MARIO MILMAN

"INEQUALITIES FOR MODULI OF CONTINUITY

AND REARRANGEMENTS"

NOTAS DE MATEMATICA

Nº 12

"INEQUALITIES FOR MODULI OF CONTINUITY AND REARRANGEMENTS"

POR

MARIO MILMAN

DEPARTAMENTO DE MATEMATICA
FACULTAD DE CIENCIAS
UNIVERSIDAD DE LOS ANDES
MERIDA - VENEZUELA
1977

"INEQUALITIES FOR MODULI OF CONTINUITY AND REARRANGEMENTS"

BY

MARIO MILMAN

DEPARTMENT OF PURE MATHEMATICS SCHOOL OF GENERAL STUDIES AUSTRALIAN NATIONAL UNIVERSITY A.C.T. 2600, AUSTRALIA

PRESENT ADDRESS

DEPARTAMENTO DE MATEMATICA FACULTAD DE CIENCIAS UNIVERSIDAD DE LOS ANDES MERIDA, VENEZUELA

AMS(MOS) SUBJECT CLASSIFICATIONS (1977). PRIMARY 26^13 , 46E39, 46E35.

KEY WORDS AND PHRASES: NON-INCREASING REARRANGEMENT, MODULUS OF CONTINUITY, REARRANGEMENT INVARIANT SPACES, LIPSTCHITZ SPACES.

1. Introduction. Let X(0,1) be a rearrangement invariant space of - Lebesgue measurable functions on (0,1), to this space we associate a modulus of continuity defined as follows: $\omega_X(f,t) = \sup_{0 \le h \le t} ||\Delta_h f||_X$, where

$$\Delta_{h}f(x) = [f(x+h) - f(x)]\chi_{(0,1-h)}(x).$$

In this paper we announce several elementary inequalities relating the -behaviour of f* (then non-increasing rearrangement of f) and $\omega_{\chi}(f,t)$. - These results have interesting applications in the theory of embedding of r.i. - spaces and Lipschitz spaces, Fourier analysis and other areas (cf. [1], [2], [4]). We outline some applications in §3.

2. The inequalities. Let f be a non-increasing function, f ϵ X, then $\forall n \geq 2$ we have $\omega_X(f,1/n)$. $\frac{1}{\varphi_X(1/2n)} \geq f(\frac{1}{2n}) - f(1/n)$ and therefore if we let $n=2^k$, k=1 ..., and sum, we get $f(1/2^{m+1}) - f(1/2) \leq \sum_{k=1}^m \frac{1}{\varphi_X(\frac{1}{2^{k+1}})} \omega_X(f,\frac{1}{2^k})$.

This last inequality combined with the facts that $\omega_{\chi}(f,t)$ and $\phi_{\chi}(t)t^{-1}$ yields

Theorem 1. Suppose that $f \in X$, and $f \setminus X$, then

(1)
$$f(s) - f(1/2) \le 8 \int_{s}^{1} \frac{\omega_{\chi}(f, u)}{\phi_{\chi}(u)} \frac{du}{u}, \quad 0 \le s \le 1/2.$$

For a detailed proof see [4]. (1) gives nearly the result we are looking for, the complete result follows from

Theorem 2. $\omega_{X}(f^*,t) \leq 7\omega_{X}(f,t)$, $f \in X$.

The proof of this result is given in [5] (cf. also [8]) and depends on the possibility of approximating f by suitable averages and the fact that

$$||f^*-g^*||_X \leq ||f-g||_X$$

Combining (1) and Theorem 2 we get

Corollary 3.
$$f^*(s) - f^*(1/2) \le 54 \int_s^1 \frac{\omega_X(f,u)}{\phi_X(u)} \frac{du}{u}, \quad 0 \le s \le 1/2.$$

Garsia and Rodemich [1] have given a proof of Corollary 3, using a - general (and complicated) combinatorial argument, for the case where $X = L^{p}$.

Let us remark that we can in fact obtain a stronger result, indeed use (1) with $f = f^{**}$, Theorem 2 and the following

Theorem 4. $\omega_{\chi}(f^{**},t) \leq \omega_{\chi}(f^{*},t)$.

We get

(2)
$$f^{**}(s) - f^{**}(1/2) \le \text{const} \int_{s}^{1} \frac{\omega_{\chi}(f,u)}{\phi_{\chi}(u)} \frac{du}{u}, \quad 0 \le s \le 1/2.$$

Next we look at the dual problem of estimating $\omega_\chi(f^*,t)$, we obtain the following

Theorem 5. Let X be a separable r.i. space, and let f ϵ X, then

(3)
$$\omega_{X}(f^{*},t) \leq ||H||_{X \to X}||f^{*}, \chi_{(0,t)}||_{X}$$

where (Hf) (t) =
$$\frac{1}{t}$$
 $\int_0^t f(s)ds$.

A proof is given in [4] and again the ideas are elementary: we look at $(\Delta_h f^*)^{**}$, where $|f| = c\chi_E$ and show that $(\Delta_h f^*)^{**}(t) \leq H(f^*\chi_{(0,h)})(t)$, then we extend the result to arbitrary simple functions.

3. Applications. Corollary 3 and (2) can be used to obtain embedding - theorems of various types. We give several examples.

Consider spaces $\Lambda(A,\phi_Z,\phi_Y) = \{f \in M(0,1) : ||f^*\phi_Z||_{L_A(d\mu)} < \infty \},$ where $d\mu(t) = \phi_Y(t) \frac{dt}{t}$ (see [6]).

Theorem 6. Let A be a Young's functions with the $\,\Delta_2^{}\,$ property, and suppose the following conditions are satisfied

(i)
$$\int_{t}^{\infty} \phi_{Z^{\dagger}}(u) \frac{du}{u^{2}} \leq \theta_{1} \phi_{Z^{\dagger}}(t) \cdot t^{-1}$$

(iii) f
$$\epsilon$$
 X, and $||\omega_{\chi}(f,t)\phi_{\chi}(t)/\phi_{\chi}(t)||_{L_{\Lambda}(d\mu)} < \infty$.

Then, $f \in \Lambda(A, \phi_Z, \phi_V)$.

The proof follows readily from Corollary 3 and the extention of Hardy's - inequality given in [6]. (See also [7].)

Let
$$\operatorname{Lip}(A,\phi_X,\phi_Y) = \{f \in \mathbb{M}(0,1) : ||\omega_Y(f,t)/\phi_X(t)||_{\operatorname{L}_A}(\frac{dt}{t}) < \infty \}.$$

Using Corollary 3 we obtain the following (cf. Herz [3], Theorem 5).

Theorem 7. Let A be a Young's function with the Δ_2 property and suppose that ϕ_Z is bounded away by powers from 1 and t, then $\text{Lip}(\Lambda,\phi_X,Y) \subseteq \Lambda(\Lambda,\phi_Z,1), \text{ whenever there exists } \theta>0 \text{ such that } \phi_Z(t)\phi_X(t) \leq \theta\phi_Y(t), \forall t>0.$

We remark that similar results hold for generalized Young's functions such that $A(t).t^{-1} \setminus (cf. [6] \text{ and } [7])$. Partial converses follow from Theorem 5.

Acknowledgement. I wish to thank $Dr.\ T.\ Donaldson$ for his encouragement - and interest in my work.

References

[1]	A.M. Garsia,	Combinatorial inequalities and smoothness of functions, Bull.
		Amer. Math. Soc. 82(1976), 157-170.
[2]	,	A remarkable inequality and the uniform convergence of Fourier
		series, Indiana Univ. Math. J. 25(1976), 85-102.
[3]	C.S. Herz,	Lipschitz spaces and Bernstein's theorem on absolutely conver
	•	gent Fourier transforms, J. Math. Mech. 18(1968), 283-324.
[4]	M. Milman,	Embedding of rearrangement invariant spaces in Lorentz spaces,
		Acta Sc. Math. (to apper).
[5]	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	An inequality for generalized modulus of continuity, Analysis
		Mathematica (to apper).
[6]	,	Some new function spaces and their tensor products, Australian
		National University 1977.
[7]	A. Torchinsky,	Interpolation of operation and Orlicz classes, Studia Math.
		(to appear).
[8]		Mat. Zam. 18(1975), 63-66.