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Abstract

A continued fraction C(—q, q) is defined as a special case of a gen-
eral continued fraction F(a, b, ¢, A, ¢), which we have considered earlier
in a separate paper. This continues fraction is also a special case of
Ramanujan’s continued fraction. In this paper we have found some
very interesting g-identities and some identities analogous to identities
given by Ramanujan involving G(—q, ¢) and H(—gq, ¢) and one identity
which gives the square of a continued fraction.

1 Introduction

In an earlier paper [4] we consider the continued fraction C(—g¢,¢) and
obtained some identities. In this paper we give some more interesting g¢-
identities. The first of these identities gives the square of a continued frac-
tion. We have defined
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by using summatin formula Slater [3, eqn 8 and 13].

Also [4,p.200,eqn 2.2].

2 Notation
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2 Some @-Identities Associated with Ramanujan

when k = 1, ¢* shall be omitted from the various symbols, in case there is
no chance of ambiguity.

3 An interesting ¢-identity

We shall prove the identity
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The proof of this identity depends on the continued fraction (1.1) and Ra-
manujan’s ¥ ;-summation [1,p.101],namely
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We shall first prove a series of identity:
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This proves (3.3).

By replacing ¢ by ¢* and then setting ¢ = ¢',b=q¢"4 +i,2=¢" in

(3.2), we have for i =1, 3.
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This proves (3.1).

4 Some more Identities

Let us define
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using summation formula Slater [3, eqn. 3] and
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using summation formula Slater [3,eqn. 8].
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Next we prove a generalization of (3.4), namely
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where 0 <41<3,0<j<3andi+j#4.
The proof is similar to that of (3.4).

With the help of (4.1),(4

2),(4.4) and (4.5) we have the following, which are

analogous to the identities of Ramanajan [2, p.197-198 ]
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using (4.7) and (4.9) and putting in (4.5) for ¢ =1
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5 Conclusion

We have defined C(—q,q) taking as a special case of a general continues
fraction F(a,b,c, A, q) consider earlier [4,p.199]:

(1—1xc)(ag+ X) bg+ Ag® (1—1/cq)(aq® + Ag®) bg® + Ag*
(a+aq/c)+ 1+ (1+ ag/c)+ I4+......

E(a,b,c,A,q) =1+

by taking a = 0,b=0,A=1and ¢ = —q.

This continues fraction C(—gq, q) is also a special case of Ramanujan’s work
(Entry 9 and 13 in chapter 16 of Ramanujan’s Second Note Book Memoirs
of the AMS 53(1985) No.315).

The present paper was motivated by Andrews treatment of the Rogers-
Ramanujan continues fraction [1] and the technique employed in the proof
is a straight forward modification of his technique.
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