Corollaries 1 and 2 can be proved by 
appealing to Theorems VI.4.2 .and VI.4.8 of [5] instead of Corollary 9.3.2 of [6]. 

Remark 2. Let X be a quasicomplete lcHs and m an X-valued a-additive vector measure defined 
on a u-ring S. Then in view of the theorem on weak compactness on p.184 of [lo] and Theorem 1 
above, m is closed in the sense of [lo] if and only if {u f : f E C(S), 0 5 f ( t )  5 1, t E R) is closed 
in X ,  where uf = $a fdm.  

The following corollary generalizes the second part of Corollary VI.1.2 of [3] to quasicomplete 
IcHs. 

Corollary 3. Let X be a quasicomplete IcHs. If X contains no copy of c, and R is an arbitrary 
ring of sets, then every continuous linear opemtor u : C(R) -+ X is weakly compact. Let 3 ( N )  be 
the ring of all finite subsets of the set of all positive integers N. If every continuous linear opemtor 
u : C ( 3 ( N ) )  -+ X is weakly compact, then X contains no copy of c,. Consequently, X contains no 
copy of c, if and only if, for every ring of sets R ,  each continuous linear opemtor u : C(R) -+ X 
is weakly compact. 

Proof. Suppose X contains no copy of c,. Let u : C(R) + X be a continuous linear operator 
with the representing measure m. Let (En) be a disjoint sequence in R .  Since m is a bounded 



vector measure, for each x* E X*, x* o m is a bounded scalar valued additive set function and 
hence x* o m is strongly additive on R. Thus Cr=l (x* o m) (En) is unconditionally convergent and 
hence Cr=l I(x* o m)(En)I < oo for each x* E X*. Since X contains no copy of c,, by Theorem 4 
of Tumarkin [Il l ,  it follows that Cr=l m(En) is convergent in X .  Thus m is strongly additive on 
R and hence u is weakly compact by Theorem 1. 

Now, suppose that every continuous linear operator u : C(P(BV)) + X is weakly compact. Let 
(3,) be a sequence of vectors in X such that C,"==l Ix*(xn)l < oo for each x* E X*. Let us define 
m(E) = CnEE xn for each E E P ( N ) .  Clearly, m is an X-valued vector measure on P(N) and 
SUPE~F(N) ((x* o m)(E)(  5 Cr=, Ix*(xn)l < oo for each x* E X*. Thus the range of m is weakly 
bounded and hence is bounded. Then the map u : C(P(BV)) + X, given by uf = S, fdm, is a 
continuous linear operator by Lemma 6. Consequently, by hypothesis, u is weakly compact. Then, 
by Theorem 1, its representing measure m is strongly additive, and hence, CrZl m({n)),= Cr=l x, 
is unconditionally convergent in X. Now invoking Theorem 4 of Tumarkin [ l l ] ,  we conclude that 
X contains no copy of c,. 
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