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ABSTRACT

The paper deals with approximate algorithms that use a model ofmultistage
decision process. The formal definition of multistage processes is presented
as a specialized form of knowledge-based model. Then the three stage concep-
tion of synthesis of approximate algorithms that use local optimization is
given. The local task is formulated as a multicriteria one and is based on
measuring distances in subspaces .of states. An example that illustrate the
presented conception is given. Then the heuristic algorithms based on branch &
bound method are discussed. Both class of considered algorithms are appropria-

ted for many tasks of combinatorial optimization.

1. INTRODUCTION

The paper deals with a speclial class of heuristic algorithms worked out for
optimizétion.of so-called discrete determinable event processes (DDEP) defined
in the author’s previous paper. A large class of combinatorial problems cor- '

responds to optimization of DDEP.

As it is known, heuristic algorithms are based on intuition, experience,

observation but they have no sufficiently convincing elucidation and do not




guarantee that the optimél solution will be found. Very often an optimization

problem as well as its algorithm are presented by means of verbal description

only. It makes comparison different algorithms conceptions very difficult or

even impossible. Recently these algorithms have become a subject of intensive

studies. The studies relate to:

- classification and formalization of the algorithms,

- determining some properties of the algorithms such as convergency, computa-
tional complexity, error estimation etc.

The research are carried out mainly in the field of artificial intelligence
and operational research. Especially, within the frame of artificial intelli-
gence, one attempts to formal elucidation of heuristic algorithms ideas and
giving some rules for creating them. The paper is connected with this direc-
tion of.research. It presents formal approach to analysis and synthesis of
some class of heuristic algorithms. The basis for the approach is assumption
that heuristic algorithms can be considered as exact ones but solving simpli-
fied problems or as the algorithms realizing simplified way of problem sol-
ving. In order to indicate the introduced simplification it is necessary to

present both problems and algorithms by means of common formalization.

There are three main general formal models used to solve combinatorial
tasks: discrete (mixed) programming model, knowledge based models and state
graph model. The paper deals with the class of heuristic algorithms that can

be analysed with use of compact knowledge-based model devised by the author.

2. MULTISTAGE PROCESS AS A SPECIALIZED FORM OF KNOWLEDGE-BASED MODEL

Let us recall some notions introduced in the previous papers.

Multistage decision (constructing) process is a process P defined by the

following six (U,Y,yo,f,YN,

follows: U is a decision set, Y 1is set of states, yO,YN,YF are distingui-

YF) where the individual values are defined as

shed initlial state and sets of not admissible and final states, respectively,

f 1is a partial function

f:UxY=»Y defined by means of the function g : Y » 2U in the follo-
wing way: (u,y) € Dom f ® u € g(y). Thus function g(y) determines the
decision subset Up(y), for which function f 1is determined in the state vy.

Function f was defined as a partial function. Thanks to it, all limita-




tions concerning the decisions can be taken into account with use of defini-
tion of the so-called sets of possible decisions in state y . The sets are

denoted as Up(y) and defined as:

Up(y) ={ueU: (uy) e Dom f }.

At the same time an individual process P is represented by a set of its
trajectories. A trajectory that ends in the set of final states is an admis-
sible one and the decision sequence determining the admissible trajectory is

an admissible decision sequence.

The task of optimization lies in finding of such an admissible decision
sequence u which minimizes a certain criterion Q . Thus an optimization task
is determined by the pair (P,Q) where process P represents all the task limi-
tations. A defined optimization problem is such a set of optimization tasks
which have a commonly determined set of data (the same type of data fulfilling
the commonly determined properties), common (parametric) definition of set of
multistage processes and common (parametric) definition of criterion
functions. A _

A lot of combinatorial tasks (problems) can be formulated in terms of this
model (optimization of discrete manufacturing processes, scheduling problems,
traveling salesperson problem, as well as classical tasks considered within
the frame of artificial intelligence e.g. 8-Puzzle or block world problem). In
this paper we will consider only the tasks and problems defined above. They

will be named the tasks (problems) of composite object searching.

In the most general case sets U and Y may be presented as a cartesian
product U= U1 X U2 X ...Um , Y= Y1 X Y2 X ...Yn.

Thus, the decision u as well as the state y 1is represented by finite
sequence of values that belong to succeeding sets. We will use the notions
“state vector" and "control vector" by analogy to the classical control
theory:

u-= (ul,uz,...um) X = (xl.xz,...xn)

There are no limitations imposed on the sets, in particular they need not
be numerical ones. Thus values of particular coordinates of state may be names
of elements as well as some objects (e.g. finite set, sequence etc). Particu-

lar coordinates of the vector u = (ul,uz,...um) represents a separate deci-

sions.This paper is appropriated for the processes for which at least one set
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Y™ - is not numerical one. The sets Y,,, Y. and Up are defined by means of logi-

N' 'F

cal formulae therefore the model is a speclial kind of knowledge based model.
The presented model is more general than the state graph one as the set of
decisions need not be countable one. On the other hand it enable us to define
more properties than the graph (e.g. one can analyse a structure of a state

and decision as well as changes of particular coordinates).

Example 1.

Let us give the multistage decision process for the knapsack problem. The
problem is as follows: given the set of objects Z , the function * : Z - R+
that determines the weight of each object, the functionw : Z - R¢ that deter-
mines each object value and maximal weight d.. Which objects should be put
into the knapsack so that the total their weight be less than d and the
total value be maximal?

A state of the process is determined by the subset of objects in the knapsack.
Thus the set of state Y = 21.
A decision lies in choosing the object to be put into the knapsack. Thus the
set of decision U =127 . .
The initial state y; = .
The set of not admissible states
Y= {y e Y : } t(z) > d} (all subsets of objects for which the total weight
zey
is grater than the maximal one.)
The set of final states YF =Y\ YN'
Sets of possible decisions are defined: Up(y) =Z\vy,
Up(yi+1)= Up(yi) \ (ui}.
The function f is defined: f(u,y) =y v {u}.

Let us notice that value of the state coordinate is a set.

Others examples of combinatorial tasks model led by the multistage process

are given in [4].

3. ALGORITHMS BASED ON LOCAL OPTIMIZATION

The most popular heuristic algorithms are those based on iocal optimiza-
tion. They used the specially created function or local optimization task for

choice of the "best" decision at each state of the generated trajectory.
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Algdrithms of this type are sometimes named "greedy" algorithms. Note that

there are no formal definition of "greedy" algorithms. The function for local
optimization is called a preference function or simply heuristics. Heuristics
afe created by means of intuition and very often more than one heuristics is
proposed for the same problem. They are verified by means of computer experi-

ments or sometimes by means of error estimation. The questions arise:

- can we create preference function or local optimization task not intuitively
but consciously and, if yes, in which way?

- can Qe compare formally different algorithms of this type and indicate the
introduced simplification?

The further considerations relates to the answer this questions.

The considered optimization task (P,Q) is assumed to be such that:

1. the criterion Q 1is additively separable,

2. process P is finite (i.e. its trajectories are finite),

3. each trajectory of the process P can be generated by means of polyno-

mial algorithm.

Note that most of the known discrete manufacturing control optimization prob-

lems satisfy this assumptions.

Now we will present certain general method for designing the heuristic

algorithms of this type. The method consists of the three stages.

Stage 1

At this stage one formulates a new, usually simplified task. As a result of

verbal description of the problem, some necessary and (or) sufficient condi-

tions for the optimal solution can be formulated. Usually, a simplification of

the task is introduced at the same time. It lies in omifting some part of con-

ditions. The reasons for the simplification are as follows:

- it may be difficult to define all the conditions,

- the conditions may have very complicated shape (e.g. it may be alternative
or conjunction of many conditions),

- it may be difficult to find the trajectory for which the conditions are
fulfilled.

Note that this stage is pretty similar to the one existing in the optimiza-

tion of analytical problems.

In particular, we can distinguish the following types of conditions:



- conditions relating to direct decision influence on criterion,

- cénditions relating to states l.e. determining the state sets that are
advantageous (or disadvantageous) from the criterion point of view or due to
possibility of generating an admissible trajectory;preference coefficients
can be also determined for the sets, that take into accountvdifferent conse-
"quences of running throhgh the sets,

- conditions defining some indirect aims, particularly the ones defining the
state sets to be achieved in shortest time or under minimal value of a

special auxiliary criterion.

Stage 2:

At this stage one determines local optimization task. The task is wusually

defined.as a multicriteria one.

In order to determine the "possible best" trajectory, one must choose a
proper decision u ; Up(y) at every new generated state y. The question is:
in which way it can be done in the situation when one can know only the nea-
rest consequences of the decision, i.e. when information about the direct suc-
cessors of the considered state is available only?

One can use information about the distinguished at the first stage "advanta-
geous" or “"disadvantageous" states. Obviously one also uses information about
YG’ set of not admissible states YN and information
about the sets of possible decisions. As we need the generated trajectory to

the set of goal states

run only through the advantageous states and to avoid the disadvantageous
ones, it seems most natural to introduce any "measure of distance" in the
state space, and to assume some local criterions. Maximizations (minimiza-
tions) of the criterions correspond to maximizations (minimization) of "dis-
tances" to the particular distinguished sets of states.

Taking into account the local change of the global criterion and maximiza-
tion (minimization) of the mentioned distances, we obtain the substitute local

problem. This new problem is usually a multicriteria one.

The next question is: what type of "measure of distance" can we applied?
According to the author, a proper semimetric can be used as an approximate
“measure of distance". Let us recall the difference between the notion of
metric and semimetric. Metric p 1in a space X 1is a function p : X x X » R
such that the following hold:

1) px,y) =0 ex =y




2) plx,y) = ply,x)
3) plx,z) = px,y) + ply,z)

It results from these conditions, that the metric has a non-negative value for
each elements of the space X. The first condition need not be true for a

semimetric.

Note that any metric defined in a subspace ,Y' of a space Y 1is a semimetric
in the space Y. Roughly speaking, when we use semimetric we measure the di-
stance in corresponding subspace, thus we use only some state coordinates. As
aléonsequence a "distance" between two states are determined on a basis of
merely part of information coded in the state. We can distinguished two basic
group of semimetrics: ‘

~ semimetrics using numerical coordinates of state,

- semimetrics using coordinates of a higher order i.e. such coordinates values
of which are sets and relations given explicitly (definition of order of
objects is given in [8]).

The most simple semimetric of the first type is

P (y,y") = Iyl-yY]

where yJ, y’J are numerical values of j-th coordinates of the states y and
y' respectively. More complicated semimetrics can be obtained when grater
number of numerical coordinates are used e.g.
Pyly,y') = L IyJ - y’JI
JeJ

where J is some set of indexes of the numerical coordinates.

In general, we can base on Holder metrics

r=( ) lyJ - y’le)l/p for p = 2,3,..
JeJ

An example of the second type semimetric is

p3(y,y’) = l;J --’Jl

where yJ, y’J are not numerical coordinates and such that their values are

finite sets (relations) and ;J denotes the power of the set.

A distance between a state and a state set Y' 1is usually denoted by the same

symbol as the corresponding semimetric ;

ply,Y') = min {p(y,y’) : ¥y’ € Y'}.



Stage 3

At this stage one should determine the manner of solving the local optimi-
zation task. Let us notice that the task has no analytical model, another
words its solution is a certain decision that belongs to the set U (a value
of decision need not be an element of the numerical space). As a consequence,
one can not utilize directly methods of multicriteria optimization that use
such notion as derivative, direction énd gradient. Nevertheless, the basic
idea of multicriteria approach can be applied here. Basing on the [11] one can

characterize the main solving manners as follows:

a) arbitrary choice of a decision from the Pareto set; obviously, this
manner is sensible in case when in each state y the Pareto set is much less
than the set of possible decision Up(y),

b) assuming some weight coefficient (priorities) for the criteria and lexi-
cographical choice,

c) majority choice that consists in the choice of such u* for which the
greater part of criterions have betters values,

d) choice that uses socialization lying in ascribing weights coefficients
to the particular criterions
Thus the final type of the algorithm depends on the manner in which the local

optimization task is solved.

Example 2.

Let us consider the well known greedy algorithm for the knapsack problem.
The algorithm consists in ordering the objects according to non-decreasing
values of w(j)/T(j). The solution is the longest admissible sequence of

objects that is consistent with this ordering.

Let us present the eluclidation of the algorithm, based on the multicriteria
approach. Let t1 denotes the total weight of objects that are in the knapsack
in the state yi ,

t, = ¥ t(2)
zey,

( t can be considered as an output coordinate) and let Ud(y) denotes the set

of admissible decision in the state y 1i.e.

Ud(y) ={u e Up(y) : f(u,y) ¢ YN}.



. n
Criterion Q =} AQ1 where AQi denotes the increment of the criterion and n
i=0

denotes the trajectory length. As the criterion is additively separable and
monotonously increasing along the trajectories of the process [1,3], the value

of it depends on a local increment AQ as well as on the trajectory length n.
As the set of the not admissible states is of the form:

Y= {yeY: ¥ t(z) >d}
: zey
and coordinate t is monotonously increasing and At = ti+1 - t1 has finite
value, thus the local optimization task consists in the choice of such a deci-
sion that maximizes AQ and at the same time keeps the maximal distance to

the set YN'

Assuming'the semimetric

ply,y’) = |t - t’| and p(y,YN) = |t - dj

we obtain the local bicriteria task of the form:
Q= (ql.qz).

max q, = max AQ1 = max w(u)
ueUd(yi) | ueUd(yi)

max q, = max p(f(u,yi). YN) =
ueUd(yi)
= p(yi,YN) - min T(u) = lti - d| - min T(u).

ueUd(yi) ueUd(yi)

Consider the following onecriteria task:

max q = max w(u)/t(u)
ueUd(yi)
It is easy to see that any solution of this task belongs to the Pareto set of

the previous bicriteria task.

4. HEURISTIC ALGORITHMS BASED ON B&B METHOD

Branch and Bound (B&B) algorithms to solve problems represented by the
defined above multistage process model are analyzed in the author’'s paper {3].
Now, let us discuss the heuristic algorithms that are based on B&B method.

Generally speaking, B&B method lies in the constructing a decision tree,

the nodes of which correspond to the sets of admissible solutions. By way of
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eliminating the nodes, the successors of which do not contain admissible or
better than the best solution, the number of calculations is reduced. The B&B
algorithms have very valuable property. Namely, if we stop computing before
the optimal solution is found then we obtain approximate solution criterion
value of which can be estimated by means of lower bound value. We can improve
the approximate solution when continue the computation. It is possible, how-
ever, only when algorithm of a single iteration is a polynomial one. If it is
not polynomial then some simplification must be done, what causes that that
B&B algorithm becomes a heuristic one. We can distinguished some kind of B&B
based heuristic algorithms depending on:

- conception of lower bound creating,
- conception of upper bound creating,
- selection rule applied to the choice of next node for branching,

- elimination rules.

Let L(w) stands for lower bound for a node w and Q(w) stands for
minimal value of-criterion function for set of solutions corresponding to the
node w . The criterion is assumed to be minimized. ‘

As it is known, an algorithm is exact (when no implementation restrictions
are assumed) only if the relation L(w) = Q(w) holds for each node w . It
can be, however, very difficult or even impossible to create a lower bound
that is effective and at the same time is easy to calculate (in particular,
such one that can be calculated in polynomial time). Then, as a result of com-
promise, one can propose lower bound for which the above relation does not
hold for all the nodes but it holds for possibly great number of the nodes. It
deals also with the lower bound obtained by means of relaxation (see [3]).
Then two cases can occur: the relaxéd“groblem is polynomial one or it is NP-
hard. In the last case we can obtain the value of lower bound only as appro-

ximate one. Certain probabilistic analysis such a case is presented in [10].

If the problem of admissible solution search is NP-hard then it can be dif-
ficult to find any admissible solution in reasonable time. We can use the
approximate value of upper bound then. If the approximate value is too large
then no subset of solutions can be eliminated. If it is too small then all

solutions can be eliminated.

Let us consider constructing algorithms [3]. The selection rules can uti-
lize the values of lower bound (exact or approximate one) or can be based on

local optimization tasks defined in the previous section.
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Heuristic elimination rulés can be also based on "distance" to the set of not

admissible states Y that is expressed by means of any semimetric.

N’
It must be point out that heuristic lower bound, upper bound as well as
heuristic elimination rules influence the solution (i.e. optimal solution can

be never found). On contrary, heuristic selection rules influence only the
time of solution search {(when there are no restriction referring to a computer
memory or time).

Let us also notice that if the lower bound of the first iteration is cor-
rect then an error of heuristic algorithm can be evaluated. This evaluation,

however, can be very rough.

5. CONCLUSION

The pﬁper presents the formal approach to analysis and synthesis of heuri-
stic algorithms of certain type. The algorithms are appropriated for many com-
binatorial tasks and problems that can be modelled with use of general know-
ledge-based model.

The 3-stage conception of synthesis of heuristic algorithms that use local
optimization is given. The local task is formulated as a multicriteria one and
is based on measuring distances in subspaces of states. The approach is gene-
ralization of the one presented in [10], that uses a model of state space
graph. The elucidations given there are not general but are based 6n intui-
tion. Moreover, they are presented by means of examples for which local opti-
mization tasks are one criteria ones. The introduced in this paper formalism

enable us to discuss these algorithms in more detail.

The second type of heuristic algorithms considered in the paper are those
based on branch and bound method. Different simplification are discussed.

The presented formal approach enable us to compare different heuristic algo-
rithms (based on the same type of model) and discuss the introduced simplifi-
cations. In the similar way one can analysed the heuristic algorithms based on
the other optimization methods e.g. heuristic algorithms based on decomposi-

tion method or the ones based on dynamic programming.
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