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ABSTRACT

Theorem A: Given an abstract group G, a subgroup HH of G
and a metric space X, one can construct a bigger metric space
X* containing X as a closed subspace such that:

i) the homeomorphism group of X% 1is isomophic to G and

.

ii) the isometry group of X% 1is isomorphic to i,

Theorem ©: The extremally disconnccted rigid spaces exist in
such an abundance that every topological space is a quotient of

one such space.

Theorem C: Let X be any infinite set and let f be any
function from X into the set of all cardinal numbers not
exceeding the cardinality of X. Then there 1s a connected
(metrizable) topology on X such that for each x in X, the
subspace X \{x} has exactly f(x) connected components.
Besides proving these theorems several methods of constructing
rigid extensions of spaces are discussed as tools for more

important results.,




INTRODUCTION

This is a continuation of our previous work [9]. The
sections and theorems have been so numbered as to reveal this
fact. Also, the results of [9] will be freely applied here,
with due refercace to sections in which they occur. When  re—
ference is made to a secticn or a theorem just by its number,
without stating the paper in which it appears, then we, shall
understand that it is either in the present paper or in its

predeéessor [97.

The first five sections of this paper deal with extending
a given space to a rigid space. This may be considered as a
counterpart of [18]. In the last two sections, we give  two

applications of these constructions inside topology itself,

For any group G, let C(G) be the class of all topolo-

gical spaces having its full homeomorphism group isomorphic to G.
It has been proved by J Uc Groot [#] +that ((G) is nonempty
for each G. Here we improve his result by showing that for
each G, the class ((G) 1is large in several senses of the term:

i) C(G) 1is so large that subspaces of its members exhaust

all spaces,
ii) C(G) 1is so large that on any infinite set of cardinal

m
ity m > |6}, there are 2° topologies belonging to

it.
iii) C(G) 1is so large that for any infinite connected
space X, there is a special type of quotient map from

a sum of copies of X onto some mc.ber of C(G),



It is known that for any metric space, all its isometric
self-injections form a subgroup of its homeomorphism group.
It is natural to ask whether there are any more relaticns between
the isometry group and the homeomorphism group. Should it be
a special kind of subgroup? We prove in the last section that
the isometry group is independent of the homeomorphism group, but

for the fact that it is a subgroup. The precise statement of a
more general result has been given as Theorem A in the abstract
above, This result has been already proved in [u] in the very

special particular case that G = I and X has only one point.

Many Theorems of this paper speak of the abundance of
rigid spaces combined with a special topological property. To
mention an example here, let us consider the property of extremal
disconnectedness. The existence of an extremally disconnected
rigid space has been proved only recentrly [17]g But we show
that they are in plenty in the following sens=zs: Lot L be
the class of all extremally disconnected vigid spaces. Then

(i) Quotients cf L cxhaust all topological spaces.

(1i1) Subspaces of I exhaust all extremally disconnected

spaces and include some more,
(1ii) On any infinite set there are as many topologies
belonging to L, as there are topologies not belonging

to L.

Theorem 3.2.2 (See Corollary 3.2.5) answers a question of Nix
posed in [16] and Theorem 3.3.3 answers a question of DeGroot
and McDowell [5] and imprcves a result of Lozier [15]. The

results of this paper have also applications in the study of



automorphism groups of algebraic structures. They will be

discussed in a later paper [idjg

Two of the results of this paper are among the nine Theorems

56
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announced 1in [

Now we summarize cur recults on rigid extensions, While
proving that every topological space possesses a rigid extension
we simultaneously ask how nice this extension can be?  What
topological properties can be preserved? Jhat are bound to be
lost?’ What can be newly gained? Considering rigid extensions
with a peculiar property, can we simultaneously have rigidity for
a larger class of maps? Can we control the cardinality of rigid
extension in the precence of that topological property? e
describe here several processes of rigid extensions in order to
answer all thess questions. All these processes stem out of the
C-process described in [9]. Some of the results proved are as
below:

If X is a topclogical space, 1t always has a rigid
extension h*. This . can always be chosen to be connected
and locally connected, In addition, X can be so chosen that
each of the following properties is preserved in the extension
process: Separation axicoms (i.e,Ti—axiom, dausdorffness, Urybohn )
axiom, regularity, complcte regularity, normality and compicte
normality), matrizability, first countability and any coreflective
property (that 1s propcrty preserved by sums and quotients).

(see % 3.1., 3.2 and 3.4). On the other hand <" can be chosen

to be totally disconnected or zero-dimensional according as X is



(see @ 3.3.J). In all these cases, i1f # 1is infinite, we can

3
chose X* to have the same cardinality as » (See § 3.1., 3.2

and 3.3). If we are ready to forego this condition of cardinality,
we can choose X* to be compact when X is Tychonoff (Sce § 3.3).
For a consolidated gist of such results, sec also Theorem 3.5.6,

In @ 3.5, we show that X can be chosen to be sc pathalogical

that it has no non-trivial continucus self-maps.

%

Next, we quote two rasults of this paper, concerning rigid
extensions, which seem interesting. We state them in a form,

different from the one in which they are given inside,

1) Give us, any infinite separable space, (poussibly with plenty
of self-homeomorphisms). We shall then choose a suitable subspace
of B and join the two together in such a way that the final
space 1is rigid (See Thecrem 3.3.5 for a precise statement). One
remark 1s relevant herc: the subspace of @ii that we choose,
varies (it has to do so) with the space that you gives The
surprising thing 1s that it may be pre-fixed before hand, if your

space 1is assured to be connected or metrizable,

2) We call a Hausdorff space to be strongly rigid, if every
continuous self-map of it is either identity or a constant. J.
DeGroot [4] first proved the existence of such a space. Answering
a question of Herrlich, we proved in [9] that such spaces can
have any infinite cardinality. Here, we show that the quotients
of subspaces of such spaces exhaust all topological spaces. It
may be observed that quoticnts alone or subspaces alone cannot

do this job.



ITn this paper we have elaborately discussced more than half
a dozen methods of constructing rigid extensicns of spaces. We
wish to emphasize at present that they are all meant only as tools
for certain more significant results: For example, remark 3.1.7
and Corollary 3.2.3 explain where the first three methods are
used. The latter method of £ 3.2 is used in § 3.6 and § 3.7
while discussing homecmorphism groups; besides it will also be
used in a later chapter for a similar problem. ‘The first method
of é 3.3 will be used in a succeeding paper to answer a question
concerning rigid Boolean algebras; alsc see Remark 3.3.4 for its
significance. The method of § 3.4 has been effectively used in
3.4 to prove Theorem A of the abstract, concerning isometry

groups.

3.1, Connected Rigid Extensions

In this section, we give two methods of constructing
connected rigid extensions, each having an advantage over the
other. (See Remark 3.1). The results of this section will later

be used to answer a posed problem.

THEOREM 3,1.1. Lvery Hausdorff spacc is homeomorphic to a closed

subspace of a connected rdausdorff space rigid for continuous

bijections.

Proof. Let X be any ilausdorff space. Tirst, we embed X as a
closed subspace of a connected Hausdorff space, with no cut points.
This can be done as follows: Let T be the unit circle in the
plane, with usual topology, i.e. T = {(x,y) € RXR/X2+y2 = 1},

For each x in ¥, take a copy Ty of T and fix a homeomorphism



hX:T -+ TX. Consider S = X + I TX. In this discrete
xek

topological sum, make the following identifications:
i) Identify each x in ¥ with the pcint hx((l,O)) of

LX.

ii) Collapse all the pointe of {h ((~1,9)) | zeX} to a

single point,

iii) Similarly collapse the orbit {h ((0,1))/xeX}’ to a
single point.

Let ¢ be the quotient map thus defined and let Y be the
quotient space. The equivalence relation defined by ¢ can be
easily canecked to be a closed subset of S5 X 5, It follows that
Y 1is a Hausdorff space., It can alsc be checked easily that the

restriction of ¢ to ¥ and to each of the spaces T is a

hcmeomorphism onto a closed subspace of Y, Further Y= L)¢(Tx)e
xXeX

Here, each @(TX) iz a connected space with no cut point. Also

(\¢(TX) has two points, 1t follows that Y 1is a connected
XE N

space with no cut points,
Qur second step is to construct for each cardinal m, a

space X with a base-point x_  such that

(i) X0 is a connected Hausdorff space.

(ii) X is the only cut point of L

i

(iii) the cut-point-order of x_ in X is m.

(If p 4is a point of a topological space P, then the cut point



order of p in P 1is defined as the cardinality of the set of

all connected components of P\{pi). Such a space X, can be

constructed easily as follows: Take m copies of the circle T,
take their disjoint sum, choose one point from ecach copy and

collapse these chosen points to a single point x ~and call the

resulting space as Xm' Then it is not hard tc check that it
satisfies the above requircments, .
. Thirdly, we fix any point Yo of Y (the space constructed

in the first stepl). We take a C-system ({(Xa, Xa)ias(J,O)}, £)

(S5ee chapter I) where

-

(1) (¥ .x_) coincides with (Y,yo).

(ii) TFor each o # 0, there exists a cardinal m such that

) is the same as 3 and
(Xd,xa) i3 m ( m’xm)

i

(1ii) For distinct points of J, the corresponding cardinals

satisfying ii) are distinct.

N
Geometrically this means that the first base space 1s Y  and the
other base spaces arce from the xm's and no two distinct base
spaces are homeomorphic. Lot Z be the C-space so obtained, Ve

B!

shall show that 7 ig a reguired extension of i,

Since each base space is a connected Hausdorff space, so is
Z (by Propositions 1.3.1 and 1.3.3)., Also Y (and hence X also)

is homeomorphic to a closed subspace of Z,

jext, we show that distinct points of Z have distinct



cut-point orders., Let X be any point of 7 different from the
base point R of Y contained in 74, Ve shall show that
Z {x} has exactly m + 1 connected components where m is the

cardinal such that Xy is the base space at x. 1If C 1is a
xh, AA

connected component of b, {x}, then ¢” (as in ‘lotation 1.1.1%)
is a C-process- space with connected base spaces and hence
connected (Proposition 1.%.3)3; also each CT is both open and
closed in Z {x}. (7This follows from Propositicns 1.1:3 and
1.1.4-and from the follcwing fact: In any of the base spaces, if
any one point is removed, the connected components are open);
further the point x 1is a non-cut-point in the base space 1in
which it is a non-base pcint and therefore 2 {X}* is also a
C-process—-space with connected base spaces and hence Z {x}* is
connected. Thus 7 {x} 1s a union of m + 1 disjoint connected
subsets cach of which is both open and closed in 7 {x}.
Consequently the cut-peint-order of x in Z 1is exactly m + 1,
It is seen that the cut-point-order of Yo in 7 1is exactly 1,

{it is a non-cut-point). iience it follows that distinct points

of 7 have distinct cut-point~orders.

Now we complete the proof of the theorem by showing that
such a space has to be rigid for continuous bijections., Let
f : 2 =+ 7 be any continuous bijection. Then using the invariance
of connectedness under continuous surjections, we see that f
cannot increase the cut-point-order at any point. In other words,
for each x in Z, the cut-point-order of x must be greater
than or equal to that of £f(x). If we denote by A the set of

all cardinals that appear as the cut-point-order of points of 7Z,



then the previous paragraph establishes a bijection between A
and Z. “hen composed with this bijection on both sides f yields
a bijection ¥ from 4 to A with the property ¥m) <m for
each m 1in A. Illowever this is impossible (sinde A 1is
well-ordered), unless ¥ is the identity map. This implies that

f is the identityv maop.

Remark 8.1.2. It can be proved that the extensions constructed

[

above has some additional rigidity properties:

. (1) Every one-to-one continuous map from ¥ into itself
fixes every interior point of its range, Consequently, Z 1is
rigid for continuous injections with open range,

(1i) 7 is chatoicy that is no two nonempty disjoint open

subspaces of 7 are homeomorphic. (See Remark 3.2.3).

Remark 3.1.3. Incidentally we see that the following can be

proved by similar methcds: Let m be any infinite cardinal and
let n - a, be any function from the set of all cardinals < m
into itself. Then the fcollowing are equivalent:

(1) There exists a connected ilausdorff space of cardinality
m such that for each n < m, there are exactly = points having
cut-point-order.

(i1) m= L a_.
n
n<m

The above assertion follows from the next result also which

is a restatement of Thecorem C  of the abstract.

THEOREM 3.1.3. Let ¥ be an infinite set of cardinality m and

et et ettt . i et

let Y be the set of all cardinal numbers < m.. Let £ Dbe any
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function from % into Y. Then I can be realized as the

cut-point-order function, for a suitable topology on X.

Proof. Let Z  be any connected fausdorff space of cardinality
My s having no cut points. For cach m 1in Y, we let the space
4, to be the one obtained by taking m - 1 (this is equal to m
if m is infinite) copies of ¥, choosing onc point in each copy
and identifying all these chosen points into a single point.

Note that in Z,» there 13 only one cut-point and that its

cut-point-order is exactly m - 1. Further [an is easily seen

1
tolbe m, e
Wow consider a partition of the given set ¥ into a

sequence Xy, Xpy eos 3 e ses of subsets of equal cardinality.

. 1) Ll
We recursively construct spaces L( y

s+« such that
each contains its predecessor as a subspace and such that

(n) 2{n-1) has cardinality m for every natural number n.

Suppose we have constructed 2(1) seces Z(r)

A
where r 1s some

natural number. Then we take any fixed bijection br from

S(r) (r-1)

[S)

to Xr.

~(r) . (r-1)

If 72 4dis a point of & , we attach to this point,

a copy of Zf(br(z)); the hinging 1s made at the special point

of this space, so that the point =z has cut-point-order
f(br(z)) in the new space, when this is done for each point of

7¢T) Z(r~1), we finally get a bigger space Z(r+1).

(r)

By induction, we get an increasing sequence 72 of spaces
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and we take 7 to be its direct limit. Je naturally get a

X
@“
=l

bijection b from 7 to ¥ which coincides with b for each

(r) ?(r—l) i

Z . We transfer the topology of % to X via this

bijection. Then this is a connected ilausdorff topology on X
such that < {x} has exactly f(x) connected components, for

each x 1in &,
.

h that there arec

kemark 3.1.3(b), In particular, if m is suc

m cardinal numbers smaller than mo(e.g., the first infinite

cardinal number), then we can take the special case that f 1is
an one-to-one function. In this case, the topology on X

constructed above, has to be rigid for continucus bijections.

Remark 3.1.4., Actually, we have not made the e¢ssential use of
itausdorffness. e have shown that every topological space can be
embedded in a rigid space.

Remark. It should be admitted that the extension constructed
above, i1s in general, too huge. B2ut in some special cases, this

drawback can be over-come. For example, we can prove:

TiULOREM 3.,1.5 Let ¥ be any infinite separable iausdorff space.

Then there exists a separable Hausdorff space X  with the

following properties:

a) X is homeomorphic to a closed subspace of ¥ .

b)Y %] = |x

c) X is rigid for continuous bijections,

We shall only sketch the proof here. Imitate the proof of
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Theorem 3.1.1., with the following changes: Instead of attaching
a copy of the circle T to each point of X, attach copies of T,
only at the points of a countable dense subset of «. Then the
space Y constructed as in Thecren 3.1.1. (but for the change
mentioned above), will be a connected separable space with no
cut-points. (For, it contains one such dense subspace). Let the
spaces Xm be constructed as in Theorem 3,1.1. for each finite
cardinal m. Tfor each point of a countable densc subset of Y,

attach a copy with m odd. Thus we get space Yl' If for some
positive integer Ym has been already constructed such that

Yn__1 Yn, then to each point of a countable dense subset of

Y Y

0 n-q @attach a copy cof X~ where m is an integer divisible

by 2™ but not by 2n+1. At each stage, take care that distinct

Xm's are attached at distinct points. Let XI be the direct

limit of the spaces Yl, Yz,... Then it can be proved that ¥

contains a countable dense subset, distinct points of which have
distinct cut-points-orders in Xh, such that all points outside
this dense subset are non-cut-points. It can be checked that
this implies that X is rigid for continuous bijections.,

How the cardinality of X  is max(|X], €). Hence the
theorem is proved for spaces of cardinality > c.

For cardinalitics < ¢, the same method works, when the

circle T is replaced by any countable connected ilausdorff space

without cut-points. (e.g. the space of 3ing |2]J.
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Remark, ilowever, the separability of X can be droppad from the
hypothesis of Theorem 3.1.5, if we arse satisfied with rigidity

only for homeomorphisms. This is proved below:

TLORLIM 3.1.6. Lvery infinite hausdorff space is homeomorphic to

a closed subspace of a connected ilausdorff rigid space of same

cardinality.

Proof, First, we show that for cach infinite cardinal m, there
exists a family L of topological spaces with the following
properties:
(i) ELach member of A is a connected Hausdorff space of
cardinality m with no cut-points,
(ii) Ho two distinct members of A~ are homeomorphic,

(iii) jA_| > 2",

The existence of such a family A, ~can be proved as follows:

Let m be any infinite cardinal. Then as we have seen in
the proof of Theorem 3.1.5 every :Hausdorff space of cardinality
m can be embedded in a connected ilausderff space of cardinality
m with no cut-points. Ividently, each such space can contain

at most 27 types of subspaces. Hence we will be through if we

m
show that there are 22 distinct Hauscdorff tcpological types

of cardinality. m. But this 1s easily done, because we know that

m
there are 22 types of maximal nondiscrete topologies (D {p}

where p 1is an element of D D where D 1s a discrete space of

cardinality m) of cardinality m.
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Qur second step will be to construct the required rigid
extension, Let X be any infinite i{ausdorff space and let
|X] = m. ‘Then embed X din a connected .lausdorff space Y of
cardinality m with no cut-points (Say, as in the proof of
Theorem 3.1.5). Then construct by c-process, =~ space x* such
that:

1) Y is a base-space of 2 .

2) All other base-spaces of K" are chosen from the family

A_, and
—m

3) ilo member of 1s chcsen more than once as a base
space,

Our third step is tc show that in such a space (that is in
a C-space in which base spaces are connected iausdorff spaces
with no cut-points), the property of being a abase-space is
topological. That is the image of any base base-space under any
self-homeomorphism of ¥ must itself be a base-space. This is
proved by showing that the base-spaces are prccisely the maximal

connected subsets with noc cut-points.

s
e

Let A be any nomempty connected subset of X« with no
cut-points. Let =x be any point of A. Let h(x) be defined
as in 1.1. (That is h(x) 1is the base-point of that base-space
in which x is a non-base-~point). Consider {h(x)}* (For
notation, see 1.1). Since th(x)}" {h(x)} is easily seen to
be open and closed in e {h(x)}, conclude that A is contained

in {h(x)} . Also for ecach Y in A, ¥ {Y} is open and closed

"

% . ) . .
in X {y} whereas 1 {7y} is connected. iHence . 1is either



15

contained in Y  or disjoint with y" {Y}. Now i1f 8 is a
base-space such that A 3 has at least two elements, then the
above facts imply that & 1is disjeint with {b} " {b} for each b
in v, but A 1s contained in J*. It follews that A is
contained in ¢ 1itself. Thus every connected subset of Xg
with no cut-pcinte, is contained in some base svace., 3ince each
base~-space is a connected subset with no cut-points in itself,

.

our assertion of the last paragraph has bcen prcoved.

- Finally, we see as usual that X 1is homeomorphic to a

o
“

closed subspace of X . Ve complete the proof by showing that
X* is rigid. If h is any self-homeomorphism of Xﬁ, then by
what we have seen just now, h nust carry basec-spaces onto

base-spaces; but on the other hand, no two distinct base spaces
are homeomorphic, by our choice of them. Hence it follows that
each base-space is left invariant under h, liow if x in X*

is an arbitrary point different from the unique non-cut-point 0,

then there are exactly two base-spaces 31 and 52 to which x
. ia - o 18] - <3 - - @

belongs. Further o, B, {x}. ince h(B)) 3, and

h(BQ) = 52, it follows that h(x) = x. Thus h must be the

identity map.,

(We note that in this space X*, all the points with the
exception of a unique non-cut-point, have cut-point-order 2.
iHence, for the proof of rigidity, we cannot repeat the arguments
of the earlier theorems cf this section. The argument of the
previous paragraph can however be given to earlier theorems also,

but then we will be losing the stronger result, viz. rigidity for
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continuous bijections).

Remark 3.1.7. We conclude this section with some remarks on the

relative merits and demerits of the two methods of rigid extensions
g

discussed here:

1)

2)

4)

5)

6)

The first method (that is the one described in Theorem
3.1.1) gives rigidity for a larger class of maps, see
alsco Remark 3.1.2),

The first method gives information about the ‘distribution
of cut-point-orders in a connected space. (See Theorem
3.1.3).

The second mcthod (that is, the one described in Theoren
3.1.6) gives rigid extensions, withocut any increase in
cardinality in all cases., In the first method, this
was achieved only for separabie spaces,

In both the methods all separation axioms are preserved
by the extension.

The first method alone is applicable to answer a
question posed in |16] (see  3.1).

The second method alone is applicable to obtain the
main results of the next chapter and thereby to
construct curicus intervals in the lattices of topolo-

gies,

3.2 Locally Connected Chaotic Extensions

In the last secticn we constructed connected rigid extensions

for arbitrary spaces. The purpose of this section is to improve

the results of the previous section, by showing that the connected
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rigid extensicn can be chosen to be 'more connected' and '"more
rigid' simultanecusly. As a by-product we shall answer a question

»

of |16

The stronger form of rigidity considered in this section is
known as chacticity. This notion has been considered in |16]
and |1] 1in the following form: A ‘lausdorff space X is
chaotic, if whencver % and Y are distinct points of X, there

1

exist open neighbourhoods VX and Vy of x and Y réspectively
in X, such that nc open subset of Vx is homeomorphic to an
open subset of V.. It will be useful for us to look at this

concept in nicer ways:

PROPOSITICH 3.2.1. The following are equivalent for a lausdorff

5,

space X
(i) A is chaotic
(ii) 1o two distinct open sibsets of X are homeomorphic
(1i1i) flo two disjoint open subscts of ¥ are homeomorphic.

The proof is not difficult and hence omitted.

liow, we proceed to the two main results of this section,

which improve Theorem 3.1.1 and Theorem 3.1.5 respectively.

THEQOREM 3,2.2. Let x be any Hausdorff space. Then there

@

exists a connected locally connected chaotic space X" such that

X 1is homeomorphic to a clcsed subspace of X,

o
k14

Further, X can be so chosen that the following conditions

are satisfied:

(i) if ¥ is infinite and separable, then |X | = |X]|.
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(ii) ¥  is rigid for continuous bijections.

(iii) If |X| > ¢, then ¥  satisfies all separation axioms

satisfied by X.

(Note that we cannot lock Tor the conclusion of (iii) when
|X] < ¢. For, each infinite connected Tychonoff space must have

cardinality > c).

Proof. Obviocusly it suffices to prove the thecrem for infinite
R .
spaces. Our first step 1is to select for each infinite cardinal
m, a.space S having the fcllowing properties:
(1) |s| < m.
(1ii) S 1is a connectad locally connected Hausdorff space,
(iii) There exists z base for S, such that nc basic open
subset of S has a cut-pcint.
(iv) If m > ¢, then S is completely normal.

(v) S 1s separable,.

The existence of such a spaces is easily proved. For
example, for m > c, we may take 5 to be any region of the
plane, say, open unit disc. Tf m < ¢, we may take S to be any

of the countable spaces constructed in [12].

The second step i1s to embed the given zpace X 1in a space
7 satisfying the conditions (i) to (iv). This can be achieved

as follows: Let J = {(Xl’XZ) € X x X | X, # xz}. For each

(x be a copy of the space S chosen

,x2) in J, let

&)
1 (xi,XQ)

in the previous paragraph (corresponding to m = |X|). Consider
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the disjoint tcpological sum £ + 2

S'x x,) "
(xi,xz) eJ 7172

For each (X,,X in J, choose any two distinct noints of

2)
S(X J%.) and identify them respoectively with 2y and X, in i,
1272

Let Z ©Dbe the guctient set thus obtained and let ¢ be the
quotient map. Jow the topcleogy on 2 that will be of our
interest is obtained by weakening the quotiernt topology on 2
only at the points of ¢(X,. If ¥ belcngs to ¢(¥X), then a
basic neighbourhood of x 1is defined as ¢(W) where W 1is a
union of the following sets:

(a) an open neighbourhood V of t in X, where t 1is

the unique point of X such that ¢(t) = x.

- ' ; .
{(b) all Sce,v) ' © with v in V.

(e¢) Some connected open neighbourhood V(x, ) of x' for
3

each Y in X {t} where x' dis the unique element

of such that ¢(x'") = x = o(t).

S(t,v)

Then it can be shown that this specifies a topology on 7

satisfying our requircments,

Since the cumbersome notaticns have concealed the idea here,
we prefer to give a gecmetric description ¢f the above construction
now. To each crdered pair of distinct points of X, we have
attached a copy of S hinged at these points. A neighbourhood
of x in X (in this big space) contains the union of the
following:

(a) the set of all points that are near x in X
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(b) the set of all points that are neca X 1n each copy
of S  hinged at x and
(¢) all the copies of & that are hinged to x at a

point near to X.

Finally, we show that the extension X of X has the
required properties. The local connectedness of & follows

from the fact that it is z gquotient of a sum >f copiles of 7, 8

[y

and T. All the requircments stated in the theorem, eXcept

3¢

chaoticity, can be easily proved tc be true in X , along the

lines of the corresponding procfs in 3.1.
<y b

o
it

We ccaplete the proof of the theorem by showing that e

is chaotic. Let us have the notation that if £ is a subset of

A4

a topological space ¥ and x 1is a point of I, then CF(X) is

the cut-point-order ¢f x 1in E where L receives the relative

topology from Y. Let vy and V, be any two disjoint basic
open subsets of ¥ and let X and X, be points of V1 and V2

respectively. Then because of condition (1ii) satisfied by S,

we can show that

C, (x,) = C ,.(x,) and C, (x,) = C (%),
V1 1 % 1 Vo 2 % 2

%
But since distinct elements of X have distinct cut-point-

(x
v 2

orders it follows that (., (Xl) ¥ C
1

). Consequently V1 and

v 2

v cannot be homeomorphic. It follows that no twe disjoint open

2
subsets of X can be homecmorphic,

Thus the space X satisfies all the properties mentioned in
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the statement cof the theorem, except {(ij. As remarked in 3.1.5,
this ¥ is in genceral too huge. In case . 1is separable, we
can achieve (i) by allowing certain modifications in the

s
be

construction cf X as follows:

n

[
©
+

Let © D¢ a countable dense subset of 4.
I = {(x,Y) / xeD, Yeily, x # Y}. Construct a space Zi exactly
as we constructed %, with the only change that I plays the role
of J. Then 21 can be checked to Le connected locally

s

connected Hausdorff extension of K. Turther Al is the union

[l

of the space X and 2 countable number of copics of 8.

is separable. dow embed this = as a closed

Consequently 2

-
1
subspace of a separable connected rigid space as described in

Theorem 3.1.5. This extension has the required properties.

COrROLLARY 3.2.3. Real line can be embedded in a completely

normal connected locally connected chaotic space of same

cardinality. This answers all parts of the following question

of |16}:

(a) Do chaotic spaces exist?

(b) Do chactic spaces of cardinality ¢ exist?
(c) Do there exist completely normal connected locally

connected chaotic spaces?

In fact, we have very strcng answers:

(a) Chaotic spaces of arbitrarily large cardinalities

exist.

Z o .
(b) There are 2 distinct types of chaotic spaces of
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cardinality c (i.e.) as many as there topological

types of cardinality c).

(c) The family of completely normal connected locally

connected chaotic spaces is a class, 2nd not a set.

COROLLARY 3.2.4. A family F of topological spaces is said to

be large in the first sense if for each infinite cardinal m,

m
. 27 . . . -~
there exist 2 distinct topological types «f members of Ty

it is said to be large in the second sense, if the subspaces of

i1ts members exhaust all topological spaces.

T
1

et C be the class of all connected locally connected 2

—

rigid spaces. Then C 1is large in both the scnses.

Wwhen the starting space ¥ 1is not separable, the chactic
extension X* constructed above is too huge. 3o, we ask whether
there are locally connected chaotic extensions for arbitrary ‘
Hausdorff spaces, without any increase in cardinality. We have

an affirmative answer:

TiHLOREM 3,2,5. ©Lvery infinite Hausdorff space is homeomorphic

to a closed subspace cof a connected locally connected chaotic

space of same cardinality.

Froof. TFirst, embed the given space, as a closed subspace, in a
connected locally connected Hausdorff space Y of some cardinality
having no cut points, This is possible as shown in the first two

steps of the proof of Theorem 3,2.2.

Next, if m d1s the cardinal of the given space, take a

family Bm such that (i) each member of Bm is a connected

4
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locally connected :iausdorff space of cardinality m, without
cut-points.

(1i) no two distinct members of 8 are homeomorphic,
1L

and (ii1)  |8_| = m,

The existence of such a family can be proved exactly in the

same way as we proved the cxistence of the fanily in the
proof of Theorem 3,1.6. :

"Thirdly, we construct a C-space v"  with the following
conditionsL
(a) The first level base space is Y.

(b) All the base spaces are chosen from Bm

and (c) o two distinct base spaces are homeomorphic.,

Next, we weaken the topology of v as follows: Let Y

be a general point in Y" . Then there are exactly two base-spaces,

say &, and B, that centain Y. O0f these, exactly one, say Bys

has Y as its base point. tow let Vy be the family of all sets

of the form (V1 VZ)“ (that 1s, the set of all points lying

above some point of Vi o V2) where Vl and V, are subsets of

Y" such that the following hold:

1) Y g V \Y

1 2
2) V1 is an open subset of 205 Yy is an open subset of
Sy
3) vy and V, are connected,

and 4) The base point of B, does not belong to Ve
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Then the following can be checked without much difficulty:

Y we declare the VY's to form

a) If for each Y in
the neighbourhood system at Y, then we get a coarser
topology on Yk.

b) This topclogy is connected, locally connected and
Hausdorff,

¢) On each base-space, the tcopology is unchanged.

~d) LEvery open subset contains at least one-base space
completely,

e; If V 1is an open connected subset of Y*, containing
a base-space o completely, then 2 1s a maximal
connected subset of V without cut-points.

) is a basic open sct {where V., and

f) If W = (V1 \Y 1

2

v, satisfy conditions 1) tc¢ 4) and if V = W (V1 V2),

then every subset of V, which is maximal with respect
to being a connected subset of W without cut-points,
must be a base-space. (For this, we have to imitate

the corresponding proof of 3.1.).

Finally, we usc the above facts to show that v" with this

topology, is chaotic. Suppose V and J are two disjoint -

connected open subsets of Y and h : V - & 1is a homeomorphismn.

7

Assume that W 1s a basic open set. Then W = (W1 Wz)" where

W, and w2 satisfy conditions similar to 1) to 4). It is easily

seen that A = U (Jl Wz) has nonempty interior. Therefore

-1,

h “(A) must have ncnempty interior., Therefore from d) above, we
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-1
h

zet that there is a basc space o (A}. Also from e) above,

we see that 3 1s a maximal subset ¢f V with respect to being

a connected space without cut-peoints. .Jence n(d) must also be

a maximal subset of W with respect tc this property. But h(B)
is contained in W (W, ¥Wy), It follows from f) above that

h(B) must be a base-space contained in W. Since we have assumed

Vv and % +to be disjoint, h(i) must be a base-cpace different
from o,
But by our construction, no two distince base-spaces are

homeomorphic. This contradiction proves that no open connected

%

subset of Y can be homeomorphic to a disjoint basic open

subset of Y . This is sufficient to prove the chaoticity of v,

Remark 3.2.6. The extension constructed above, has the same

cardinality as the original spacej; but it may fail to be rigid
for continuous bijections. 0On the other hand the extension
constructed in Theorem 3.2.1 1is rigid for continuous bijections,
but at times its cardinality is toc large. Ilote also that in
both types of extensions, all the separation axioms can be
preserved, provided the original space has cardinality not 1less

than c¢.

3.3, Totally Disconnected Ripgid Extensions

We have proved the existence of connected locally connected
rigid extensions for all spaces. The next natural question is
whether each totally disconnected space possesses a totally
disconnected rigid extension., Our earlier methods can be of no

use here, since they heavily depended on arguments involving
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cut-point-order. But still, we can prove:

THEORLI? 3.3.1: Let ¥ Dbe any totally disconnected Hausdorff

space. Then there exists a totally disconnected rigid iausdorff

K

space X containing X as a closed subspace. Further X can

be so chesen that, if X infinite, then X and X have the

=)

game cardinality.

The construction of X  consists in attaching suitable
copies of zero--dimensional rigid spaces to the point of X. lMore

precisely, to each =z 1in X, we choose a space ZX constructed

in 2.4., consider X +I G fix a point Z in ZX for
xeX
each x in X, identify x with z2, for each % in X, and «call

i

the quotient space as «x . Let ¢ be the quotient map.
But the ZX'X nust be suitably chosen. Pecall that each

ZX was constructed as a C-space whose base-spaces are maximal
nondiscrete topological spaces. We demand here that they should
satisfy the following conditions also:
(i) <Zach base-space has the same cardinality as the given
space X (if « 1is infinite).
(ii) If x and Y are distinct points of X and if D {p}

and D {q} are any two base-spacec of ZX and ZY

respectively, then p and q (which are points in
BD D) should not be equivalent (in the sense
described in 2.4,).,

If X is constructed out of such a family Zy of rigid

spaces then we shall show that X  is rigid. It is apparent
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from our construction that outside 4(X), distinct points look
differently, iowever since ¢(£) 1g homeomorphic to the given
space X, it is quite possible that it admits non-trivial
homeomcrphisms. Cur contention is that still Aﬁ has no
nontrivial homecomorphisms. Tor this, we look for a topological
property that distinguishes a part of ¢(4X) from its complement.
ve let A to be the set of all those points oF  + wnich

ossess extremally disconnected neighbourhoods. Sinca each &
p g

is extremally disconnected (See 2.4), 1t can be shown that
each point of X* $(X) which is isolated in ¢(x), must belong
to A. We claim that these points exhaust A, To prove this,
let x be a non-~isolated point of ¢(X)., Let V De any

neighbourhood of x in X . Since X is in the closure of

2 {x} it is clear that 7 = V (ZX {x}) 1is a nonempty open
subset of V. Also /7 is closed in Xﬂ (here we use the fact
that X is a T, -space). Therefore 0 oK) By (XY = {x}.

On the other hand, since x 1is in the clcsure of ZX {x} and

since V is a neighbourhood of x, we have that x belongs to

W. Thus W & (X) = {x}. This is not open in ¢(X). Therefore
Y is not open in V. Tt fcllows that V is not extremally

disconnected., Thus we have shown that if A 1is as defined, then

“

X A 1s precisely thce sot of nen-isolated points of ¢(X).

Consequently, if h : X =+ ¥ is any homeomorphism,

h(x A) = X A. dcw A is obviously a sum ¢f copies of rigid

spaces ZX'S, such that different copies are of distinct types.
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Hence using conditicn (ii’ of our choice of base-spaces and
recalling the prcof of rigidity of the space & in 2.4,, we
can show that A 1s rigid., Therefcre h 1is identity on A,
But A 1s a dense subspace of }x: Hence it follcws that h

is identity on the whole of X .

“

Thus X is a rigid extension of «. The cther assertions

of the theorem can be easily verificd for this extension.

REMARK 3.3.2. The above extension can be proved to preserve all

5

the separation axioms. ‘!oreover, if % is zero-dimensicnal, so

is the rigid extension .. constructed above. 1n fact, for

zero-dimensional spaces, we can prove something more.

THEOREM 3.3.3 LEvery zero-dimensional Hausdorff space is a

subspace of a compact rigid zero-dimensicnal ‘lausdorff space.

Proof. Let X be any zer-dimensional Hausdorff space. We any
may assume with-out loss cf generality that X 1is infinite. Our
method is to construct a zero-dimensional iausdorff rigid
extension of X and the consider a zero-dimensional compactifi-

cation of 1it.

0f course, the rigid extension 2 constructed in Theorem
3.3.1 1is zero-dimensional. But however, we are not sure whether
any of its zero-dimensional compactifications must be rigid.
Therefore we make some modifications in the construction of X*.
This will be constructed in the same way as we did in the proof

of Theorem 1.3.1; but instead of the Zx's we shall consider

different spaces Tx's. These T's will be constructed in the
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same way (i.e.3; by C-process) as ZX'S were constructed in

2.43 but the base-svaces will be chanped., Recall that the

base-spaces for ¥_'s were maximel nondiscrete topological
spaces. fere, we shall have somethings c¢lse as base-spaces.

Let I be a discrete space and let p e B 0. Take two
disjoint copies of T {v}l,s take their sum and identify their
non-isclated pcints. The resulting space is denoted by Dp:
There will be no confusion, if we denote the unigue non-isolated

point of Dp again by p.
2m

Now let |¥| = m and let |D| = 2™, Then BD has 22

. ~T0 . . .
points D has only 2 subsets of cardinality not exceeding m

m
and each subset can have only 22 points in its closure.

2™
Consequently there arc 22 points in BT © that are not in

the closure of any subset of U having cardinality < m. Let A
be the set of such points. Then consider a family I of
topological spaces such that:
(i) el = 27,
(ii) Each member of t is a D_ for some p in A,

and (iii) If Dp and D, are in I, then p and q are

1

uncomparable 1n the sense of 2.4,

With the members of f as base-spaces, construct a C-space

-3

Now the proof that 7 is rigid is just an imitation of the

proof that Z 1is rigid (in 2,4.) provided we prove the
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following: If Dp and Dq are distinct members of F, then
every continucus map from Dp to Dq iz locally constant. For
this let £ = D_ » Dq be continuous. We have to consider only
the case when f(p) = g. Lock at one branch (c¢all it 3) of

Ik {p} that is contained In Dp. Then it is clear that p

must be in the closure of f£(E {p}). Let bi and 32 be the
two branches of D ., Let C, = o gt (B, {g}) and
\.i -~
. -1, .
= 1 1 1. o o s ]
C, 1 f (52 {g}). Then C, and C, are disjoint.

Therefore p Dbelongs to the closure of at most one of them

(since © is extremally disconnected): say p € El' It follows
that C, {p} 1is an open subset of B which is mapped onto an
open subset of 51. But con the other hand, for spaces D iph;

every open subspace is homeomorphic to the whole space. Therefore

. . . . gy -
f gives rise to a continuous function f : D {p} - D {q}

such that %-1(q) = p. This however is impcssible by our choice
of F, This contradiction proves that p ¢ 51, Similarly, p

cannot be in 52 also., Therefore Dp (¢, ¢<,) is a neigh-

bourhood of p in DP that i1s entirely mapped to q. Thus f

is locally constant.

Now we construct I  as in the proof of Theorem 1.3.1.,

with T playing the role of 7.

The proof that X is rigid also needs some essential

2,

changes. Now no point of X has an extremally disconnected
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neighbourhood. tience, the argument of Theorem 3.3.1. cannot hold

-

here. [t is here that the second condition in our choice of F
helps. e let $ to be the set of all those points x in X
such that x dis in the closure of some subset of X  {x} which

has cardinality m. Then it can be shown that &5 1is precisely

the set of non-isolated points of ¢(X). ilence every self

homeomorphism h of o must fix 5. (i.e. h(3) = 3), On the
other hand K: 5 can be proved to be rigid by ocur routine
methods. This means that h must be identity on X* S and
hence on the whole of X*Q

7y
w

How let S(X ) be the maximal zero-dimensional iiausdorff

compactification of % . Then the points x of x in S(X)

are distinguished by the property that they are¢ in the closure

X
n

of two disjoint open subsets of S(X ) {x}. tence every self-

ofs
e
X

homeomorphism of S(X ) must leave X invariant, and hence

o
1

must be identity on ¥ (since X is rigid) and hence on the

ofe
-~
rr

whole of 5(Z°) (sinee X  is dense). Tthis proves that S(X )
is rigid.

Remark 3.3.4. The above theorem shows that compact rigid zero-

dimensional spaces are abundant. Answering a gquestion of G.
sirkhoff |3|, the first such cxample was given by M. Katetov
l14]. Answering a question of J. DeGroot and r“cDowell |5, .
Lozier |15] proved that their cardinalities can go arbitrarily

high. It is clear that thecrem 3.3.3 improves all these results,

-3
L.
.
<
.
o
gl
e
w
.
w
2
[&y]
=

X 1s an ifinite separable liausdorff space,

s

. . . ©
then ¥ c¢an be embedded in a rigid separable space X  of same




cardinality, such that « ¥ is homeomorphic to a subspace of

pii Il

Proof. Our methods yield this result, cn observing that every

53]

countable extremally disconnected space can be embadded in  BH

(see [13]).

3.4, Metrizable Rigid Sxtensions

Hiitherto, we have constructed rigid extenzions for arbitrary
Hausdorff spaces, preserving several pleasing properties such as
connectedness, local connectedness, total disconnectedness, -
separation axioms, cardinality, etc. But nonc of these extensions

would preserve first-countability, metrizability etc.,

For, each of them is built out of {-process; and any such
space 1is nc-where first countable. (Sce 1.2.,. One would
naturally like to know then whether every metrizable space can be
embedded in a rigid metrizable space. The purpose of this section

1s to give an affirmative answer to this question.

s rn s e rn iy et it ottt st

LEMMA 3,4.1, Let X be a set which is a union of metric spaces,

say X = Xa where cach ¥ is provided with a metric du'
) a ——— -
oEe]
i a and g belong to J, let d and dB coincide on X XB.
— - — o T —_— — 0

Then there exists a metric d on # such that for each o in J,

[aN

is equivalent to on K .
. — a — ua

.,

Pproof. I1If x and Y are two points of X, call them connectible
to each other if there exists a finite sequence (called connection)
X T X Xys ene 5 XS Y such that every pair of successive

terms of this sequencce belongs to same X for same o4 4in J.
o
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Define:
dix,Y) = 1 if % and Y are not connectible to each
other min (1,&1,(x,1)) otherwise.,
where dl(x,Y) = inf {dc(x,!)} where ¢ ranges over all

C

connections from x to ¥ and dcix,Y) is Jdefinaed as follows:

X x_ = ¥} 1s one connection such that

[y

If ¢ = {x = X

Xy X € &
1 1+1 o
. 1+l

dc(x,Y) = d (X ,xl) + d (xi,x2)+...+d

(x X ).
o a, n-172 n)

o

n
The compatibility of da's in the intersections insurecs that d,
is well defined. To check that d 1s a metric, 1t is enough to
check that d1 is a metric. For this it 1s cnough to verify the
triangle inequality. This can also be verificd with some easy

computations.

For each a in J, we observe that the restriction of d +to

Zq is given by min(isda). ifence d and da are same on Xa'

THEORLEM 3.4.2. Lvery metrizable space is homeomorphic to a

closed subspace of a rigid metrizable space.

Froof, Let (X,d) be any metrizable space., Tirst, imitating
the proof of Theorem 3,1.1., embed ¥ as a closed subspace of a
connected space Y without cut-points. ijow forget the topology

of ¥ and look at its underlying set. It is a union of the

space X and the spaces in the family {TX | x € X}. When Y

1s thus represented as a union of metric spaces, we observe that
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X T, = {x} for each x in X, and that T Ty has exactly

three points when x # Y, and that the two metrics d, and dY

are compatible in this intersection., (Hece for each x in X,
dx denotes the usual metric on TX)n tlence by Lemma 3.4., there
is metric d' on Y such that d' = min(1,d,) on each Tx and

<

d' = min(1,d) on X. Let J' be the topolopy on ¥ induced by

d'. Since the original topology on Y was the strongest one that

coincided with the given ones on Tx's and X. we get that J!

must be weaker than that. ilence (Y,J') 1s a connected metrizable

space without cut-points.
Next, look at the construction of spaces Xm in the proof

of Theorem 3.1.1, They are got by attaching m copies of the
circle space. Hence Lemma 3.4.1., easily applies and gives a
smaller metric topology on Xm‘ In this metric topology also, it
is easily cheched that there is a unique cut-point, the removal of

which results in m connected pieces.

Ay

Finally, we obsecrve the construction of ¥* in 3.1.1. There

agailn its set is a union of the space Y and the spaces Z for

several m's., Further, whenever two of these interest, they
intersect in a single point. Therefore, Lemma 3.4.1. again -
applies and gives a metric on X*, It can be checked that the
cut-point-order of any pocint in Xk is unaltered, whether it be
with respect to this metric topology, or be with respect to the
original quotient topology of X*. ilence in the metric topology

%
on X also, distinct peints have distinct cut-point-orders. Hence

the proof of the theorem is complete.



Remark 3.4.3. The next natural question in wvhether the rigid -

metrizable extension of an irnfinite metrizable space can be chosen
without increasing the cardirality. lHere we observe the following:

-

(a) The answer 1s in gereral 'no’ For, there is no
countebly infinite »igid metrizable space. (For, we
know that every ccuantably infinite perfect metric space
is homeomorphic to the space of all rational numbers.
See |13] or |18]),

(b) If X is an uncountable gapavable metric space, then

X can be embedded in a rigid separable metric space of

same caprdinality. Tlis can be proved along the lines

[#3)

of the theorem in Remark .di.4., with an application

of Lemma 2.4.1. in the ;proper places,

Remark 3.4.4, It can be proved with a lit*le greater difficulty

that every first countable Hausdort: gpac~ can be embedded in a
first countable Hauvscovrif rigia space. We prefer 1o exclude its

proof here.

Remark 3.4.5, Ir facl wz 2aa poove the. svery metrizable space

can be embedded in a connected “oozlly ocnnected metrizable space.

3

For this, we have to fellow ithe prcof of Theorem 3.2.2. as follows:

=

In the first step, assume o urcouvntable and choose S to be
metrizable, instead of being reparable. After the second step,

defire a metric d on 7 as follews: Note that 7 is *he union

of all S Jia, If s belongs to S, y and t Dbelongs
(x,,%.,) ; {2, %4

2 2

to S 's, dr’ine:
(Y1°Y2)
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Y+ dA(Y,,1T)
G(S,Xi) + d(xl,Yo) + d(Iz,t)

J(s,xl) + ﬁ(xl,Yi) + d(Ylsﬁ J

d(s,t) = min dls

d(s,x2> + d(xqafl) r d(&l,iz)
d(s,xz) + d(xz,Yz) + d(Yl,Y7)

where the d's in the right side are the metrics given in X or

in or in S(Y When s coincides with X, We

S -
(Xl’X2> 1,Y2)

may take it to be on for any x and we take the

S
(xl,x2) 2

infimum of these distances for different values of Xge

With these and similar conventicns for t, we get a metric d on
Z. It is a bit time-cconsuming tc cheack that this induces a
connected locally connected topology on 2. 'iow we proceed with
the proof of Thecrem 3.2.2. and give a metric for the final
space as in Lemma 3.4.1. The space induced by this metric is

the required rigid space. ‘e leave the details of the proof.

3.5. Streongly Rigid Extensions

tiere, we show that in the presence of total disconnectedness
or regularity or functional tlausdorffness, every Hausdorff space
possesses a strongly rigid extension. Recall that a Hausdorff

space X 1is sais to be strongly rigid if identity is the only



non-constant continuous self-mep of .

Y4

THECRDM 3.5.1. Let ¥ be an infinite Hausdorff space. Let X

-

be either regular or functiconally ifausdorff. Then X 13

homeomcrphic to a closed subspace of a strongly rigid space X

such that !Xhi = |X|, provizd there is a cardinal strictly
< Pa
between 21%1 ana 22171,
Proof, Let [X| = m. First we cmbed X as z closed subspace of
a connected Hausdorff space X' such that:
(a) |X'}] = m

and (b) X' 1is regular or functionally iausdorff according as X

is. This is possible as shown in the proof of Theorem 3.1.1.

ext, we consider the family of strongly rigid spaces of
cardinality m, constructed as in Remark 2.5. From that family,

we choose a subfamily ({° x € X'} of m spaces. We tale Y

x|

to be the disjoint topological sum of all these Sx's together

with X', That is we let Y = X' + % S
xe A! X

Now we introduce an equivalence relation cn Y by making

the following identifications: we note that 5, has two special

points -». and < . TFor each x in X, we identify x with the

point ~»., of 5. Finally we identify all the points of the
set {wX | x e X'} intc a single point. Let ¢ be the quotient

map induced by the above and let %" be the quotient of Y under

¢. Then we claim that x" is an extension of the required typed.

It is a routine verification that the restriction of ¢ to
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the subspace X' or to any SX 1s ¢ hcmeomorphism onto some -

Py

’ T

closed subspace of X . llence we can talk (without room for
kS

¢

confusicn) of the spaces X' and Sx's as subspices of ¥ .

ot
i

Let t be the special point of X , namely, t = ¢(wx) for some

(and therefore for each) x in X',

t7ith these notations the space
can be geometrically viewed as the cone
for which

(i) t 1is the vertex.

(ii) X' 1is the base
and (i11) for each x in x',

54 is the line joining

x and t.

(Guch a view is intended only for
easy understanding, and not in a

rigorous way).

-1y

iy or functionally Hausdorff, it is clear

Since X' 1is cither

that Y 1s a Hausdorff space and so is Y x 7. How the

equivalence relation induced by ¢ can be checked to be a closed

subset of ¥ ¥ Y. This implies that the space ¥ is Hausdorff,

Therefore the only thing that remains to be proved is the

triviality of all continuous self-maps of # . This will be
proved through four steps:

o oty
o a4

Let f : ¥ - ¥ be any continuous self-map. Let F be

the set of all fixed pcints of f.



Step 1. We shall first show that f(x Iy ' {t, f(t)}, Let
Y belong to 2w {t}). 7hen there exists x in X'
such that Y e SX 1= s e Also  £(Y) # Y. e claim that
f(i) e & {t, f(t)}. osuppecse f(Y) ¢ X! {tt. Then we

shall show that f(Y) = f(t). How by the special property of the

o oL . - P , .
spaces  S_, it is true that A = 5, (f “{£508 {£(Y)}) dis

[y

open in SX. #“ut on the other hand i*t is closed in SX {£(¥)}, by
the céntinuity of f. Thus A 1is both open and closed in

Sy {f(¥}.

sut (SX {f(Y)1) {t} is connected. This implies that t 1is
in the closure of A. 3Since A 1is contained in the closed set

f—l(f(Y)), it follows that £(t) = Y. Thus we have

£ (P X' {thH)) X' {t,f(1)} 1

dow if =z dis in X' and if f(z) ¢ ' {t}, then choose a

SEQUeNCe  Zy3Z55e.. in .. converging to 2. (this is possible,

pa

since 2z 1is the point -» 1in éz). oW f(zl), f(zz),...

must converge to f(z). B3ut nc nen-trivial seguence can converge
to any point outside X! {t}. Thercfore the above sequence must
be eventually constant. 3Since this 1s true for ecach sequence
converging to 2z and since SZ is first countable at =z, it

follows that §_ £ 0620y is a neighbourhcod of 2z in S,

and hence infinite, Chcoose a point p 1in it distinet from z, t
and f(z). Then pe % (F X' {t}) and hence by 2,

f(p) € X' {t, f(t)}. But f(p) = f(z). Thus we have proved
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that f£(x") X! {t, f(t)} 2

Putting 1 and 2 together we get that f(lx Ty XY {t,f(t) 1.
Step 2: sow fix x in X' and look at 3 = Sy G o{t, £,

It 1s the union of two disjoint closed sets, namely B ' and

3 f_l(x' {t, f(t)}). This follows from :.tcp 1, Conssquently

3 I  is both open and closed in . If it is emwpty, then

£(2) ! {t, f(t’} and therefore so is f(SX)8 by 2 cf

Step 1. If it is nonempty, t is in its closure, since B {t}
is connected, and therefore f£(t) = t. 3Similarly f(x) = x. If
3 F 1is also nonempty, then 13 F 1is the disjoint union of

-1

—1(t) and B f (¥') and each is both open and closed

B f
in B, If 3 f-l(X‘) is nonempty, then f(t) nmnust belong to
%', which is not true. Therefore f(B F) {t} and this
implies that f(x) = t which is again a contradiction.

~

Therefore B F 1s empty and therefore every point of 5, is

fixed. Thus we have shown that either f(Sx) X! {t, f(t)}

O
¥
w

S F. In the first case, since SX is connected, either
f(SX) X' or f(SX) {t} or f(SX) {f(t)}. Thus one of the

following three must hold for cach x in  X!':
1) f 1is constant on SX
2) f is identity on S
3) f(Sx) 7,
Step 3. Suppose there is at least one x in x' such -

that f is constant on Sy If this constant value is not t,



then f(t) # t and hence f

Therefore for cach Y in X', f 1is

value f(t), or f(SY) L,

If for each Y in ¥', we have

constant on the whole of X". In the

Y 1in X' such that f(SY) X', and

It follows from Step 2 above, that

If on the other hand, there is no

is constant on SX, then f is identity on some Sx's and for
the others f(SX) X'. Only cvne of these can hold since t
belongs to each SX. Iif f dis identity on cach SX, then f
is identity on Xﬁ. If not, f(SX) X' for each x and
therefore £(X X') ',

Thus we have shown that £ is either the identity map or
a constant map or TR X'
Step 4. We shall next show that if f(X* X' X' +then f
must be a constant map. It is only here that we use the fact
that ¥' 1s either Ty or functionally Hausdorff. Choose any
poeint x in X', and any point Y in 5, {x,t}. We claim that
f(Y) = f(t). If not, f(Y) and f(t) are distinct elements of t.

If X' is T3, then we can construct a sequence of open
neighbourhoods vy Vo oo of f(t) such that £(Y) is not
in the closure of any Vn and such that Vh Vn+1 for each

41

cannot be identity on any cother S¢e

either constant on SY with
£(S,) = {f(t)} then f is
latter case, there exists

in particular f{t) e A'.

f(X X" xr,

x in X' such that f
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n=1,2,... . The same thing is true if X' is only functionally

lausdorff. We have only to choosc a real function g such that

gf(Y) # gf(t). If 2d = |gf(Y) - gf{t)], we let v, = gnl
(gf(t) - 6, gf(t) + 8 ) where & = d( £+ L. s A, e
n’> = n n 2 Y *e 2n ’*

Q

consider the function f restricted to Sy

Then f—l(Vi), f—l(V2)9 »es 18 a sequence of neighbourhoods

of © such that for each integer n, f_i(Vn) £ (v ). But

in our space S.s for such a sequence in ng every point will be

1

in the closure of f (Vn) for some n. Therefore there exists

an integer n such that Y e g1

(Vn) and hence f(Y) belongs
to Vﬁ which is a contradiction.

~

Therefore f£(Y) = f(t) for every Y in . {x,t} and for
every x 1in X', It fcllows thaet f 1s constant on X .

Remark 3.5.2, Following Jones and Stone (6) we say that a space

X 1s a TW—Space if for each pair of distinct elements x, Y, in
X, there exists a sequencsz Vl, VZ’”" of neighbourhoods of x

such that Vh v for each n = 1, 2, ... and such that Y

n+l

is not in any Vn.

Then it is easily seen that every regular .lausdorff space

and every functionally {ausdorff space is a Tw-space.

Some more arguments in our Theorem 3.5.1., involving noc new

ideas, yield the following more general result:
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I3

(T
jol]

Let X b ausdorff space such that every connected
component ¢f X is & T ~spaze. Then the conclusion of the above
thecrem holds,

in particular, every totally disconnected .lausdorff space and

every Twuspace can be embedded in a strongly rigid space.

Remark 3.5,3. The step U of the proof of Theorem 3,5.1 shows

that if f dis a continucus map from Sx into a llausdorff regular

s

space, then f 1is consgtant. It i1s an immediate consequence that

the associated regular space of ?x in the sense of |20 (i.e.)

[9p)

the largest regular topolcgy of cannot be ;lausdorff. In

other words, no coarsar topolcgy can be TX‘

Remark 3.5.4. Ve have not decided whether every iausdorff space
can be embedded ir a strongly rigid space. The above construction
and a different argument in the last step of the proof yields an
affirmative answer if the spaze has no nontrivial convergent

sequence,

Remark 3.5.5. £s in the earlier cections, one may ask whether

every space can be embedded in a strongly rigid space, without
losing the separation 2xioms,. But here, the answer 1s negative.
It is seen easily that the real line cannot be embedded in any

Tychonoff strongly rigid space,

THLOOREM 3.5.6., Let & be any infinite space. Then X 1is

. %
homeomorphic to a closed subspaze of a connected rigid space X .

Further, this X can be chosen to satisfy any two of the

following three properties:
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(1 K = |x)

(2) » satdsfiss all seporartion 2xioms satisfied by X.
(3) X is ripid for continuous bijecticms.

In case X is geparable ant (X! > ¢, ali the three conditicns

car be had siinulTineously,

Proof, For (1) and 172, s2¢ Thecrenm 3.1.E.
For (2) and {(3), saec Thecrem Z.1.1.
For (3) and (1), sec Theorem 3.5.1.

h B - L - s b o ey - [k — ~
For the lost zsserticon, see Theorem 3.1.5.

-~

3.6, Extensicng With 2 Given !Homeomorphism Group.

geoticon s To Improve the results of

gt
it
G

The purpcse ©f th
earlier sectionu. by showing thet any space has an extension with
a pre-assigned group of hemesncrprizus. For any space X, let

H(Z) denote the group of all se.-homecmorphisms of X,

THEOREM 3.6.1. Le:c X be anv Hansdorffl space. Let G be any

group. Then theve »xiste a laoveidorff space ¥ such that

Further this X  c¢an be choses tc be connected and locally

connected and to have all the separation axioms satisfied by X.

Proof. Hote that fcr G = {e}., thls theorem has been already
proved. (See Theorsm 2.2.2.). “he deducticn of the general case
from this wil. involive an idea. vhe nucleds of which can also be

found in a pap=» of . DeGroot 4l

Step 1., Let e ke Lae ddencity element of (. Take a family
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{Xa | a € G} of lausdorff rigid spaces such that the following

conditicns hold:

(i) ¥ is homecmorphic to a closed subspace »f X

(11) If a and b are distinct elcments of G, then Xa and

C
£, are not homeomorphic,
and (1i1) for each =~ in @, Xa is a connected locally comnected
space, constructaed as in the proof ¢f Theorem 3.2.5,

satisfying all the separation axioms possessed by X,

and Gv) X 1is contained in the first level of Xe.

Then we note that in ¥_, there is a unigue non-cut point

X, every other point being a cut point cf order two.

wow fix an arbitrary a 1in G. Choose any point s, of

level one in it. Omit 2ll points of Xa that lie strictly above
C

S, We get a connected lccally connected Hausdorff space Ya

having exactly two non-cut-points Xy and s_. Iote that Ya

is also rigid. (Proofs, though non-trivial, involve no new

ideas. Hence they are omitted).
Thus Ya is constructed for each a in G,

. , ¢ disdiod . _
Step 2. Consider the disjoint topological sum aEG Ya and

identify all the points of {xa | a2 ¢ G} to a single point YO.

Let Y be the gquotient space thus obtained and let ¢ be the

quotient map. They Y 1s a connected Hausdorff space.

Step.3. Give discrete topology tc G and consider the
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product space Y x G. Identify the point (s_,b) of Y x G

with the point (yo,ab). When this is done for each pair (a,b)

o

of points in G, let % be the quotient map and X the
quotient space. ‘e are going to show that this space X has

all the required prcperties,

Step 4., It can be easily checked that if a is fixed, then
the restriction of ¢ to Y, is a homeomorphism onto a closed
subspace of Y. If b 1s also fixed, then the restriction of ¥
to Y X{b} 1is a homeomorphism onto a closed subspace of Xk.
Thus each Ya’ and in particular Y, and hence the given space

X, 1s homeomorphic tc a closed subspace of Xﬁ.

It can also be verified by straightforward methods that X*
satisfies all the separation axioms satisfied by X,

low each Y X{b} is connected. Further the point (Yo,e)
has been identified with (51_1,b) and hence is a point of

b

Y X b . Thus e is the union of the family {Y ¥{b} b € G} of
connected subsets., Where (Yo,e) belongs to every member of
this family. Hence Kk is connected.

Also Y 1s a quotient of a sum of locally connected spaces

and hence is locally connected. Therefore sc is YXG and so is

its quotient X .

The only thing that remains to prove is that the group of
all self-homeomorphisms of X  is isomorphic to G. This will be
proved in the remaining fcour steps. For the sake of convenience,

if S 1s a subset of ¥ X G, we do not distinguish S and ¢(S).
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Step 5. As a step towards proving that H{X ) »~ G, here we ~

find all the non-cut-points of ® ., If aeG, consider the family

N

v x{b} {(¥_,a’} | b e G- fal}l. Since the removal of one or

two points of {x_,s_} in Y:1 does not make it disconnected, we

see that each member of the above family is connected. Further,
if © is any peint differcent from a, then Y _,b) belongs to

N

each «f them., Also, their union is X {(Yp,a/}. These together
v

Ay

prove that (Yo,a) is a non-cut-point of ¥ , We claim that

every non-cut-point must be of this type. Let (Y,a) be any

o
v

point of ¥  where Y # Y_. Then there exists a unique b in

G such that Y belongs to Y. (iere, we do not distinguish

between Y, and ¢(Y.) “{a}). This point Y is different from
P

the points x, and s,. sence Y, {y} is disconnected. Note

that in Y its cut-points is removaed, the two non-cut-

o~

points belong to the same connected componen®*. Then the other

component contained in ¢(Yb) X {a} is open 2and closed in ¥ .,
Consequently (Y,a) dis a cut point of X . “hus we have shown

that the points of {y } X G are precisely the non-cut-points

Yo
iy

cf X .

Step 6. Another assertion that we shall need in our proof
is that the sets of the form ¢(¥,) X {a}l have a ‘'topological.
description. More precisely we shall prove the following: Let
) X*. Then A = ¢<Yb) X {a; for some a,hb in 6 with
b # ¢, 1f and only if A 1s a maximal subset of Xﬁ with
respect to the follecwing properties:

(a) there exist exactly two points 291 and g, in G such
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that (Yﬁ,gl) and (Y ) Dbelong to A.

(b) The subsets A B where 3 1is any subset of the two

clements set C = (¥ _,p,), (Yo’g9>} ars connected.

2 )1
Tt is cbvicus that the sets ¢(Y,) X {a} are maximal
subscts having these properties. Conversely, let A be any
maximal subsct with respect to (a) and (b). ow % ¢  is

[

easily seen to fall into three components, consequently A C
must be contained in cone of them, by condition (b)), Now condi-

tion (a) insures that this component must be either

v - _ v C.
¢(Yg1g2—1) X {gz} Top ¢(Yg25 1) Lbl} C

HHence by the maximality of A, we get that

A = 5 {3 - ; v N = 5
Hno= ¢\.{g g 1) X {02} or A (b{(fg

1) X g}
187 ( 1

2;_

Similar considerations prove that the scts of the form

$(Y,) ¥ {g} are characterized as maximal closed subsets with

respect to the following properties:

(a') There exists & unique point of the form (Yo,g) in A.
(b') The sets ~ and A ({(Y_,g)} are connected.

(c') A 1is not contained in any set of the form

¢(Yg ) X {85} where g .

=

Note that (c¢') is a topolosical condition, by the previous

paragraph.

& b3
e

Step 7. Wow let h : X o X be any homeomorphism. Look

at h(Yo,e). By Step 5, there exists a point a in G such that
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h(Y_,e; = (Y ,a). liow consider ¢(¥,) X {e}. This contains the

point (sb,e) = (Yo,b). Again by step 5, there exists ¢ 1n G

such that h(YO,b) = (Yo,c). Let A = h{p (¥, = {e}). Then A

contains the point (fo,c). Again, by step 5, £ does not

contain any other pcint of {YO} X G. Therefore by step 6, it

q a L 1s eithc ( -1 ¥ {c} or ¢(Y_ - X Harl.
follows that £ 1is either ¢\Yac 1 e} or (Y 1) % {a}

Therefore b = ac”! or b = ca~t. That is, either a = bec or

¢ = ba., Suppose a = be. In this case, we have a homeomorphism

This takes the

Yo+ 97 X {e} v oY ~1) X {e} » ¥_ -1 =Y

b.
point X, as follows: Xy (Yo,e) + (Yo,a) = (sb,e) > Sy This
contradicts the rigidity of Yb' Therefore the case a = bc

cannot arise, Thus ¢ = ba., In this case again, the rigidity of

Yb shows that h(¢(x),e) = h (¢(x),2) for every x 1in Yb.

Similar arguments show that h(YO,g) = (Yo,ga) for every g in
G and h(Y,g) = (Y,ga) for every Y in Y.

wow for each a in G, let T_ : %" > %  be defined by the
rule Ta(Y,g) = (Yyga)y for each (Z,g) in %", Then what we

have shown above is that if h : X is a homeomorphism, then

h = T1 for some a 1in G. On the other hand, we shall now show
(@
that each T, is a homecmorphism. View Ta 2s a map from Y X G

to Y x G. It is the map identity X : g + ga and hence is a

homeomorphism of Y x . Also T_(Y_,g) = (Y ,ga) and Ta(sgl—l’
—1 - "'1 - 5 - . 1 .
g4 g) = (s_ 384 8 a) = (Lo,ga). This means that T, is



compatible with

¥
of

#1800, we check that 7

These facts prove that (T | a ¢ G

<

morphism of % and the map T_
Q

A to €.

1.').

Remark 3.,6.2. Let m =

=
L/\b

construction it is possible to have

RE

extension

This would imply that < Y| .|

we can choose the

Remark 3.65.4.

such that ({Z )

the given grourn

can preserve ccnnectedness, local con
axioms. Similarly onc can deal succe

and hence induces our map 7

is & quotient map, it follows that

such that |%°

Tn the process of finding extensicns
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Since

A e

7 is a homeomorphism

<

for every a, b 1in G.

i1s the set of all self-homeo

is an isomorphism from

o Then in the above

< m for each a in

Gl< m.

i< o 1%

., we¢ have shown that we

nectedness and separation

ssfully with metrizability

and first countabilitv; any corcflective property 1is obviously

preserved. ¥

¢ would like the to consider the guestion whether on

the cother extreme, zero-Jdimensionality or total disconnectedness

can be preserved. 3.3. gives an affirmative answer, in the
special case that G i1s 2 singleton. But in general, the answer

is easily seen to be in the negative,

COROLLARY 3.6.5. (J. DeGroot |u]):

connected locally connected metrizable spaces.

See also |u].

Let A Dbe the class of all

Let

G Dbe any

group. Then there exists X in A

) 1is

such that (7
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isomorphic to 3. Ve can augment the above result by the

following onc.

PHEORLM 3.6.6, Let A be any nonempty family of topoclogical

spaces closed under the formation of sums and discrete-quotient

imares (i,e, imagzes under a quotient map, such that the pre-image

of every zingleton is discrete). Let & be any group. then

(1) I /. contains at least one non-discrote Ty-space,

then there exists a connect T,-space i in A such

A

that H(X) ~ G,

ot

least onc connected iHausdorff space,

(ii) If A contains a

there is a connacted Hausdorff space ' 1in A such

Proof. Let us start with the assumption of (i). Let Y be a

non-discretc T -space telonging <o /4. Let its cardinal be m.

Let m' be the least cardinal such that there 1s a non-closed
subset A of Y with carcdinality m'. Obvicusly, m' is
infinite since Y 1ig¢ =2 J,-space. now let © be the set of
all permutations of Y and let for each a in 7, Yo be a
copy of ¥, kept pairwise disjoint. et Y, = Lo M. Let

) ae?P
hy ¥ =Y, be fixed homeomorphism for zach a in P, liow
a point Ya of Ya ig declared to be related to Y in Y if

Yo = By (alY)). Let w be the equivalence rclation generated
out of this rule and le¢t .. Dbe the quotient space and ¢ the
quotient map thus obtained., Then clearly ¢ is a

=

discrete-quotient map. &~ subset A of 7 1s closed in 2Z 1if
i

and only 1f a(sd ~(4) Y) 1is closed in Y for each o in P,
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This happens if and only if (Al < m'. “his at once implies that

Z is a connected Ti—space. Thus we have shown that A contains

a connected T,-space,
<+

Hereafter the proof of (i) and (11) go along the same
lines. Let 72 be the above connected I, =space in case (1) and

any connected idausdorff member ¢f A  in case (iij. Then 7 can

be embedded in a connected Ti(i = 1,2, respectively) - space Z'

of A without cut-points {(to cach pair of points of Z attach

a copy of Z. Get 21. To each pair of points of Zl’ attach

a copy of 4, Get 22 ar.d so on. Then by induction, we get a

"

direct limit system Zi > Zz T ee. Zn*... and let Z' be the

direct 1limit. Then it can be proved that Z' is a discrete-

re

quoticnt of a sum of copics of % and that it is a connected

Ti—space without cut-points),

[ ] y

Then copy the proocf of Theorem 3.1.1, with copies of =2 in

KA

place of X,T, etc. “hen we get a rigid space ' . By

considering different sets of cardinal numbers, we can manufacture
several such % with different cardinalities. .low procceding

oo
113

along the lines of proof c¢f Theorem 3.6.1., we get a space 7

for which i(Z") ~ G.

ilow observe that throughout cur process, we have employed

only discrete-quotient images of disjoint topological sums of

copies of %. Hence 7 belongs to A. It can be checked that

2,
e
-

y is T, or T, according as 7 is.



COROLLAPY

of all topological

3.6.7. Let G be any group. Let C{G) be the class

spaces . such that w{x) > G, Then

(1)

(i1)

(ii1)

(iv)

Proof.

(1)

(iid

(a)

(b)

C{(G) 1is so large that the subspaces of its members

(]

exhaust all topological spaces.

C(3) 1is so larze that every space is a quotient of some
member of it.

C(G) 1is so large that on any infinit: sct of cardinality
in > |G|, there are 22" types of members of C(G).

C(G) 1is so large that if X 1is any connected space,

onnected space Y in £(G) such that Y

there

o
jo
o)

is a discrete-quotient of a sum of

copies of X,

Follows from Theorem 3.6.1 on observing that it remains
true when the word 'Hausdorff' is dropped throughout.
Our proof of this includes a proof of Theorem B of

the abstract. Let BT be any infinite discrete space

and let £ be its Stone-cech compactification. Then,

we can build by C-procesc as described in 2.4, a

family of spaces {X_ | p e 8D D}, with a shrewd

p

choice of the base-spaces.

Bach | is extremally disconnected rigid space

£

{p} as the first

constructed by (-process, with D

level base space,

If p and q eare distinct elements of BD D, then

no open subspace of Xp is homeomorphic to any open

A%
£

subspace of

*
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If we let ¥ *to be the sum of all these Xn’s, then X can
k
be easily seen to be a rigid space. Since for each p, we have

<

that D {p} 1s a quotient of Hp (note that the projection
onto the first level base space is a quotient map in every

C-process-space), we get a quotient map from X onto

b3 I {z}. Let us denote this space by Y. iiow observing
peBL D .
that every filter is an intersection of ultrafilters, we see
that.every topology on the set of cardinality |D|, is the
lattice meet of a class of topologies homeomorphic to some
D {p}. This leads one tc conclude that every topological space
of cardinality |D| is a quotient of ¥ (which has been proved

to be a quotient of ). Thus we have shown that every space

is a quotient of an extremally disconnected repular rigid space.

tiow, 1f P 1is any tcpological space and G 1is any group,
choose two spaces x and ¥ and a map f such that

(a) X 1is a zero-dimcnsional regular i, rigid space.

(b f : X - P 1is a guotient map

(¢) Z is a connected regular space such that H(Z) v G,

|ISuch a choice of ¥ and f is possible, as scen in the previous
paragraph; such a choice of 7 1s possible as szen in Theorem

3.601]. tow let X + 7 Dbe the sum of X and 7 and let

g ¢ X+ Z - P be defined by the rule ¢ o E f and g 7 is

constant. Then one can check that g 1is a quotient map. How
any self-homeomorphism of X + 7 must leave / invariant, since
¥ 1is the only non-trivial component of X + Z, It follows that

H(X+2) ~ G. Thus P is a quotient of some member of C(G)
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(11i) TFollows from the following facts:
(a) Lvery space of cardinality > {5] can be

embedded in a space of samc cardinality belonging

33
N

to  C(3

, - . . 10
(b) » spacc of cardinality m can have at most 27

- , , omo
types of subspaces; there are 24  types of spaces

with cardinal m= .

3.7. Groups of Isonetries

By an isometry of a metric space, we mean i distance-preser-
ving self-bijection. We know that for every metric space X, all
isometries of < from a subgroun cf the group H(X) of all
auto-homeomorphisms of %, We prove in this section that but
for this, there is no other dependence between the isometry group

and the homeomorphism group.

Remark 3,7.1, Let X, ¥ . da ¢te. bhe as in Lemma 3,.4,1,  Let

§2

further any two points c¢f . be counnectible and let d1 be

defined as in the proof of Lemma 3.,4,1. Then Qi is a metric on

TAZORLM 3,7.2. Let & Dbe any group and H  any subgroup of G,

Let X be any metric space. Then there is a metric space Y

such that the followinsg hold:

(1) H(Y) 1is isomorphic to C.

(ii) The group of all isometries of Y 1is isomorphic to H.

(iii) X 1is isome*ric to a closed subspace of ¥,

(iv) Y is connectaed and locally connected.
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Procf. We first cutline the construction of Y. Take a family
{Xa} a € G} of rigid spaces such that the following hold:
(a) Each X 1s a connected locally connected metric space

tructed as in the proof of Remark 3.4.5.

O
0
o
9}

(b} X d1s disometric to a closcd subspace of X contained

in the first level, where < ds the identity of G,

(¢) If a and b arce distinet clements of G, then Xa

and X, are not homeomorphic.
Now fix a in G, choose any point 5, of level one in it,

omit all points of Xa that lie strictly above s and let Ya

be the resulting space. Let da be the metric in Ya. Let Ha
be the equivalent metric defined by aa(x,Y) = Qda(x,Y) for

every pair (x,Y) of elements in ¥ _.

Let Z, be the netric space defined by

(Y_,a ) if a e i
< [eX

[a
t

d) if ae G H.

(Ya’ a

Consider the disjoint sum (set theoretic co-product) I 2
aeG

and identify set theoretically all the points of {xa | a ¢ G}
to a single point Y, . Observe that there is a canonical
embedding of Ya in the quotient set thus obtained. Give a
metric on this resulting set as in Remark 3.7.1. Let Z  be the

metric space thus obtained.
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iJow consider the set 7 & G. Identify the point (Ga,b) of

ZXAG with the point (Yoaab). When this is done for each pair
(a,b) of points in ¢, we get a gquotient set. For cach a in G,

the metric space % 135 naturally embedded as 2 X {a} din this

set. Give a metric to this whole quotient set, as in Remark

Let Y be the resulting metric space.

Then we claim that ¥ has the rcquired properties. Along
the lines of proof of Theorem 3.6.1, one can prove that for each

a in G, the map T {(defined in that proof) is a homeomorphism

of Y and that all homecmcrphisms arise in this way. This proves
(1), It is easy to prove (iii).

liext we observe that not every T is an isometry. This is

because our definition of the metric in 7 is not uniform; it
is defined in a special way if a is not in . Consequently we
see that Ta is an isometry if and only if it leaves the set

Z X H (modulo the menticned identifications) invariant., This
happens if and only if a is such that whenever x 1s in H,

xa 1s also in H, 7This happens if and only if a is in H. Thus

the isometries of Y are precisely the Ta's for a 1in H. This

proves (ii).

Finally, we state without proof, the following result.

THEOREM 3.7.3. If in the statement of Theorem 3.7.2, we replace

(iii) by the assertion that ¥ 1is a quotient of ¥, then this

new statement is also true.
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Thus the class of all metric spaces with a nre-assigned
homeomorphism group and a pre-assigned subgroup of 1t as the

isometry group, is a large one.
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