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1. Introduction. Let X(0,1) be a rearrangement invariant space of -
Lebesgue measurable functions on (0,1), to this space we associate a modulus of

continuity defined as follows: w,(f,t) = sup [[|A f|[|,, where
X 0<h<t h X

8, F(x) = [£(x+h) -~ f(X)]x(O,l-h)(x)'
In this paper we announce several elementary inequalities relating the -
behaviour of f* (then non-increasing rearrangement of f) and 'wX(f,t). -

These results have interesting applications in the theory of embedding of r.i, -
spaces and Lipschitz spaces, Fourier analysis and other areas (cf. [1], [2], [Hl).

We outline some applications in §3,

2. The inequalities. Let f be a non-increasing function, f e X, then

1 1 .
Vn > 2 we have wx(f,l/n). ¢X i75m) > £( T ) - £f(1/n) and therefore if we let

m

n = 2k, k=1..., and sum, we get f(1/2m+1) - £(1/2) < ““ETT'"'wx(f’ J%—).
k=1¢X(;E:_1_) 2

This last inequality combined with the facts that wX(f,t)/” and Cbx(’t)‘c-1 V yields
Theorem 1. Suppose that f € X, and f\, then

1 wx(f,u)

du
(1) f(s) - £(1/2) < 8 J o o 0 <s < 1/2,

For a detailed proof see [u]. (1) gives nearly the result we are looking for,

the complete result follows from
Theorem 2. wX(f*,t) §_7wx(f,t), fe X

The proof of this result is given in [5] (cf. also [8]) and depends on the

possibility of approximating f by suitable averages and the fact that



[ gemgel |, < 11£-g] ]y

Combining (1) and Theorem 2 we get

‘ 1 wY(f,u) au
Corollary 3. f#(s) - f+(1/2) < 54 JS 6;(57__ - 0%<s < 1/2.

Garsia and Rodemich [i] have given a prcof of Corollary 3, using a -

general (and complicated) combinatorial argument, for the case where ' X = LP,

Let us remark that we can in fact obtain a stronger result, indeed use (1.

with f = £%%, Theorem 2 and the following
Theorem 4. w (f#%,t) < w (f*,t).
We get

1 wx(f,u) du

(2) fi"*(S) - f*‘;“'(l/Q) _<_ const JS W—— Tl_ N

Jdext we look at the dual problem of estimating wx(f*,t), we obtain the -
following

Theorem 5, Let X be a separable r.,i, space, and let f € X, then

(3) wx(f*st) i Hﬁllx_yxilf‘i" X(O,t)HX
1 t
where (Hf) (t) = = J f(s)ds.
t g

A proof is given in [4] and again the ideas are elementary: we look at

(Ahf*)**, where |f] = cx, and show that (Ahf*)**(t) S_H(f*x(o’h))(t), then
we extend the result to arbitrary simple functions.,

3. Applications. Corollary 3 and (2) can be used to obtain embedding -

theorems of various types. +We give several examples.



Consider spaces A(A’¢Z’¢Y) = {f e M(O,l) : Hf:‘-:(bVHL (dp) < 00}9
< A

where dp(t) = ¢Y(t) QE' (see [5]).

Theorem 6. Let A be a Young's functions with the A2 property, and suppose

the following conditions are satisfied

(i) j ¢Z,(u) Q%_ §_91¢7,(t).t—1
t u N

-1 du

(i1) J o, Ho, (7 & <o ot (+7h)
iz <

(iii) f e X, and ]wa(f,t)¢>z(t)/¢>x(t)|IL (ap) <

Then, f € A(A,¢Z,¢Y).
The proof follows readily from Corollary 3 and the extention of Hardy's -
inequality given in [6]. (See also [7].)

Let Lip(A,¢,,0,) = {f € ¥(0,1) : HwY(f,t)/(‘pX(t)HL 4ty < w0},
At

Using Corollary 3 we obtain the following (cf. Herz [3], Theorem 5).

Theorem 7. Let A be a Young's function with the A2 property and suppose
that ¢Z is bounded away by powers from 1 and t, then
Lip(A,¢X,Y) c A(A,¢Z,1), whenever there exists 8 > 0 such that

0,(1)0, (1) < 8, (1), ¥V £ > 0.

We remark that similar results hold for generalized Young's functions such

that A(t).t7IN (cf. [6] anda [7]). Partial converses follow from Theorem 5.
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