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The Bartle-Dunford-Schwartz integral
IV. Applications to integration in locally compact Hausdorff

spaces-Part I

T.V. Panchapagesan

This part consists of Sections 17, 18 and 19. In the sequel T will denote a locally compact
Hausdorff space, B(T ) the σ-algebra of the Borel sets in T and δ(C) the δ-ring generated by the
family C of compact sets in T . The classical Vitali-Carathédory integrability criterion theorem
is generalized in Section 17 to L1(m) (resp. to L1(σ(P),m)), where m : B(T ) → X (resp.
m : δ(C)→ X) is σ-additive and Borel regular (resp. and δ(C)-regular) andX is a quasicomplete
or a sequentially complete lcHs. Section 18 is devoted to the study of the Baire version of the
classical Dieudonné-Grothendieck theorem and its generalizations to Banach space-valued and
sequentially complete lcHs-valued σ-additive regular Borel measures (see Theorems 18.6, 18.21
and 18.23). In Section 19 the concepts of weakly compact and prolongable Radon operators
are introduced and several characterizations of these operators are given.

17. GENERALIZATIONS OF THE VITALI-CARATHÉODORY
INTEGRABILITY CRITERION THEOREM

Enumerations of sections will be continued from Part III. We adopt the same notation and
terminilogy in Parts I,II and III.

The results of the present section are needed in Section 23 of [P13] to describe the duals of
L1(m) and L1(n), where m : B(T ) → X (resp. n : δ(C) → X) is σ-additive and B(T )-regular
(resp. and δ(C)-regular), T is a locally compact Hausdorff space and X is a Banach space.

In the sequel, T denotes a locally compact Hausdorff space and U , C, and C0 are as in Def-
inition 16.4 of [P12]; i.e., U is the family of open sets in T , C that of compact sets in T and C0
that of compact Gδ sets in T . Then B(T ) = σ(U), the σ-algebra of the Borel sets in T ; Bc(T )=
σ(C), the σ-ring of the σ-Borel sets in T and B0(T ) = σ(C0), the σ-ring of the Baire sets in T .
δ(C) and δ(C0) are the δ-rings generated by C and C0.

As in Parts I and III, X denotes a Banach space or an lcHs over KI (= RI or CI) with Γ, the
family of all continuous seminorms on X, unless otherwise mentioned and it will be explicitly
specified whether X is a Banach space or an lcHs. Let R = B(T ) or δ(C) and a σ-additive set
functionm : R→ X is said to be R-regular if it satisfies the conditions in Definition 16.7 of [P12].
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Lemma 17.1.

Let X be a quasicomplete (resp. sequentially complete) lcHs,m : B(T ) → X be σ-additive
and Borel regular and f : T → [0,∞) (resp. and be B(T )-measurable). Then f ∈ L1(m) (resp.
f ∈ L1(B(T ),m)) if and only if, given ε > 0 and q ∈ Γ, there exist functions u(q) and v(q)

on T such that u(q) ≤ f ≤ v(q)mq-a.e. in T , u(q) is upper semicontinuous in T with compact
support and with u(q)(T ) ⊂ [0,∞), v(q) is lower semicontinuous and mq-integrable in T , and
(mq)

•
1(v
(q) − u(q), T ) < ε.

Proof. In the light of Theorem 15.13(i) of [P12] which states that

L1(m) =
⋂
q∈Γ L1(mq) (resp. L1(B(T ),m) =

⋂
q∈Γ L1(B(T ),mq)), it suffices to prove the

result for Banach spaces. So we shall assume X to be a Banach space. Suppose the conditions
are satisfied for each ε > 0. If f is not B(T )-measurable, we first show that it is m-measurable.
By hypothesis, for each n, there exist such functions un and vn with 0 ≤ un ≤ f ≤ vn m-a.e. in
T and with m•1(vn − un, T ) <

1
n . Since vn is m-integrable in T , by the domination principle (see

Theorem 3.5(vii) and Remark 4.3 of [P10]) un is also m-integrable in T . Let gn = max1≤i≤n ui
and hn = min1≤i≤n vi. Then by Theorems 3.3 and 3.5, §3, Ch. III of [MB], gn is upper semi-
continuous and hn is lower semicontinuous for each n. Moreover, gn ↗ and hn ↘ and by
hypothesis and by Theorem 3.5(vii) and Remark 4.3 of [P10], gn and hn are m-integrable in T
for each n. Let g = supn gn and h = infn hn. Then 0 ≤ g ≤ f ≤ h m-a.e. in T and g and
h are B(T )-measurable. Moreover, 0 ≤ hn − gn ≤ v1 ∈ L1(m) and hn − gn → h − g point-
wise in T . Hence by LDCT (see Theorem 3.7 and Remark 4.3 of [P10]), h − g ∈ L1(m) and
m•1((h − g) − (hn − gn), T ) → 0. Moreover, as 0 ≤ hn − gn ≤ vn − un, by Theorem 5.11(i) of
[P11], m•1(hn − gn, T ) ≤ m

•
1(vn − un, T ) <

1
n for n ∈ NI. Consequently, by Theorem 5.13(ii) of

[P11], m•1(h − g, T ) ≤ m
•
1((h − g) − (hn − gn), T ) +m

•
1(hn − gn, T ) → 0 as n → ∞. Hence by

Theorem 5.18(ii) of [P11], h = g m-a.e. in T . Then f = g = h m-a.e. in T and hence f is
m-measurable. Moreover, as m•1(vn − f, T ) ≤m

•
1(vn − un, T ) <

1
n and as L1(m) is complete by

Theorem 6.8 of [P11], we conclude that f is m-integrable in T . If f is B(T )-measurable, then
by the above argument limnm•1(vn − f, T ) = 0 and hence by the second part of Theorem 6.8 of
[P11], f ∈ L1(B(T ),m).

To prove the converse, let us assume that f is not identically zero, f ≥ 0 and f ∈ L1(m)
(resp. f ∈ L1(B(T ),m)). By Definition 3.1 of [P10], there exists a B(T )-measurable function
f̂ : T → [0,∞) such that f = f̂ m-a.e. in T or f̂ = f if f is B(T )-measurable. Arguing as in the
first paragraph on p.51 of [Ru1], we have

f̂(t) =
∞∑

i=1

ciχEi(t), t ∈ T

where ci > 0 and Ei ∈ B(T ) for all i. Let

fn =
n∑

i=1

ciχEi , n ∈ NI.

Then 0 ≤ fn ↗ f̂ and hence by LDCT (see Theorem 3.7 and Remark 4.3 of [P10]) limnm•1(f̂ −
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fn, T ) = 0. Thus, given ε > 0, there exists n0 such that m•1(f̂ − fn0 , T ) <
ε
2 . That is,

m•1(
∞∑

n0+1

ciχEi , T ) <
ε

2
. (17.1.1)

By the Borel regularity of m there exist compact sets (Ki)
∞
1 and open sets (Vi)∞1 such that

Ki ⊂ Ei ⊂ Vi and such that

ci||m||(Vi\Ki) <
ε

2i+1
(17.1.2)

for i ∈ NI. Let v =
∑∞

i=1 ciχVi and u =
∑n0

i=1 ciχKi . Then by Theorems 3.3, 3.4 and 3.5 and ex.2 of
§3, Ch. III of [MB], v is lower semicontinuous and u is upper semicontinuous in T , u(T ) ⊂ [0,∞),
suppu is compact and u ≤ f̂ ≤ v in T . If vn =

∑n
i=1 ciχVi , then (vn)

∞
1 ⊂ L1(m) as vn are

B(T )-simple functions. For A ⊂ T , by Theorem 5.3 of [P11] we have

m•1(χA, T ) = sup
|x∗|≤1

∫

T

χAdv(x
∗m) = sup

|x∗|≤1
v(x∗m)(A) = ||m||(A). (17.1.3)

Now, by (17.1.1), (17.1.2) and (17.1.3) and by Theorem 5.13(ii) of [P11] we have m•1(v−vn, T ) ≤

m•1(
∞∑

n+1
ciχEi , T ) +m

•
1(
∞∑

n+1
ciχVi\Ei , T ) <

ε
2 +

∞∑

n+1
ci||m||(Vi\Ei) < ε

for n ≥ n0. As L1(m) is complete (resp. as v is B(T )-measurable and as L1(B(T ),m) is
complete) by Theorem 6.8 of [P11], v is m-integrable in T .

Finally, by Theorems 5.11 and 5.13(ii) of [P11] and by (17.1.3) we have

m•1(v − u, T ) ≤ m•1(

n0∑

1

ciχVi\Ki , T ) +m
•
1(
∞∑

n0+1

ciχVi , T )

≤
n0∑

1

ci||m||(Vi\Ki) +m
•
1(
∞∑

n0+1

ciχEi , T ) +m
•
1(
∞∑

n0+1

ciχVi\Ki , T )

≤
∞∑

1

ci||m||(Vi\Ki) +m
•
1(
∞∑

n0+1

ciχEi , T ) < ε.

Hence the lemma holds.

Theorem 17.2 (Generalization of the Vitali-Carathéodory integrability criterion
theorem for Borel regular m). Let X be a quasicomplete (resp. sequentially complete) lcHs,
m : B(T ) → X be σ-additive and Borel regular and f : T → RI (resp. and be B(T )-measurable).
Then f ∈ L1(m) (resp. f ∈ L1(B(T ),m)) if and only if, given ε > 0 and q ∈ Γ, there exist
functions u(q) and v(q) on T such that u(q) ≤ f ≤ v(q) mq-a.e. in T , u(q) is upper semiconti-
nuous, bounded above and mq-integrable in T , v(q) is lower semicontinuous, bounded below and
mq-integrable in T and (mq)

•
1(v
(q) − u(q), T ) < ε.
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Proof. In the light of Theorem 15.13(i) of [P12], it suffices to prove the result for a Banach
space X and hence let X be a Banach space. Suppose the conditions hold for each ε > 0. If f is
not B(T )-measurable, we first show that f is m-measurable. For each n, there exist such func-
tions un and vn with un ≤ f ≤ vn m-a.e. in T and m•1(vn − un, T ) <

1
n . Let gn = max1≤i≤n ui

and hn = min1≤i≤n vi, g = supn gn and h = infn hn. Then by Theorems 3.3 and 3.5, §3, Ch.
III of [MB], (gn)∞1 are upper semicontinuous and (hn)∞1 are lower semicontinuous. Moreover,
gn ↗ g and hn ↘ h. Hence g and h are B(T )-measurable and g ≤ f ≤ h m-a.e. in T . Now,
0 ≤ hn−gn ≤ vn−un and by hypothesis, hn−gn and vn−un are well defined on T . By hypothesis,
vn and un are m-integrable in T and hence by Theorem 5.12(ii) of [P11], vn and un are finite
m-a.e. in T . Hence vn−un ism-integrable in T . Consequently, by Theorem 3.5(vii) and Remark
4.3 of [P10], hn−gn is m-integrable in T for n ∈ NI and as 0 ≤ hn−gn ≤ v1−u1, hn−gn → h−g
in T and v1 − u1 is m-integrable in T , by LDCT (see Theorem 3.7 and Remark 4.3 of [P10]),
limnm

•
1((hn − gn) − (h − g), T ) = 0. Moreover, m

•
1(hn − gn, T ) ≤ m

•
1(vn − un, T ) <

1
n → 0

as n → ∞. Hence m•1(h − g, T ) = 0 so that by Theorem 5.18(ii) of [P11], h = g m-a.e. in T .
Consequently, f = h = g m-a.e. in T and hence f is m-measurable.

Asm•1(vn−f, T ) ≤m
•
1(vn−un, T ) <

1
n → 0 as n→∞, by Theorem 6.8 of [P11] the function

f ∈ L1(m) (resp. f ∈ L1(B(T ),m)).

Conversely, let f ∈ L1(m) (resp. f ∈ L1(B(T ),m)). By Theorem 3.5(vii) and Remark 4.3 of
[P10], f+, f− ∈ L1(m) (resp. f+, f− ∈ L1(B(T ),m)). Using Lemma 17.1 above and Theorem
3.5(vii) and Remark 4.3 of [P10] and arguing as in the general case in the proof of Theorem 2.24
of [Ru1], one can prove the converse. Details are left to the reader.

Theorem 17.3 (Generalization of the Vitali-Carathéodory integrability criterion
theorem for δ(C)-regular n). Let X be a quasicomplete (resp. sequentially complete) lcHs,
n : δ(C) → X be σ-additive and δ(C)-regular and f : T → RI (resp. and be Bc(T )-measurable).
Then f ∈ L1(n) (resp. f ∈ L1(Bc(T ),n)) if and only if, given q ∈ Γ and ε > 0, there exist
functions u(q) and v(q) on T such that u(q) ≤ f ≤ v(q) nq-a.e. in T , v(q) is lower semicontinu-
ous, bounded below and nq-integrable in T , u(q) is upper semicontinuous, bounded above and
nq-integrable in T and (nq)•1(v

(q) − u(q), T ) < ε.

Proof. First we observe that a Borel measurable function h with

N(h) = {t ∈ T : h(t) 6= 0} σ-bounded (i.e. contained in a countable union of compact sets)
is necessarily Bc(T )-measurable and hence nq-integrable upper semicontinuous and lower semi-
continuous functions are Bc(T )-measurable. Using this observation and arguing quite similar to
the proof of the sufficiency part of Theorem 17.2 in which B(T ) is replaced by Bc(T ) and m by
n, one can show that the conditions are sufficient.

As seen in the proof of Lemma 17.1, we prove the result assuming X to be a Banach space and
f ∈ L1(n)(resp. f ∈ L1(Bc(T ),n)), f ≥ 0 and f not identically zero. Then there exists an n-null
set N ∈ Bc(T ) such that f̂ = fχT\N is Bc(T )-measurable and N = ∅ when f is Bc(T )-measurable.
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Let s0 = 0 and

sn(t) =






i−1
2n if i−12n ≤ f̂(t) <

i
2n , i = 1, 2, ..., 2

nn

n if f̂(t) ≥ n.

Then sn ↗ f̂ in T and f̂(t) =
∑∞

n=1(sn− sn−1)(t). As N(f̂) ∈ Bc(T ), there exists (An)
∞
1 ⊂ δ(C)

with An ↗ N(f̂). Then∑k
n=1(sn(t)χAn(t)− sn−1(t)χAn−1(t)) = sk(t)χAk(t) and hence

f̂(t) = limk sk(t) = limk sk(t)χAk(t). Moreover, it is easy to check that∑∞
1 (snχAn − sn−1χAn−1) is of the form

∑∞
1 ckχEk with ck > 0 for each k and (Ek)

∞
1 ⊂ δ(C)

since A ∩B ∈ δ(C) for A ∈ δ(C) and B ∈ Bc(T ). Thus

f̂(t) =
∞∑

k=1

ckχEk , ck > 0 for each k and (Ek)
∞
1 ⊂ δ(C).

As n is δ(C)-regular, given ε > 0, there exist an open set Vn ∈ δ(C) and a compact Kn such that
Kn ⊂ En ⊂ Vn and such that ||n||(Vn\Kn) <

ε
2n+1

for n ∈ NI. Then arguing as in the proof of the
converse part of Lemma 17.1, one can show the existence of u and v as in the said lemma with u
and v Bc(T )-measurable. Then arguing as in the proof of the necessity part of Theorem 17.2 the
theorem is proved for real valued f .

Remark 17.4. Arguing as in the proof of Lemma 17.1 and Theorem 17.2, a result generalizing
Corollary of Theorem 3, no.4, §4, Ch. IV of [B] can be obtained for f ∈ L1(m) where m is as
in Theorem 17.2. Similarly, an analogous result is true for f ∈ L1(n) where n : δ(C) → X is
σ-additive and δ(C)-regular.

18. THE BAIRE VERSION OF THE DIEUDONNÉ-GROTHENDIECK
THEOREM AND ITS VECTOR-VALUED GENERALIZATIONS

We show that the boundedness hypothesis in Corollary 1 of [P4] is redundant and thereby we
obtain the Baire version of the Dieudonné-Grothendieck theorem in Theorem 18.6 below. Then
using the ideas in the proofs of Proposition 2.11 and Theorem 2.12 of [T], we generalize Theorem
18.6 to σ-additive Borel regular vector measures. (See Theorems 18.21 and 18.23.)

Notation 18.1. Cc(T ) = {f : T → KI, f continuous with compact support }; C0(T ) = {f :
T → KI, f continuous and vanishes at infinity in T}, both the spaces being provided with norm
|| ∙ ||T . M(T ) denotes the dual of (C0(T ), || ∙ ||T ) and each member of M(T ) is considered as a
σ-additive Borel regular scalar measure on B(T ). We write |μ|(∙) = v(μ,B(T ))(∙) for μ ∈ M(T ).
Then ||μ|| = |μ|(T ), for μ ∈ M(T ). V is the family of relatively compact open sets in T . Cc(T )
endowed with the inductive limit locally convex toplogy as in §1, Ch. III of [B] is denoted by K(T ).

Lemma 18.2. δ(C) = {A ∈ B(T ) : Ā ∈ C} and δ(C0) = {A ∈ B0(T ) : Ā ∈ C} where Ā
denotes the closure of A.
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Proof. Let F be the family of all closed sets in T . Since δ(C) ⊂ Bc(T ) and δ(C0) ⊂ B0(T ),
and since each member of δ(C)∪ δ(C0) is relatively compact, it suffices to show that {A ∈ B(T ) :
Ā ∈ C} ⊂ δ(C) and {A ∈ B0(T ) : Ā ∈ C} ⊂ δ(C0). Let A ∈ B(T ) (resp. A ∈ B0(T )) with Ā ∈ C.
Then by Theorem 50.D of [H] there exists C0 ∈ C0 such that Ā ⊂ C0 and hence by Theorem 5.E
of [H] we have A = A ∩ C0 ∈ σ(F) ∩ C0 = σ(F ∩ C0) = σ(C ∩ C0) = δ(C ∩ C0) ⊂ δ(C) (resp.
A = A ∩ C0 ∈ σ(C0) ∩ C0 = σ(C0 ∩ C0) = δ(C0 ∩ C0) ⊂ δ(C0)). Hence the lemma holds.

Lemma 18.3. A σ-compact open set in T is a Baire set. Conversely, every open Baire set
in T is σ-compact.

Proof. Let U be open in T and let U =
⋃∞
1 Kn, (Kn)

∞
1 ⊂ C. Then by Theorem 50.D of

[H], for each Kn there exists Cn ∈ C0 such that Kn ⊂ Cn ⊂ U and hence U =
⋃∞
1 Cn ∈ B0(T ).

Conversely, if U ∈ B0(T ) is open in T , then U is σ-bounded so that there exists (Kn)
∞
1 ⊂ C such

that U ⊂
⋃∞
1 Kn. Then by Theorem 50.D of [H] and by the previous part there exist relatively

compact open Baire sets (Vn)∞1 such that Kn ⊂ Vn for each n. Then U =
⋃∞
1 (U ∩ Vn) and by

Lemma 18.2, each U ∩ Vn ∈ δ(C0). Then U is σ-compact by Proposition 15, §14 of [Din].

Lemma 18.4. Let (μn)∞1 ⊂ M(T ) (resp. mn : B(T ) → X, n ∈ NI, be σ-additive and Borel
regular, where X is an lcHs). Then:

(i) For each open set U in T , there exists an open Baire set VU in T such that VU ⊂ U and
|μn|(U\VU ) = 0 for all n and consequently,

μn(U) = μn(VU ) for all n (resp. given q ∈ Γ, there exists an open Baire set V
(q)
U in T such

that V (q)U ⊂ U and ||mn||q(U\V
(q)
U ) = 0 for all n and hence |mn(U) −mn(V

(q)
U )|q = 0 for

all n).

(ii) If, for each open Baire set V in T , supn |μn(V )| <∞, then

sup
n
|μn(U)| <∞

for each open set U in T and consequently, supn ||μn|| <∞.

Proof.
Claim 1. Given an open set U in T , (resp. and q ∈ Γ), for each n ∈ NI, there exists an open Baire set
Vn in T such that Vn ⊂ U and |μn|(U\Vn) = 0 so that μn(U) = μn(Vn) (resp. there exists an open

Baire set V (q)n in T such that V (q)n ⊂ U and ||mn||q(U\V
(q)
n ) = 0 so that |mn(U)−mn(V

(q)
n )|q = 0).

In fact, let νn = |μn| or ||mn||q as the case may be. Then, given ε = 1
k , k ∈ NI, by the Borel

regularity of μn and of mn, there exists K
(n)
k ∈ C, K(n)k ⊂ U such that νn(U\K

(n)
k ) <

1
k . Then

by Theorem 50.D of [H] and by Lemma 18.3 there exists an open Baire set V (n)k in T such that

Kn
k ⊂ V

(n)
k ⊂ U . Then νn(U\V

(n)
k ) <

1
k . Let Vn =

⋃∞
k=1 V

(n)
k . Then Vn is an open Baire set in

T , Vn ⊂ U , and νn(U\Vn) = 0.
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(i) Let VU =
⋃∞
1 Vn (resp. V

(q)
U =

⋃∞
n=1 V

(q)
n ) where Vn (resp. V

(q)
n ) are chosen as in Claim 1

with respect to U (resp. with respect to U and q). Clearly, VU (resp. V
(q)
U ) is an open Baire set

in T , VU ⊂ U and |μn|(U\VU ) = 0 (resp. V
(q)
U ⊂ U and ||mn||q(U\V

(q)
U ) = 0) for all n. Hence (i)

holds.

(ii) By hypothesis and by (i), supn |μn(U)| = supn |μn(VU )| < ∞ for each open set U in T .
Then by Theorem T4 in Appendix I of [T], supn ||μn|| <∞.

The following result is an improvement of the remark under Theorem T4 in Appendix I of
[T].

Corollary 18.5. Let (μα)α∈I ⊂M(T ). Suppose every sequence from (μα)α∈I is bounded in
each open Baire set in T . Then supα∈I ||μα|| <∞.

Proof. Otherwise, for each n ∈ NI, there would exist αn ∈ I such that ||μαn || > n. On the
other hand, the hypothesis and Lemma 18.4(ii) would imply that supn ||μαn || <∞, a contradic-
tion.

Theorem 18.6 (The Baire version of the Dieudonné-Grothendieck theorem). A
sequence (μn) in M(T ) is weakly convergent if and only if, for each open Baire set U in T ,
limn μn(U) exists in KI or equivalently, there exists μ ∈M(T ) such that

lim
n

∫

T

fdμn =

∫

T

fdμ (18.6.1)

for each bounded Borel measurable scalar function f on T if and only if limn μn(U) exists in KI
for each open Baire set U in T . In that case, μ is unique.

Proof. If (μn) converges weakly to μ ∈M(T ), then (18.6.1) holds and particularly, limn μn(U) =
μ(U) ∈ KI holds for each open Baire set U in T .

Conversely, if limn μn(U) ∈ KI for each open Baire set U in T , then
supn |μn(U)| <∞ for each open Baire set U in T and hence by Lemma 18.4(ii), supn ||μn|| <∞.
Consequently, by Corollary 1 of [P4], (μn) converges weakly to some μ ∈ M(T ) so that (18.6.1)
holds. Since the weak toplogy of M(T ) is Hausdorff, the weak limit μ is unique.

Remark 18.7. In the light of Lemma 18.4(ii), the boundedness hypothesis in Corollary 1 of
[P4] is redundant. This has already been noted in Remark 9.18 of [P7].

The following theorem generalizes Lemma 18.4(ii) to lcHs-valued σ-additive regular Borel
measures on T .

Theorem 18.8. Let X be an lcHs and let mn : B(T )→ X be σ-additive and Borel regular
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for n ∈ NI. If (mn(V ))
∞
1 is bounded for each open Baire set V in T , then supn ||mn||q(T ) < ∞

for each q ∈ Γ.

Proof. Let q ∈ Γ and let V be an open Baire set in T . Then by hypothesis, supn q(mn(V )) <
∞. If Uq = {x ∈ X : q(x) ≤ 1}, then by hypothesis, by Proposition 10.14(i) of [P12] and
by Proposition 2.2 of [P10], supn supx∗∈Uoq |x

∗ ◦mn|(V ) < ∞. Consequently, by Corollary 18.5,
supn supx∗∈Uoq |x

∗ ◦mn|(T ) <∞ and hence by Proposition 10.14(ii)(c) of [P12] we have

sup
n
||mn||q(T ) = sup

n
sup
x∗∈Uoq

|x∗ ◦mn|(T ) <∞.

Hence the theorem holds.

The rest of the section is devoted to generalize Theorem 18.6 to Banach space and sequentially
complete lcHs valued σ-additive regular Borel measures.

We start recalling the following definition from [T].

Definition 18.9. Let X be an lcHs with topology τ . A locally convex Hausdorff topology τ ′

on X is said to possess the Orlicz property when all the formal series
∑
xn of elements in X which

are subseries convergent in the topology τ ′ are unconditionally convergent in τ . A subset H of
X∗ is said to possess the Orlicz property when the topology σ(X,H) possesses the Orlicz property.

Notation and Terminology 18.10. Let X be an lcHs with topology τ . X∗∗ is the bidual
of X when X∗ is endowed with the strong topology β(X∗, X) generated by the seminorms
{qB : B bounded inX}, where qB(x∗) = supx∈B |x

∗(x)| for x∗ ∈ X∗. The topology τe on
X∗∗ of uniform convergence in equicontinuous subsets of X∗ is generated by the seminorms
{qE : E ∈ E} (see Notation 10.10 of [P12]) where qE(x∗∗) = supx∗∈E |x

∗∗(x∗)| for x∗∗ ∈ X∗∗. If
u : C0(T ) → X is a continuous linear map, then the adjoint u∗ : (X∗, β(X∗, X)) → M(T ) and
biadjoint u∗∗ : (C0(T ))∗∗ → (X∗∗, τe) are continuous and linear and u∗∗|C0(T ) = u, where (X, τ)
is identified as a subspace of (X∗∗, τe). For details see [Ho]. By Theorem 1 of [P5], for each
continuous linear mapping u : C0(T )→ X there exists a unique X∗∗-valued vector measure (i.e.
additive set function) m on B(T ) such that x∗ ◦m = u∗x∗ ∈ M(T ) for x∗ ∈ X∗, the mapping
x∗ → x∗ ◦m of X∗ into M(T ) is weak*-weak* continuous and x∗u(ϕ) =

∫
T ϕd(x

∗ ◦m) for each
ϕ ∈ C0(T ) and x∗ ∈ X∗. Then m(A) = u∗∗(χA) for A ∈ B(T ) and {m(A) : A ∈ B(T )} is
τe-bounded in X∗∗. Such m is called the representing measure of u (see Definition 4 of [P5]).

Proposition 18.11. Let X be an LcHs and let u : C0(T ) → X be a continuous linear
mapping with the representing measure m. Then each ϕ ∈ C0(T ) is m-integrable in the sense of
Definition 1 of [P3] and u(ϕ) =

∫
T ϕdm (considering X as a subspace of X∗∗).

Proof. By Theorem 1 of [P5], the range of m is bounded in (X∗∗, τe). Since each ϕ ∈ C0(T )
is a bounded Borel measurable function, there exists a sequence (sn) of B(T )-simple functions
converging to ϕ uniformly in T . Hence ϕ is m-integrable in the sense of Definition 1 of [P3]
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with
∫
T ϕdm ∈

˜(X∗∗, τe), the completion of (X∗∗, τe). Then, for x∗ ∈ X∗, by Theorem 1 of [P5]
and by Lemma 6 of [P3] we have, x∗u(ϕ) =

∫
T ϕd(x

∗ ◦m) = x∗(
∫
T ϕdm). As u(ϕ) ∈ X and

∫
T ϕdm ∈

˜(X∗∗, τe), it follows that qE(u(ϕ)−
∫
T ϕdm) = 0 for each E ∈ E . Hence u(ϕ) =

∫
T ϕdm

so that
∫
T ϕdm ∈ X.

Remark 18.12. In the light of the above proposition, the hypothesis of quasicompleteness in
(vi) of Proposition 5 in [P6] is redundant.

The following lemma is needed in the proof of Theorem 18.14 which is an improvement of
Theorem 3(vii) of [P5] and is motivated by Theorem 2.7 of [T] whose proof is adapted here.

Lemma 18.13. Let X be a normed space and let H be a norm determining set in X∗. Then
H ⊂ {x∗ ∈ X∗ : |x∗| ≤ 1}.

Proof. Let x∗ ∈ H. Then, for |x| ≤ 1, we have

|x∗(x)| ≤ sup
y∗∈H

|y∗(x)| = |x| ≤ 1

and hence |x∗| = sup|x|≤1 |x
∗(x)| ≤ 1.

Theorem 18.14. Let X be a Banach space and let u : C0(T ) → X be a continuous linear
mapping with the representing measure m on B(T ). Let H be a norm determining set in X∗

with the Orlicz property. Then u is weakly compact if and only if for each open Baire set U in
T there exists a vector xU ∈ X such that

(x∗ ◦m)(U) = x∗(xU ) (18.14.1)

for x∗ ∈ H.

Proof. If u is weakly compact, then by Theorem 2(ii) of [P5], m has range in X and hence
the condition is necessary.

Conversely, let (18.14.1) hold. Let (Un) be a disjoint sequence of open Baire sets in T . For a
subsequence P of NI, by (18.14.1) we have

x∗(x⋃
n∈P Un

) = (x∗ ◦m)(
⋃

n∈P

Un) =
∑

n∈P

(x∗ ◦m)(Un) =
∑

n∈P

x∗(xUn) (18.14.2)

for each x∗ ∈ H and hence for each x∗ ∈< H >, where < H > is the linear span of H.
Since H is a norm determining set, σ(X,H) is Hausdorff. Then by Theorem V.3.9 of [DS],
(X,σ(X,H))∗ =< H > and hence (18.14.2) implies that

∑∞
n=1 xUn is subseries convergent in

σ(X,H). Then, as H has the Orlicz property by hypothesis,
∑∞
1 xUn is unconditionally conver-

gent in the norm topology of X. Therefore, limn |xUn | = 0 so that limn supx∗∈H |x
∗(xUn)| = 0.

Consequently, by (18.14.1), limn supx∗∈H |(x
∗ ◦ m)(Un)| = 0. Then by Lemma 18.13 and by
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Theorem 1 of [P4], mH = {x∗ ◦m : x∗ ∈ H} is relatively weakly compact in M(T ).

Claim 1. That mH is relatively weakly compact in M(T ) implies that u is weakly compact.

In fact, by the said theorem of [P4], given an open Baire set U in T (resp. for T ) and ε > 0,
there exists K ∈ C0 such that K ⊂ U and

sup
x∗∈H

|x∗ ◦m|(U\K) < ε (18.14.3)

(resp.
sup
x∗∈H

|x∗ ◦m|(T\K) < ε. (18.14.3′))

Since u∗x∗ = x∗ ◦m by 18.10, by (18.14.3) and (18.14.3’) we have

sup
x∗∈H

|u∗x∗|(U\K) < ε (18.14.4)

where U is the given open Baire set or U = T .

For such U , χU\K is lower semicontinuous and hence we have

sup
ϕ∈K(T ),|ϕ|≤χU\K

|u(ϕ)| = sup
ϕ∈K(T ),|ϕ|≤χU\K

sup
x∗∈H

|x∗u(ϕ)|

= sup
x∗∈H

sup
ϕ∈K(T ),|ϕ|≤χU\K

|(u∗x∗)(ϕ)|. (18.14.5)

On the other hand,

sup
ϕ∈K(T ),|ϕ|≤χU\K

|(u∗x∗)(ϕ)| = sup
|ψ|≤||ϕ|,ψ,ϕ∈K(T ),|ϕ|≤χU\K

|u∗x∗(ψ)|

= sup
ϕ∈K(T ),|ϕ|≤χU\K

|u∗x∗|(|ϕ|)

= |u∗x∗|∗(χU\K)

= |u∗x∗|∗(U\K) (18.14.6)

by (12) on p.55 of [B] and by Definitions 1 and 2, §1, Ch. IV of [B]. By Corollary 3 of Theorem 2,
§5, no.5 of Ch. IV of [B], the Borel sets in T are |u∗x∗|-measurable and by an abuse of notation
let us denote |u∗x∗|∗|B(T ) also by |u

∗x∗|. Then by (18.14.5) and (18.14.6) we have

sup
ϕ∈K(T ),|ϕ|≤χU\K

|u(ϕ)| = sup
x∗∈H

|(u∗x∗)|(U\K). (18.14.7)

As u∗x∗ = x∗ ◦m ∈M(T ), by Theorem 4.11 of [P1], by the last part of Theorem 3.3 of [P2]
and by Notation 18.1 above, we have

μ|u∗x∗| = var(μu∗x∗ ,B(T )) = |μu∗x∗ | (18.14.8)
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where μu∗x∗ is the complex Radon measure induced by u∗x∗ in the sense of Definition 4.3 of [P1].
Note that μu∗x∗ is the same as x∗ ◦m as u∗x∗ ∈M(T ) (see 18.10). Then by (18.14.3), (18.14.3’),
(18.14.7) and (18.14.8) we have

sup
ϕ∈K(T ),|ϕ|≤χU\K

|u(ϕ)| = sup
x∗∈H

|(u∗x∗)|(U\K)

= sup
x∗∈H

μ|u∗x∗|(U\K)

= sup
x∗∈H

|μu∗x∗ |(U\K)

= sup
x∗∈H

|x∗ ◦m|(U\K) < ε (18.14.9)

where U is the given open Baire set or U = T .

On the other hand, by (18.14.4), (18.14.6) and (18.14.9) and by (12) on p.55 of [B] we have

ε > sup
ϕ∈K(T ),|ϕ|≤χU\K

|u(ϕ)| = sup
ϕ∈K(T ),|ϕ|≤χU\K

sup
|x∗|≤1

|(x∗u)(ϕ)|

= sup
|x∗|≤1

sup
ϕ∈K(T ),|ϕ|≤χU\K

|(u∗x∗)(ϕ)|

= sup
|x∗|≤1

|u∗x∗|∗(U\K)

= sup
|x∗|≤1

|u∗x∗|(U\K)

= sup
|x∗|≤1

v(x∗ ◦m)(U\K) (18.14.10)

since U\K is |u∗x∗|-measurable by Corollary 3 of Theorem 2, §5, no.5 of Ch. IV of [B].

Since m : B(T ) → X∗∗ is additive and |x∗∗| = sup|x∗|≤1 |x
∗∗(x∗)| for x∗∗ ∈ X∗∗, by an

argument similar to the proof of Proposition 10.12(iii) of [P12] and by (18.14.10) we have

||m||(U\K) = sup
|x∗|≤1

v(x∗ ◦m)(U\K) < ε

where U is the given open Baire set or U = T . Therefore, m is Baire inner regular in each open
Baire set U in T and in the set T in the norm topology of X∗∗, which is the same as τe for X∗∗.
Hence by Theorem 8(xxix) of [P5], u is weakly compact.

Corollary 18.15. Let X be a Banach space, H be a norm determining subset of X∗ and
u : C0(T ) → X be a continuous linear mapping. Let K(T )∗b = (Cc(T ), || ∙ ||T )

∗- the set of all
bounded linear functionals on K(T ) (see pp.65 and 69 of [P2]). If η : K(T )∗b → M(T ) is the
isometric isomorphism given in Theorem 5.3 of [P2] (η = Φ−1B(T ) in the notation of Theorem 5.3
of [P2]), then η(θ) = μθ|B(T ) for θ ∈ K(T )∗b , and hence η(x

∗u) = x∗ ◦m for x∗ ∈ X∗ where m
is the representing measure of u. Moreover, if η{x∗u : x∗ ∈ H} is relatively weakly compact in
M(T ), then u is weakly compact.
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Proof. Clearly, x∗u is a bounded linear functional on C0(T ) and hence x∗u ∈ K(T )∗b . More-
over, (x∗u)(ϕ) = (u∗x∗)(ϕ) = (x∗ ◦m)(ϕ) for ϕ ∈ C0(T ) (see 18.10). Then

(x∗u)(ϕ) =

∫

T

ϕd(x∗ ◦m), ϕ ∈ C0(T ).

Consequently, by Theorem 5.3 of [P2], η(x∗u) = x∗ ◦ m, x∗ ∈ X∗. Then by hypothesis,
{x∗ ◦m : x∗ ∈ H} is relatively weakly compact in M(T ) and hence by Claim 1 in the proof
of Theorem 15.14, u is weakly compact.

The following theorem is motivated by Theorem 2.7 bis in [T] and its proof in [T] is adapted
here.

Theorem 18.16. Let X be a quasicomplete lcHs with topology τ and let H be a subset of
X∗ having the Orlicz property such that the topology τ is identical with the topology of uniform
convergence in equicontinuous subsets of H. Let u : C0(T )→ X be a continuous linear mapping
with the representing measure m. Then u is weakly compact if and only if for each open Baire
set U in T there exists a vector xU ∈ X such that

(x∗ ◦m)(U) = x∗(xU ) (18.16.1)

for x∗ ∈ H.

Proof. If u is weakly compact, then by Theorem 2(ii) of [P5] the condition is necessary.

Conversely, let (18.16.1) hold. Let HE = {E ⊂ H : E is equicontinuous}. If x∗(x) = 0
for each x∗ ∈ H, then for E ∈ HE , qE(x) = supx∗∈E |x

∗(x)| = 0. Since τ is the same as the
locally convex topology generated by {qE : E ∈ HE}, it follows that x = 0 and hence σ(X,H) is
Hausdorff.

Let (Un) be a disjoint sequence of open Baire sets in T . Arguing as in the proof of Theorem
18.14, for a subsequence P of NI, by (18.16.1) we have

∑
n∈P x

∗(xUn) is subseries convergent for
x∗ ∈< H >, the linear span of H. Since (X,σ(X,H))∗ =< H > by Theorem V.3.9 of [DS],∑∞
1 xUn is subseries convergent in σ(X,H). By hypothesis, H has the Orlicz property and hence∑∞
1 xUn is unconditionally convergent in τ . Let E ∈ HE . Then limn qE(xUn) = 0 and hence by

(18.16.1) we have
lim
n
sup
x∗∈E

|(x∗ ◦m)(Un)| = 0. (18.16.2)

Since the range of m is bounded in τe by Theorem 1 of [P5], supA∈B(T ) qE(m(A)) <∞ and hence
{x∗ ◦m : x∗ ∈ E} is bounded in M(T ). Then by (18.16.2) and by Theorem 1 of [P4]

(∗) {x∗ ◦m : x∗ ∈ E} is relatively weakly compact inM(T ).

Let X̃ be the completion of X. Let ΠqE : X̃ → X̃qE ⊂
˜̃
XqE for E ∈ HE , where

˜̃
XqE is

the completion of the normed space X̃qE . If Ψx∗ is as in Proposition 10.12(i) of [P12], then by
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Proposition 10.12(ii) {Ψx∗ : x∗ ∈ E} is a norm determining set for X̃qE , E ∈ HE . Then by
Proposition 10.12(i) and by (18.10) we have (Ψx∗ ◦ ΠqE ◦ u)(ϕ) = (x

∗u)(ϕ) =
∫
T ϕd(x

∗ ◦m) for
ϕ ∈ C0(T ) and clearly, Ψx∗ ◦ΠqE ◦ u ∈ K(T )

∗
b . Therefore, η(Ψx∗ ◦ΠqE ◦ u) = x

∗ ◦m where η is
as in Corollary 18.15. Then by (*) and by the latter corollary, ΠqE ◦u is weakly compact for each
E ∈ HE . Consequently, by Lemma 2.21 of [T], which holds for complex lcHs too, we conclude
that u is weakly compact.

Theorem 18.17. Let X be a quasicomplete lcHs with topology τ , H be a subset of X∗

having the Orlicz property such that τ is the same as the topology of uniform convergence in
equicontinuous subsets of H and u : C0(T ) → X be a continuous linear mapping with the
representing measure m. Suppose uH is the same as u on C0(T ) with X provided with the
topology σ(X,H). Then u is weakly compact if and only if for each open Baire set U in T there
exists a vector xU ∈ X such that

(x∗u∗∗H )(χU ) = x
∗(xU ) (18.17.1)

for x∗ ∈ H. Moreover, condition (18.17.1) is the same as (x∗ ◦m)(U)) = x∗(xU ) for open Baire
sets U in T and for x∗ ∈ H.

Proof. As observed in the proof of Theorem 18.16, the hypothesis on τ implies that the
topology σ(X,H) is Hausdorff and hence (X,σ(X,H)) is an lcHs. As σ(X,H) is weaker than
τ , u : C0(T )→ (X,σ(X,H)) is continuous and hence uH is a continuous linear map. Therefore,
x∗u∗∗H (χA) = (u

∗
Hx
∗)(χA) for x∗ ∈ (X,σ(X,H))∗ and for A ∈ B(T ). Since (X,σ(X,H))∗ =<

H >, the linear subspace spanned by H by Theorem V.3.9 of [DS], particularly we have

x∗u∗∗H (χA) = (u
∗
Hx
∗)(χA) (18.17.2)

for x∗ ∈ H. Since
(u∗Hx

∗)(ϕ) = x∗(uHϕ) = x
∗(uϕ) = u∗x∗(ϕ)

for ϕ ∈ C0(T ) and for x∗ ∈ H, we have

u∗Hx
∗ = u∗x∗ (18.17.3)

for x∗ ∈ H. Consequently, by (18.17.2) and (18.17.3) we have

x∗u∗∗H (χA) = (u
∗
Hx
∗)(χA) = (u

∗x∗)(χA) = x
∗u∗∗(χA) = (x

∗ ◦m)(A) (18.17.4)

for x∗ ∈ H and for A ∈ B(T ), since m is the representing measure of u. Hence the hypothesis
(18.17.1) is equivalent to saying that

(x∗ ◦m)(U) = x∗u∗∗H (χU ) = x
∗(xU )

for x∗ ∈ H and for open Baire sets U in T . Consequently, by Theorem 18.16, u is weakly compact.

Conversely, if u is weakly compact, then by Theorem 2(ii) of [P5] m has range in X and hence
by (18.17.4), (18.17.1) holds.
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Lemma 18.18. Let X be a sequentially complete lcHs and let mn : B(T )→ X be σ-additive
and Borel regular for n ∈ NI. Then limnmn(U) ∈ X for each open Baire set U in T if and only if
limnmn(U) ∈ X for each open set U in T .

Proof. Clearly the condition is sufficient. Conversely, let limnmn(V ) ∈ X for each open
Baire set V in T . Let U be an open set in T and q ∈ Γ. Then by Lemma 18.4(i) there exists

an open Baire set V (q)U ⊂ U such that |mn(U) − mn(V
(q)
U )|q = 0 for all n. By hypothesis,

limnmn(V
(q)
U ) = xq (say) exists in X, for each q ∈ Γ. Then

|mn(U)− xq|q ≤ |mn(U)−mn(V
(q)
U )|q + |mn(V

(q)
U )− xq|q → 0

as n→∞ and hence |mn(U)−mk(U)|q → 0 as n, k →∞. Since q is arbitrary in Γ, this implies
that (mn(U)) is Cauchy in X. As X is sequentially complete, there exists xU ∈ X such that
limnmn(U) = xU . Hence the lemma holds.

Lemma 18.19. Let X be a quasicomplete lcHs and m : B(T ) → X be σ-additive. Then
each ϕ ∈ C0(T ) is m-integrable in the sense of Definition 1 of [P3] as well as m-integrable in
the sense of Definition 12.1 of [P12] and both the integrals of ϕ coincide. If u : C0(T ) → X

is given by u(ϕ) =
∫
T ϕdm for ϕ ∈ C0(T ), then u is a weakly compact operator. If m is fur-

ther Borel regular, thenm is the representing measure of u (see Notation and Terminology 18.10).

Proof. Since m is σ-additive on the σ-algebra B(T ), ||m||q(T ) < ∞ for each q ∈ Γ. Since
ϕ ∈ C0(T ) is bounded and Borel measurable, there exists a sequence (sn) of B(T )-simple functions
such that sn → ϕ uniformly in T with |sn| ↗ |ϕ|. Then, given q ∈ Γ,

q(

∫

T

sndm−
∫

T

skdm) ≤ ||sn − sk||T ||m||q(T )→ 0

as n, k → 0 and hence (
∫
A sndm)

∞
1 is Cauchy in X for each A ∈ B(T ). Since X is sequentially

complete, ϕ is m-integrable in the sense of Definition 1 of [P3] and
∫
A ϕdm = limn

∫
A sndm for

A ∈ B(T ). On the other hand, by Definition 12.1’ in Remark 12.11 and by Remark 12.13 of
[P12], the B(T )-measurable function ϕ is m-integrable in the sense of Definition 12.1 of [P12]
with (BDS)

∫
A ϕdm =

∫
A ϕdm for A ∈ B(T ).

Clearly, u is linear. Moreover, by Theorem 11.9(ii)(b) of [P12] we have

q(uϕ) = q(

∫

T

ϕdm) ≤ ||ϕ||T ∙ ||m||q(T )

for each q ∈ Γ and hence u is continuous. (See Remark 12.5 of [P12].)

Let Σ(B(T )) be the Banach space of all bounded complex functions which are uniform limits
of sequences of B(T )-simple functions with norm the supremum norm || ∙ ||T . Then C0(T ) is a
subspace of Σ(B(T )). If Φ : Σ(B(T ))→ X is given by Φ(ϕ) =

∫
T ϕdm with the integral defined

in the sense of Definition 1 of [P3], then by Lemma 6 of [P3], Φ is a continuous linear map and
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m is the representing measure of Φ in the sense of Definition 2 of [P3]. Since B(T ) is a σ-algebra
and m is σ-additive on B(T ), m is strongly additive on B(T ) and hence by Theorem 1 of [P3], Φ
is weakly compact. Consequently, u = Φ|C0(T ) is weakly compact.

Now suppose m is further Borel regular. Then by Theorem 2(ii) of [P5], the representing
measure m̂ (in the sense of Definition 4 of [P5]) of the weakly compact operator u has range
in X and by Theorem 1 of [P5], x∗ ◦ m̂ ∈ M(T ) for x∗ ∈ X∗ and x∗u(ϕ) =

∫
T ϕd(x

∗ ◦ m̂) for
ϕ ∈ C0(T ). On the other hand, u(ϕ) =

∫
T ϕdm and hence by Lemma 6(iii) of [P3] we have∫

T ϕd(x
∗ ◦m) = x∗u(ϕ) for ϕ ∈ C0(T ). Thus we have

x∗u(ϕ) =

∫

T

ϕd(x∗ ◦m) =
∫

T

ϕd(x∗ ◦ m̂), ϕ ∈ C0(T ).

Since x∗ ◦m ∈M(T ) by hypothesis, by the uniqueness part of the Riesz representation theorem,
x∗ ◦ m̂ = x∗ ◦m for x∗ ∈ X∗ and consequently, by the Hahn-Banach theorem we have m = m̂
and hence m is the representing measure of u (in the sense of (18.10)).

The proof of (i) in the following lemma is motivated by the proof of Theorem 2.12 of [T].

Lemma 18.20. Let X be a sequentially complete lcHs and let mn : B(T )→ X be σ-additive
and Borel regular for n ∈ NI. Suppose limnmn(U) exists in X for each open Baire set U in T .
Let un : C0(T )→ X be given by un(ϕ) =

∫
T ϕdmn for ϕ ∈ C0(T ). Then:

(i) limn un(ϕ) = u(ϕ) (say) exists in X for each ϕ ∈ C0(T ).

(ii) u is an X-valued continuous linear mapping on C0(T ).

Proof. By hypothesis and by Lemma 18.18,

lim
n
mn(U) =m(U) (say) (18.20.1)

exists in X for each open set U in T and moreover, by Theorem 18.8,

sup
n
||mn||q(T ) =Mq (say) <∞ (18.20.2)

for each q ∈ Γ.

(i) Let ϕ ∈ C0(T ), ϕ ≥ 0. Then there exists a sequence (sn) of B(T )-simple functions such
that sn → ϕ uniformly in T and

sn =
n∙2n∑

i=2

i− 1
2n

χEi,n

where n ≥ ||ϕ||T and Ei,n = ϕ−1([ i−12n ,
i
2n )) = ϕ

−1((−n, i
2n ))\ϕ

−1((−n, i−12n )) for i = 2, 3, ..., n ∙2
n.

Then Ei,n is the difference of two open sets and hence sn is a real linear combination of the
characteristic functions of open sets. Consequently, each ϕ ∈ C0(T ) is the uniform limit of a
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sequence (s′n) of B(T )-simple functions with |s
′
n| ↗ |ϕ| and with each s

′
n being a complex linear

combination of the characteristic functions of open sets. Thus, given ϕ ∈ C0(T ), q ∈ Γ and ε > 0,
there exists s of the form s =

∑k
i=1 αiχUi , Ui open inT, ||s||T ≤ ||ϕ||T and

||s− ϕ||T <
ε

4Mq
. (18.20.3)

Then by (18.20.1) we have

lim
n

∫

T

sdmn = lim
n

k∑

1

αimn(Ui) =
k∑

1

αim(Ui) = x (say).

Then there exists n0 such that

|
∫

T

sdmn − x|q <
ε

4
(18.20.4)

for n ≥ n0. Then by (18.20.3) and (18.20.4) and by Theorem 11.9(i)(b) and Remark 12.5 of [P12]
we have

|un(ϕ)− ur(ϕ)|q ≤ |un(ϕ)−
∫

T

sdmn|q + |
∫

T

sdmn −
∫

T

sdmr|q

+ |
∫

T

sdmr − ur(ϕ)|q

≤ ||ϕ− s||T ||mn||q(T ) + |
∫

T

sdmn − x|q + |
∫

T

sdmr − x|q + ||s− ϕ||T ||mr||q(T )

< ||ϕ− s||T ∙ (2Mq) + 2
ε

4
< ε

for n, r ≥ n0. Since q is arbitrary in Γ, this implies that (un(ϕ)) is Cauchy in X and as X is
sequentially complete, there exists a vector u(ϕ) (say) in X such that limn un(ϕ) = u(ϕ) for
ϕ ∈ C0(T ). Hence (i) holds.

(ii) Clearly, u : C0(T )→ X is linear and u is continuous by(i) and by Theorem 2.8 of [Ru2].

The proof of the following theorem is a vector measure adaptation of the proof of Proposition
2.11 of [T].

Theorem 18.21 (Generalization of Theorem 18.6 to Banach space valued σ-additive
regular Borel measures). Let X be a Banach space and let mn : B(T ) → X be σ-additive
and Borel regular for n ∈ NI. Then limnmn(U) ∈ X for each open Baire set U in T if and only if
there exists an X-valued σ-additive measure m on B(T ) such that

lim
n

∫

T

fdmn =

∫

T

fdm(∈ X) (18.21.1)
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for each bounded B(T )-measurable scalar function f on T . In that case, m is unique and is Borel
regular.

Proof. Suppose limnmn(U) ∈ X for each open Baire set U in T . Let cX = {(xn)∞1 ⊂ X :
limn xn ∈ X} be provided with norm ||(xn)∞1 || = supn |xn|. Let un(ϕ) =

∫
T ϕdmn, ϕ ∈ C0(T ).

Then by hypothesis and by Lemma 18.19, un, n ∈ NI, are X-valued weakly compact operators on
C0(T ) with the representing measure mn. Let Φ : C0(T ) → cX be defined by Φ(ϕ) = (un(ϕ))∞1
for ϕ ∈ C0(T ). By Lemma 18.20(i), Φ is well defined and clearly, linear. By hypothesis and by
Theorem 18.8,

sup
n
||mn||(T ) =M (say) <∞. (18.21.2)

Then by Theorem 11.9(i)(b) and Remark 12.5 of [P12],

||Φ(ϕ)|| = sup
n
|un(ϕ)| = sup

n
|
∫

T

ϕdmn| ≤ ||ϕ||T ∙ sup
n
||mn||(T ) =M ||ϕ||T

and hence Φ is continuous.

Claim 1. Φ is weakly compact.

In fact, let H = {In,x∗ : x∗ ∈ X∗, |x∗| ≤ 1, n ∈ N!I}, where < In,x∗ , (xk)
∞
1 >= x∗(xn). Clearly,

H ⊂ (cX)∗ is a norm determining set for cX . The proof of Corollary II.5 in Appendix II of [T]
holds for complex spaces too and hence by the complex version of the said corollary, H has the
Orlicz property for (cX , || ∙ ||). Let Φ : C0(T ) → (cX , σ(cX ,H)) be designated as ΦH so that
ΦH(ϕ) = (un(ϕ))

∞
1 , ϕ ∈ C0(T ). Clearly, ΦH is continuous as σ(cX ,H) is weaker than the norm

topology of cX . Moreover,
< Φ∗In,x∗ , ϕ >=< In,x∗ ,Φ(ϕ) >=< In,x∗ , (uk(ϕ))

∞
1 >= x∗un(ϕ) =< u∗nx

∗, ϕ > for ϕ ∈ C0(T )
and hence

Φ∗In,x∗ = u
∗
nx
∗ (18.21.3)

for In,x∗ ∈ H.

On the other hand, by Theorem V.3.9 of [DS], (cX , σ(cX ,H))∗ =< H >⊂ (cX)∗ where < H >

is the linear span of H, and hence we have < Φ∗In,x∗ , ϕ >=< In,x∗ ,Φ(ϕ) >=< In,x∗ ,ΦH(ϕ) >=<
Φ∗HIn,x∗ , ϕ > for ϕ ∈ C0(T ) and hence Φ∗In,x∗ = Φ∗HIn,x∗ for each In,x∗ ∈ H. Then by (18.21.3)
we have

Φ∗HIn,x∗ = u
∗
nx
∗ (18.21.4)

for In,x∗ ∈ H. By hypothesis, given an open Baire set U in T there exists a vector xU =
(mn(U))

∞
1 ∈ cX . Then, as un is a weakly compact operator with the representing measure mn

by Lemma 18.19, for the open Baire set U in T with xU as above , we have < Φ∗∗H (χU ), In,x∗ >=<
χU ,Φ

∗
HIn,x∗ >=< χU , u

∗
nx
∗ >=< u∗∗n (χU ), x

∗ >=<mn(U), x
∗ >=< xU , In,x∗ >. Thus,

In,x∗Φ
∗∗
H (χU ) = In,x∗(xU ) (18.21.5)

for In,x∗ ∈ H. Then by (18.21.5) and by Theorem 18.17, Φ is weakly compact and hence the
claim holds.
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Let m̂ be the representing measure of Φ. Then by Theorem 2(ii) of [P5], m̂ has range in cX
so that m̂(A) = Φ∗∗(χA) ∈ cX for A ∈ B(T ) and let m̂(A) = (xn)∞1 ∈ cX . Then by (18.21.3) we
have x∗(xn) = In,x∗m̂(A) = In,x∗Φ∗∗(χA) =< Φ∗In,x∗ , χA >=< u∗nx

∗, χA >=< x∗, u∗∗n (χA) >=<
x∗,mn(A) > for In,x∗ ∈ H and hence x∗(xn) = (x∗ ◦mn)(A)) for x∗ ∈ X∗ and for A ∈ B(T ).
Then by the Hahn-Banach theorem, xn = mn(A) for all n and hence (mn(A))

∞
1 = m̂(A) ∈ cX .

This implies that limnmn(A) =m(A) (say) exists in X for each A ∈ B(T ). Then by VHSN (see
Proposition 2.4 of [P10]), m : B(T )→ X is σ-additive and hence ||m||(T ) <∞.

LetM0 = max(M, ||m||(T )) whereM is as in (18.21.2). Let f be a bounded B(T )-measurable
scalar function. Then there exists a sequence (sn) of Borel simple functions such that |sn| ↗ |f |
and ||sn − f ||T → 0 as n→∞. Thus, given ε > 0, there exists n0 such that

||sn0 − f ||T <
ε

3M0
. (18.21.6)

Let s = sn0 =
∑r
1 αiχAi , (Ai)

r
1 ⊂ B(T ). Then by (18.21.6) and by Theorem 11.9(i)(b) and

Remark 12.5 of [P12] we have

|
∫

T

fdmn −
∫

T

sdmn| ≤ ||f − s||T ∙ ||mn||(T ) <
ε

3
(18.21.7)

for all n and

|
∫

T

fdm−
∫

T

sdm| ≤ ||f − s||T ∙ ||m||(T ) <
ε

3
. (18.21.8)

As limnmn(Ai) =m(Ai) for i = 1, 2, ..., r, there exists n1 such that

|αi||mn(Ai)−m(Ai)| <
ε

3r
(18.21.9)

for n ≥ n1 and for i = 1, 2, ..., r. Then by (18.21.7), (18.21.8) and (18.21.9) we have

|
∫

T

fdmn −
∫

T

fdm| < ε

for n ≥ n1. Hence limn
∫
T fdmn =

∫
T fdm.

The converse is evident. The uniqueness of m is immediate from (18.21.1) if we take f = χA
with A ∈ B(T ).

Claim 2. m is Borel regular.

In fact, by Tehorem 6 of [P5], m̂ is Borel regular and hence, given A ∈ B(T ) and ε > 0, there
exist an open set U and a compact K in T such that K ⊂ A ⊂ U and ||m̂||(U\K) < ε.
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Since H is norm determining, arguing as in the proof of Proposition 10.12(iii) of [P12] we
have

ε > ||m̂||(U\K) = sup
n∈NI,x∗∈X∗,|x∗|≤1

v(In,x∗m̂)(U\K)

= sup
n∈NI,x∗∈X∗,|x∗|≤1

v(In,x∗(mn(U\K))
∞
1 )

= sup
n∈NI,x∗∈X∗,|x∗|≤1

v(x∗mn)(U\K)

= sup
n∈NI
||mn||(U\K)

and hence A is uniformly mn-regular (Borel regular) for n ∈ NI. Moreover,

m(U\K) = lim
n
mn(U\K)

and

||m||(U\K) = sup
|x∗|≤1

v(x∗ ◦m)(U\K)

= sup
|x∗|≤1

v(x∗ ◦ lim
n
mn)(U\K)

= sup
|x∗|≤1

v(lim
n
(x∗ ◦mn)(U\K)

≤ sup
n
||mn||(U\K)

and hence the claim holds.

This completes the proof of the theorem.

Remark 18.22. Unlike Theorem 18.6 the above result has nothing to do with the weak con-
vergence of (mn)

∞
1 since mn 6∈ M(T ) for n ∈ N. We also give in [P14] an improved version of

Theorem 2.12 of [T].

Theorem 18.23 (Generalization of Theorem 18.6 to sequentially complete lcHs-
valued σ-additive regular Borel measures). Let X be a sequentially complete lcHs and let
mn : B(T ) → X, n ∈ NI, be σ-additive and Borel regular. Then limnmn(U) ∈ X for each open
Baire set U in T if and only if there exists an X-valued σ-additive measure m on B(T ) such that

lim
n

∫

T

fdmn =

∫

T

fdm ∈ X

for each bounded B(T )-measurable scalar function f on T . In that case, m is Borel regular and
unique.

Proof. For each q ∈ Γ, let (mn)q = Πq ◦mn. Then (mn)q : B(T ) → Xq ⊂ X̃q is σ-additive
and Borel regular for each n ∈ NI. Suppose there exists xU ∈ X such that limnmn(U) = xU
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for each open Baire set U in T . Then limn(mn)q(U) = Πq(xU ) ∈ Xq ⊂ X̃q for each q ∈ Γ.
Then by Theorem 18.21 applied to (mn)q, n ∈ NI, there exists a Borel regular σ-additive measure
γq : B(T )→ X̃q such that

lim
n

∫

T

fd(mn)q =

∫

T

fdγq(∈ X̃q) (18.23.1)

for each bounded B(T )-measurable scalar function f on T . Then |(
∫
T fdmn−

∫
T fdmk)|q → 0 for

each q ∈ Γ and hence (
∫
T fdmn)

∞
1 is Cauchy in X. Consequently, as X is sequentially complete,

limnmn(A) = m(A) (say) exists in X, for each A ∈ B(T ). Clearly, m : B(T ) → X is additive.
Moreover, limn(mn)q(A) = (Πq ◦m)(A) for A ∈ B(T ) and for q ∈ Γ. But limn(mn)q(A) = γq(A)
by (18.23.1) for q ∈ Γ. Hence

(Πq ◦m)(A) = γq(A) (18.23.2)

for A ∈ B(T ).

Claim 1. m : B(T )→ X is σ-additive.

In fact, let (Ai)∞1 ⊂ B(T ) be a disjoint sequence. Given q ∈ Γ and ε > 0, there exists n0(q)
such that |γq(

⋃∞
1 Ai) −

∑n
1 γq(Ai)|q < ε for n ≥ n0(q), since γq is σ-additive on B(T ). Then

by (18.23.2) we have, |m(
⋃∞
1 Ai) −

∑n
1 m(Ai)|q = |(Πq ◦ m)(

⋃∞
1 Ai) −

∑n
1 (Πq ◦ m)(Ai)|q =

|γq(
⋃∞
1 Ai) −

∑n
1 γq(Ai)|q < ε for n ≥ n0(q). Then, as q ∈ Γ is arbitrary, it follows that

m(
⋃∞
1 (Ai) =

∑∞
1 m(Ai) and hence the claim holds.

Then by Theorem 11.9’ in Remark 12.11 of [P12], each bounded Borel function f is m-
integrable in T . Now, for q ∈ Γ, by (18.23.1) and (18.23.2), by Claim 1 and by Remark 12.5’
(see Remark 12.11 of [P12]) and Theorem 11.8(v) of [P12], we have |

∫
T fdmn −

∫
T fdm|q =

|Πq(
∫
T fdmn−

∫
T fdm)|q = |

∫
T fd(Πq ◦mn)−

∫
T fd(Πq ◦m)|q = |

∫
T fd(mn)q−

∫
T fd(γq)|q → 0

as n→∞. Hence limn
∫
T fdmn =

∫
T fdm and therefore, the condition is necessary.

Evidently, the condition is also sufficient. The uniqueness ofm is immediate from the equality

lim
n

∫

T

fdmn =

∫

T

fdm

by taking f = χA with A ∈ B(T ). m is Borel regular as Πq ◦m = γq for q ∈ Γ by (18.23.2) and
as γq is Borel regular for each q ∈ Γ. Hence the theorem holds.

Remark 18.24. Only the Banach space version of Theorem 18.17 which is deduced from The-
orem 18.16 is used in the proof of Theorem 18.21. However, Theorem 18.16 in its generality
is needed in the proof of Theorem 22.8 of [P13] which improves Theorem 12.2 of [P12] when
P = δ(C), m is δ(C)-regular and σ-additive and X is a complete lcHs. Theorem 18.14 is used in
the proof of Theorem 22.4 of [P13] which strengthens Theorem 4.2 of [P10] when P and m are
as above and m is Banach space-valued.
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19. WEAKLY COMPACT AND PROLONGABLE RADON OPERATORS

Notation 19.1. Cc(T ) always denoted the normed space (Cc(T ), || ∙ ||T ). For C ∈ C, let
Cc(T,C) = {f ∈ Cc(T ) : supp f ⊂ C} and let IC : Cc(T,C) ↪→ Cc(T ) be the canonical in-
jection. Let ξ be the inductive limit locally convex topology on Cc(T ) induced by the family
{Cc(T,C), IC}, where Cc(T,C) are provided with the topology τu of uniform convergence. Then
we denote (Cc(T ), ξ) by K(T ). It is well known that K(T ) is an lcHs and K(T )∗ denotes the
topological dual of K(T ). See §1, Ch. III of [B].

For the convenience of the reader, let us recall the following notation given in the end of
Notation 18.1.

Notation 19.2. V denotes the family of all relatively compact open sets in T .

In this section, following Thomas [T], we introduce the notions of weakly compact and pro-
longable Radon operators on K(T ) with values in a quasicomplete lcHs and using the results of
[P5] and those of Section 18 above, we give several characterizations of weakly compact Radon
operators which are not included in [P5].

Definition 19.3. Let X be an lcHs and let u : K(T ) → X be a continuous linear map-
ping. This means, for each C ∈ C and q ∈ Γ, there exists a finite constant MC,q such that
|u(ϕ)|q ≤ MC,q||ϕ||T for all ϕ ∈ Cc(T,C). Such a mapping u is called an X-valued Radon oper-
ator on K(T ). (Thomas calls it an X-valued Radon measure in [T].)

Theorem 19.4 (Integral representation of Radon operators). Let X be a quasicom-
plete lcHs and let u : K(T ) → X be a Radon operator. Then there exists a vector measure
m : δ(C)→ X∗∗ such that (i) x∗ ◦m : δ(C)→ KI is σ-additive and δ(C)-regular for each x∗ ∈ X∗;
(ii) {m(A) : A ∈ B(V )} is τe-bounded in X∗∗ (see Notation and Terminology 18.10) for each
V ∈ V and (iii) for each ϕ ∈ Cc(T ), u(ϕ) =

∫
T ϕdm (in the sense of Definition 1 of [P3]), where

X is identified as a subspace of (X∗∗, τe). Finally, (i)-(iii) determine m uniquely.

Proof. Let V ∈ V and let uV = u|Cc(V ). Let q ∈ Γ. For ϕ ∈ Cc(V ), suppϕ ⊂ V̄ ∈ C and
hence |uV (ϕ)|q = |u(ϕ)|q ≤ MV̄ ,q||ϕ||T so that uV is continuous. As X is sequentially complete,
uV has a unique continuous linear extension ũV to the whole of C0(V ) with values in X. Then
by Theorem 1 of [P5], ũV has the representing measure mV (as an additive set function) on B(V )
with values in X∗∗ and mV (A) = ũV

∗∗(χA) = u∗∗V (χA) for A ∈ B(V ); x
∗ ◦mV : B(V ) → KI

is σ-additive and B(V )-regular for x∗ ∈ X∗, the mapping x∗ → x∗ ◦mV of X∗ into M(V ) is
weak*-weak* continuous,

x∗uV (ϕ) =

∫

T

ϕd(x∗ ◦mV ) (19.4.1)

for ϕ ∈ C0(V ) and for x∗ ∈ X∗, and {mV (A) : A ∈ B(V )} is τe-bounded in X∗∗.
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Let A ∈ δ(C). Then there exists V ∈ V such that A ⊂ V . Let U be the family of open sets
in T and UV be that of all open sets in V . Then by Lemma 18.2, A ∈ B(T ) and by Theorem
5.E of [H], A ∈ σ(U)∩V = σ(U∩V ) = σ(UV ) = B(V ) and hence A ∈ B(V ). Letm(A) =mV (A).

Claim 1. m : δ(C)→ X∗∗ is a well defined, vector measure (i.e., an additive set function).

In fact, let A ∈ δ(C) and let V1, V2 ∈ V such that A ⊂ V1 ∩ V2. Then A ∈ B(Vi) and
the continuous linear mapping ũVi has the representing measure mVi for i = 1, 2. Clearly,
A ∈ B(V1 ∩ V2) and for ϕ ∈ Cc(V1 ∩ V2), x∗uV1(ϕ) = x∗uV2(ϕ) = x∗u(ϕ) = x∗uV1∩V2(ϕ) for
x∗ ∈ X∗ and hence by (19.4.1) we have

∫

T

ϕd(x∗ ◦mV1) =

∫

T

ϕd(x∗ ◦mV2) =

∫

T

ϕd(x∗ ◦mV1∩V2) (19.4.2)

for x∗ ∈ X∗. As x∗ ◦mV1∩V2 , (x
∗ ◦mV1)|B(V1∩V2) and (x

∗ ◦mV2)|B(V1∩V2) belong toM(V1∩V2), by
(19.4.2) and by the uniqueness part of the Riesz representation theorem we have (x∗ ◦mV1)(A) =
(x∗ ◦mV2)(A) = (x

∗ ◦mV1∩V2)(A) for x
∗ ∈ X∗. As mV1(A), mV2(A) and mV1∩V2(A) belong to

X∗∗, we conclude that mV1(A) = mV2(A) = mV1∩V2(A). Hence m is well defined. Moreover, let
A1, A2 ∈ δ(C) with A1 ∩A2 = ∅. Let V ∈ V such that A1 ∪A2 ⊂ V . Then, as mV is additive on
B(V ), we have m(A1 ∪A2) =mV (A1 ∪A2) =mV (A1) +mV (A2) =m(A1) +m(A2) and hence
m is additive. Therefore, Claim 1 holds.

Claim 2. x∗ ◦m is σ-additive on δ(C) for each x∗ ∈ X∗.

In fact, let (Ai)∞1 ⊂ δ(C), Ai ∩ Aj = ∅ for i 6= j and A =
⋃∞
1 Ai ∈ δ(C). Then there

exists V ∈ V such that A ⊂ V so that A, (Ai)∞1 ⊂ B(V ). Then x
∗ ◦m(A) = x∗ ◦mV (A) =∑∞

1 x
∗ ◦mV (Ai) =

∑∞
1 x

∗ ◦m(Ai) for x∗ ∈ X∗. Hence Claim 2 holds.

Claim 3. x∗ ◦m is δ(C)-regular for x∗ ∈ X∗.

In fact, let A ∈ δ(C) and ε > 0. Choose V ∈ V such that A ⊂ V . Then by the B(V )-
regularity of x∗ ◦ mV there exist K ∈ C and a set U open in V such that K ⊂ A ⊂ U and
such that v(x∗ ◦mV ,B(V ))(U\K) < ε. Then U is also open in T . As m|B(V ) = mV , and as
v(x∗ ◦m, δ(C))(U\K) = v(x∗ ◦m,B(V ))(U\K) = v(x∗ ◦mV ,B(V ))(U\K) < ε, Claim 3 holds.

By the above claims, m verifies (i) of the theorem. Since {m(A) : A ∈ B(V )} = {mV (A) :
A ∈ B(V )}, (ii) of the theorem also holds.

Let ϕ ∈ Cc(T ) and let suppϕ = K. Then choose V ∈ V such that K ⊂ V . As ϕ is a bounded
B(V )-measurable function and as mV is an X∗∗-valued τe-bounded vector measure on B(V ), by
the proof of Proposition 18.11 above, ϕ is not only mV -integrable in the sense of Definition 1 of
[P3], but also u(ϕ) = uV (ϕ) =

∫
T ϕdmV , considering X as a subspace of (X∗∗, τe). Moreover,

as mV = m|B(V ) and as ϕ ∈ Cc(V ), we conclude that u(ϕ) =
∫
T ϕdm, for ϕ ∈ Cc(T ). Thus m
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verifies (iii) of the theorem.

To prove the uniqueness of m, if possible let n be another X∗∗-valued vector measure on δ(C)
such that (i)-(iii) hold for n. Then as x∗ ∈ X∗ is continuous on (X∗∗, τe), by Lemma 6 of [P3]
and by (iii) we have

x∗u(ϕ) =

∫

T

ϕd(x∗ ◦m) =
∫

T

ϕd(x∗ ◦ n) (19.4.3)

for ϕ ∈ Cc(T ) and for x∗ ∈ X∗. Let V ∈ V . As (19.4.3) holds for all ϕ ∈ Cc(V ), by the uniqueness
part of the Riesz representation theorem we have (x∗◦n)|B(V ) = (x

∗◦m)|B(V ) for x
∗ ∈ X∗. Hence

n(A) =m(A) for A ∈ B(V ). Since δ(C) =
⋃
V ∈V B(V ), it follows that n =m. Hencem is unique.

The following definition is suggested by Theorem 19.4.

Definition 19.5. Let X be a quasicomplete lcHs and let u : K(T )→ X be a Radon operator.
The unique X∗∗-valued vector measure m on δ(C) satisfying (i)-(iii) of Theorem 19.4 is called the
representing measure of u.

Following Thomas [T] we give the following definition.

Definition 19.6. Let X be a quasicomplete lcHs. A linear mapping u : K(T )→ X is called
a weakly compact Radon operator if u is continuous on Cc(T ) for the topology of uniform con-
vergence (i.e. for the topology induced by || ∙ ||T ) and if its continuous extension to (C0(T ), || ∙ ||T )
is weakly compact.

In the light of the above definition, weakly compact Radon operators on K(T ) can be consid-
ered as weakly compact operators on (C0(T ), || ∙ ||T ), and [P5] gives 35 characterizations of these
operators. An alternative proof based on the Borel extension theorem is given in [P9] to obtain
the said characterizations. The reader may also refer to [P8] for a simple proof of many of these
characterizations where 3 new characterizations are also given. The following theorem gives some
more characterizations of these operators when the lcHs X satisfies some additional hypothesis
and these are suggested by [T]. See also Theorems 19.14 and 19.15 for further characterizations
of these operators.

Theorem 19.7. Let X be a quasicomplete lcHs with topology τ and let u : C0(T )→ X be
a continuous linear mapping. Then:

(i) u is weakly compact if and only if , for each uniformly bounded sequence (ϕn)∞1 ⊂ C0(T )
with ϕn(t)→ 0 for t ∈ T , u(ϕn)→ 0 in X.

(ii) Let H ⊂ X∗ have the Orlicz property and let τ be identical with the topology of uniform
convergence in equicontinuous subsets of H. Let m be the representing measure of u in the
sense of Definition 4 of [P5]. Then the following statements are equivalent.
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(a) u is weakly compact.

(b) For each open set U in T there exists a vector xU ∈ X such that (x∗ ◦m)(U) = x∗(xU )
for each x∗ ∈ H.

(c) Similar to (b) with U σ-Borel open sets in T .

(d) Similar to (b) with U open Baire sets in T .

(e) Similar to (b) with U σ-compact open sets in T .

(f) Similar to (b) with U open and Fσ in T .

(g) For each closed set F in T there exists a vector xF ∈ X such that (x∗◦m)(F ) = x∗(xF )
for each x∗ ∈ H.

(h) Similar to (g) with F closed Gδs in T .

Proof. (i) Let m be the representing measure of u. Then by Theorem 1 of [P5], u∗x∗ = x∗ ◦m for
x∗ ∈ X∗ and x∗u(ϕ) =

∫
T ϕd(x

∗ ◦m) for ϕ ∈ C0(T ). Let (ϕn)∞1 ⊂ C0(T ) be uniformly bounded
and let ϕn(t) → 0 for t ∈ T . Then u(ϕn) → 0 if and only if qE(u(ϕn)) = supx∗∈E |x

∗u(ϕn)| =
supx∗∈E |

∫
T ϕnd(x

∗ ◦m)| = supμ∈u∗E |
∫
T ϕndμ| → 0 as n→∞ for each equicontinuous set E in

X∗ since the topology τ of X is the same as that of uniform convergence in the equicontinuous
subsets of X∗. As u∗E is bounded by Lemma 2 of [P5], by Theorem 2 of [G] the above condition
holds if and only if u∗E is relatively weakly compact in M(T ) and hence by Proposition 4 of [P5]
or by Corollary 9.3.7 of [E], if and only if u is weakly compact. Hence (i) holds.

(ii) By Theorem 2 of [P5], (a)⇒(b)⇒(c)⇒(d) and by Theorem 18.16, (d) implies (a). By
Lemma 18.3, (d)⇔(e). Clearly, (f)⇒(e) and (b)⇒(f). Hence (a)-(f) are equivalent.

(b)⇒(g) In fact, let F be a closed set in T . Let U = T\F . Then by (b) there exist vectors
xU , xT ∈ X such that x∗(xU ) = (x∗ ◦ m)(U) and x∗(xT ) = (x∗ ◦ m)(T ) for x∗ ∈ H. Then
(x∗ ◦m)(F ) = x∗(xT − xU ) for x∗ ∈ H and hence (g) holds. Similarly, (g) implies (b) as T is
closed and as F = T\U is closed for an open set U in T .

By taking complements, we see that (h) and (f) are equivalent.

Hence the theorem holds.

Following Thomas [T] we give the following definition and its equivalence with Definition 3.1
of [T] will be proved in [P14].

Definition 19.8. Let X be a quasicomplete lcHs and let u : K(T )→ X be a Radon operator.
Then u is said to be prolongable if, for each V ∈ V , the continuous linear extension ũV to C0(V )
of the continuous linear map uV = u|Cc(V ) is weakly compact.

The weakly compact Radon operators in Definition 19.6 and prolongable Radon operators in
Definition 19.8 are called respectively weakly compact bounded Radon measures and prolongable
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Radon measures in [T].

We can strengthen Theorem 19.4 as below when the Radon operator is prolongable.

Theorem 19.9 (Integral representation of prolongable Radon operators). Let X be
a quasicomplete lcHs and let u : K(T ) → X be a prolongable Radon operator. Then the repre-
senting measurem of u as in Definition 19.5 is X-valued, σ-additive and δ(C)-regular (considering
X as a subspace of (X∗∗, τe)) and

u(ϕ) =

∫

T

ϕdm, ϕ ∈ K(T ) (19.9.1)

where the integral is a (BDS)-integral.

Conversely, if m is an X-valued σ-additive δ(C)-regular measure on δ(C), then the mapping
u : K(T ) → X given by u(ϕ) =

∫
T ϕdm, ϕ ∈ K(T ) (the integral being a (BDS)-integral), is a

prolongable Radon operator. Moreover, the representing measure of u is m.

Proof. Let u be prolongable. Then by Theorem 19.4 there exists a unique X∗∗-valued vec-
tor measure m on δ(C) such that x∗ ◦ m is σ-additive and δ(C)-regular for each x∗ ∈ X∗;
u(ϕ) =

∫
T ϕdm for ϕ ∈ K(T ) in the sense of Definition 1 of [P3] and {m(A) : A ∈ B(V )}

is τe-bounded for each V ∈ V . Let V ∈ V and let mV = m|B(V ). Then, from the proof of
Theorem 19.4 we note that mV is the representing measure of the continuous linear map ũV on
(C0(V ), || ∙ ||T ) (in the sense of Definition 4 of [P5]) and by hypothesis, ũV : C0(V )→ X is weakly
compact. Then by Theorem 2 of [P5], mV is σ-additive on B(V ) and has range in X and by
Theorem 6 of [P5], mV is B(V )-regular. Since V is arbitrary in V and since δ(C) =

⋃
V ∈V B(V ),

we conclude that m is σ-additive on δ(C), is δ(C)-regular and has range in X. Let ϕ ∈ K(T ) with
suppϕ ⊂ K ∈ C. Let V ∈ V such that K ⊂ V . Then ϕ ∈ Cc(V ) ⊂ C0(V ) and mV = m|B(V ) is
σ-additive and X-valued. Then by Lemma 18.19,

∫
T ϕdm =

∫
V ϕdmV is a (BDS)-integral.

Conversely, let m : δ(C) → X be σ-additive and δ(C)-regular. Let τ be the topology of X.
If V ∈ V , then mV = m|B(V ) is σ-additive, B(V )-regular and X-valued. Let u : K(T ) → X be
given by u(ϕ) =

∫
T ϕdm for ϕ ∈ K(T ) where the integral is a (BDS)-integral. Then by Theo-

rem 11.9(i)(b) and Remark 12.5 of [P12], u is a continuous linear map. Let U ∈ V . Then by
Theorem 50.D of [H], there exists W ∈ V such that Ū ⊂ W and hence C0(U) ⊂ Cc(W ). Then
mW = m|B(W ) is X-valued and σ-additive in τ and hence by Lemma 18.19, ũW : C0(W ) → X

given by ũW (ϕ) =
∫
W ϕdmW is weakly compact and hence ũU = ũW |C0(U) is weakly compact.

Hence u is prolongable. Clearly, m satisfies (i) of Theorem 19.4. Since m|B(V ) is σ-additive, (ii)
of Theorem 19.4 also holds since τ = τe|X . By Lemma 18.19, the (BDS)-integral

∫
T ϕdm for

ϕ ∈ K(T ) is the same as the integral in the sense of Definition 1 of [P3], noting that τ = τe|X
when X is considered as a subspace of (X∗∗, τe). Hence m is the representing measure of u.

Corollary 19.10. A linear functional θ belongs to K(T )∗ (resp. K(T )∗b (see [P2])) if and
only if θ : K(T ) → KI is a prolongable (resp. weakly compact) Radon operator. In that case, its
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representing measure mθ is the same as the complex Radon measure μθ induced by θ in the sense
of Definition 4.3 of [P1].

Thus prolongable (resp. weakly compact) Radon operators on K(T ) with values in a quasi-
complete lcHs generalize complex measures (resp. bounded complex measures) in the sense of [B].

Theorem 19.11. Let X and Y be quasicomplete lcHs over KI. Let u : K(T ) → X be a
prolongable (resp. weakly compact) Radon operator and let v : X → Y be a continuous linear
mapping. Then:

(i) v ◦ u : K(T )→ Y is a prolongable (resp. weakly compact ) Radon operator.

(ii) mv◦u(A) = v(mu(A)) for A ∈ δ(C) (resp. for A ∈ B(T )), where mu and mv◦u are the
representing measures of u and v ◦ u, respectively.

(iii) If f ∈ L1(mu), then f ∈ L1(mv◦u) and
∫
A fdmv◦u = v(

∫
A fdmu) for A ∈ Bc(T ) (resp. for

A ∈ B(T )).

Proof. (i) If w is a weakly compact operator with range in X, then it is well known that v ◦w
is weakly compact. This result is used to prove (i).

(ii) Let u be prolongable and let V ∈ V . Then ũV : C0(V ) → X is weakly compact and
its representing measure (mu)V on B(V ) has range in X and is given by (mu)V = ũV

∗∗|B(V ) =
u∗∗V |B(V ). Let A ∈ δ(C) and choose V ∈ V such that A ⊂ V . Then (mu)V (A) = u∗∗V (χA) and
(v ◦ uV )∗∗(χA) = (mv◦u)V (A). Hence mv◦u(A) = (mv◦u)V (A) = (v ◦ uV )∗∗(χA) = v∗∗u∗∗V (χA) =
v∗∗(mu)V (A) = v∗∗mu(A) = v ◦mu(A) as mu(A) ∈ X and v∗∗|X = v. Similar argument holds
when u is a weakly compact Radon operator.

(iii) Let f ∈ L1(mu). Then by Theorem 11.8(v) and Remark 12.5 of [P12], f ∈ L1(v ◦mu)
and

∫
A fd(v ◦mu) = v(

∫
A fdmu) for A ∈ Bc(T ) (resp. for A ∈ B(T )) if u is a prolongable (resp.

weakly compact) Radon operator. As mv◦u = v ◦mu by (ii), (iii) holds.

The following theorem gives 24 characterizations for a Radon operator to be prolongable and
[P5] plays a key role in the proof of the theorem. For the different concepts of regularity used in
the following theorem see Definition 5 of [P5].

Theorem 19.12. Let X be a quasicomplete lcHs and let u : K(T )→ X be a Radon operator.
Let m : δ(C) → X∗∗ be the representing measure of u and let m0 = m|δ(C0). Let us consider X
as a subspace of (X∗∗, τe). Then the following statements are equivalent:

(1) u is prolongable.

(2) m has range in X.

(3) m is σ-additive in the topology τe of X∗∗.
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(4) m(V ) ∈ X for each V ∈ V .

(5) m(V ) ∈ X for each V ∈ V ∩ B0(T ).

(6) m(K) ∈ X for each K ∈ C.

(7) m(K) ∈ X for each K ∈ C0.

(8) For each U ∈ V and for each increasing sequence (fn)∞1 ⊂ C0(U) with 0 ≤ fn ≤ 1 in U for
all n, (ufn) converges weakly in X.

(9) Similar to (8) with U ∈ V ∩ B0(T ).

(10) m0 is σ-additive in τe.

(11) m0 has range in X.

(12) m is δ(C)-regular (in τe).

(13) m is δ(C)-inner regular (in τe).

(14) m is δ(C)-inner regular (in τe) in V .

(15) m is δ(C)-outer regular (in τe) in each K ∈ C.

(16) m0 is δ(C0)-regular (in τe).

(17) m0 is δ(C0)-inner regular (in τe).

(18) m0 is δ(C0)-inner regular (in τe) in each open set U ∈ δ(C0).

(19) m0 is δ(C0)-outer regular (in τe) in each K ∈ C0.

(20) All bounded Borel measurable functions f on T with compact support (equivalently, all
bounded σ-Borel measurable functions f on T with compact support) are m-integrable in
T (in the sense of Definition 3 of [P5]) and

∫
T fdm ∈ X.

(21) All bounded Baire measurable functions f on T with compact support are m0-integrable
in T (in the sense of Definition 3 of [P5]) and

∫
T fdm0 ∈ X.

(22) All bounded functions f on T belonging to the first Baire class with compact support are
m-integrable in T (in the sense of Definition 3 of [P5]) and

∫
T fdm ∈ X.

(23) u∗∗V f ∈ X for all bounded functions f on T belonging to the first Baire class with compact
support, the support being contained in V ∈ V .

(24) For every uniformly bounded sequence (ϕn) of continuous functions vanishing in T\K for
some K ∈ C (equivalently, by Urysohn’s lemma for every sequence (ϕn) of continuous
functions dominated by a member of K(T )) with limn ϕn(t) = 0 for each t ∈ T , limn u(ϕn) =
0.
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Proof. For V ∈ V , let uV = u|(Cc(V ),||∙||T ). As uV is continuous, it has a unique continuous linear
extension ũV to C0(V ). If mV is the representing measure of ũV on B(V ) as in Definition 4 of
[P5], then from the proof of Theorem 19.4 it is clear that mV =m|B(V ).

(1)⇔(2)(resp. (1)⇔(3)) By Theorem 2 of [P5], the range of mV is contained in X (resp. mV

is σ-additive on B(V ) in τe) if and only if ũV is weakly compact. Since δ(C) =
⋃
V ∈V B(V ), it

follows that m has range in X (resp. m is σ-additive in τe) if and only if mV (B(V )) ⊂ X (resp.
mV is σ-additive on B(V ) in τe) for each V ∈ V and hence if and only if ũV is weakly compact
for each V ∈ V . Hence the result holds.

Clearly, (2)⇒(4)⇒(5).

(5)⇒(1)

Claim 1. B0(T ) is the σ-ring generated by all relatively compact open Baire sets in T .

In fact, given C ∈ C0, by Theorem 50.D of [H] and by Lemma 18.3, there exists a relatively
compact open Baire set U in T such that C ⊂ U . Then C = U\(U\C) and hence the claim holds.

Let V ∈ V . Then by Lemma 18.3 and Claim 1 above, B0(V ) is the σ-ring generated by
UV = {U : Uopen inV,U ∈ B0(V )} = {U : U open inV, U =

⋃∞
1 Fn, Fn compact inV }. Since

V is open in T , U ∈ UV if and only if U ⊂ V and U is open and σ-compact in T and hence
by Lemma 18.3, U ∈ UV if and only if U ⊂ V and U is an open Baire set in T . Hence
UV = {U ∈ V ∩ B0(T ) : U ⊂ V }. Then by hypothesis (5), mV (U) ∈ X for all open sets
U ∈ B0(V ) and hence by Theorem 3(vii) of [P5], ũV is weakly compact. Therefore, (1) holds.

(4)⇒(6) Given K ∈ C, by Theorem 50.D of [H] there exists an open set V ∈ V such that
K ⊂ V . Then, as K = V \(V \K), by hypothesis we have m(K) =m(V )−m(V \K) ∈ X.

(6)⇒(7) Obvious.

(7)⇒(5) Let V ∈ V ∩ B0(T ). Then as V is a relatively compact open Baire set in T , by
Theorem 50.D of [H] there exists K ∈ C0 such that V ⊂ K. Then again by Theorem 50.D of [H]
and by Lemma 18.3, there exists a relatively compact open Baire set U in T such that K ⊂ U .
Then V = K\(K\V ) and K\V ∈ C0 by Theorem 51.D of [H]. Then by hypothesis, m(V ) ∈ X.

(1)⇒(8) Let U ∈ V . Then by (1), ũU : C0(U) → X is weakly compact, and by hypothesis,
fn ↗, 0 ≤ fn ≤ 1 in U and (fn)∞1 ⊂ C0(U). Then by Theorem 3(xi) of [P5], (ufn) = (ũUfn)
converges weakly in X and hence (8) holds.

(8)⇒(9) Obvious.
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(9)⇒(1) Let V ∈ V∩B0(T ). Let (fn) be an increasing sequence in C0(V ) such that 0 ≤ fn ≤ 1
in V for n ∈ NI. Then by (9), (ũV fn) = u(fn) converges weakly in X. Then by Theorem 3(xi) of
[P5], ũV is weakly compact. Now let U ∈ V . Then by Theorem 50.D of [H] and by Lemma 18.3
there exists V ∈ V ∩B0(T ) such that Ū ⊂ V and hence ũU = ũV |C0(U) is weakly compact. Hence
(1) holds.

(3)⇒(10) Obvious.

(10)⇒(1) Let U0 be the family of all open Baire sets in T . Let V ∈ B0(T ) ∩ V . As seen
in the proof of ‘(5)⇒(1)’, B0(V ) is the σ-ring generated by {U ∈ U0 : U ⊂ V } and hence
B0(V ) = σ(U0 ∩V ) = σ(U0)∩V = B0(T )∩V ⊂ δ(C0) by Theorem 5.E of [H] and by Lemma 18.2
above. Then by hypothesis, m0|B0(V ) is σ-additive on B0(V ) in τe and hence by Theorem 4(xiii)
of [P5], ũV is weakly compact. Now if W ∈ V , then by Theorem 50.D of [H] and by Lemma 18.3
above, there exists V ∈ B0(T ) ∩ V such that W̄ ⊂ V and consequently, Cc(W ) ⊂ C0(V ). Then
ũW = ũV |C0(W ) is weakly compact and hence (1) holds.

(2)⇒(11) Obvious.

(11)⇒(1) Arguing as in the proof of ‘(10)→(1)’and using Theorem 4(xv) of [P5] instead of
Theorem 4(xiii) of [P5], we observe that ũV is weakly compact for each V ∈ V ∩ B0(T ). Then
arguing as in the last part of the proof of ‘(10)⇒(1)’, we can show that ũW is weakly compact
for each W ∈ V and hence (1) holds.

(1)⇒(12) Let A ∈ δ(C). Then there exists V ∈ V such that A ⊂ V . By (1), ũV : C0(V )→ X

is weakly compact and hence by Theorem 6(xix) of [P5], mV is B(V )-regular. As A ∈ B(V ), given
ε > 0 and q ∈ Γ, by the regularity of mV and by Proposition 2.2 of [P10] there exist K ∈ C and a
set U open in V such that K ⊂ A ⊂ V and such that ||mV ||q(V \K) < ε. Hence ||m||q(V \K) < ε

since mV =m|B(V ). As V is open in T and as V ∈ δ(C) by Lemma 18.2 , (12) holds.

(12)⇒(13)⇒(14) Obvious.

(14)⇒(1) Let V ∈ V . Then by (14), mV is B(V )-inner regular in each open set in V and
hence by Theorem 6(xxi) of [P5], ũV is weakly compact. Hence (1) holds.

(1)⇒(15) Let K ∈ C. Then by Theorem 50.D of [H] there exists V ∈ V such that K ⊂ V

and (1) implies that ũV is weakly compact. Consequently, given q ∈ Γ and ε > 0, by Theorem
6(xxii) of [P5] and by Proposition 2.2 of [P10] there exists a set U open in V such that K ⊂ U

and such that ||mV ||q(U\K) < ε. Hence ||m||q(U\K) < ε with U open in T and U ∈ δ(C) by
Lemma 18.2. Hence (15) holds.

(15)⇒(19) Let K ∈ C0. Given q ∈ Γ and ε > 0, by (15) there exists U open in T with
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U ∈ δ(C) such that K ⊂ U and ||m||q(U\K) < ε. Then by Theorem 50.D of [H] and by Lemma
18.3 above, there exists an open Baire set V in T such that K ⊂ V ⊂ U . Clearly, by Lemma 18.2
above, V ∈ δ(C0) and ||m||q(V \K) < ε. Hence (19) holds.

(19)⇒(7) Let K ∈ C0. Then by Theorem 50.D of [H] and by Lemma 18.3 above there exists

V ∈ B0(T )∩V such thatK ⊂ V . Let q ∈ Γ. Then by (19), for each n ∈ NI, there exists V
(q)
n ∈ δ(C0)

such that K ⊂ V
(q)
n ⊂ V , V (q)n open in V and ||mV ||q(V

(q)
n \K) < 1

n . By Urysohn’s lemma there

exists ϕ(q)n ∈ Cc(V
(q)
n ) such that ϕ

(q)
n |K = 1 and 0 ≤ ϕ

(q)
n ≤ 1 in V

(q)
n , n ∈ NI. Since ϕ(q)n ∈ Cc(V ),

by Theorem 19.4 we have u(ϕ(q)n ) = uV (ϕ
(q)
n ) =

∫
T ϕ
(q)
n dmV . Then by Lemma 6(ii) of [P3] we have

||u(ϕ(q)n ) −mV (K)||q = ||
∫
T (ϕ

(q)
n − χK)dmV ||q = ||

∫
V
(q)
n \K

ϕ
(q)
n dmV ||q ≤ ||mV ||q(V

(q)
n \K) < 1

n

for each n. Thus, Πq(m(K)) = Πq(mV (K)) = limnΠq(u(ϕ
(q)
n )) ∈ X̃q. i.e.,

∫
T χKdmq ∈ X̃q for

each q ∈ Γ. Then by Definition 12.1 of [P12], χK is m-integrable in T and

m(K) = (BDS)
∫

T

χKdm = lim
←−

∫

T

χKdmq.

Then, as X is quasicomplete, by Theorem 12.3 of [P12], m(K) ∈ X and hence (7) holds.

(1)⇒(16) Let A ∈ δ(C0), q ∈ Γ and ε > 0. Then as in the proof of ‘(19)⇒(7)’there exists
V ∈ V ∩ B0(T ) such that A ⊂ V . As ũV is weakly compact, by Theorem 8(xxvii) of [P5] and
by Proposition 2.2 of [P10] there exist K ∈ C0 and an open set U in T belonging to B0(V )
such that K ⊂ A ⊂ U and ||mV ||q(U\K) < ε. From the proof of ‘(5)⇒(1)’, we note that
U ∈ B0(T ) ∩ V ⊂ δ(C0) (by Lemma 18.2) and hence m0 is δ(C0)-regular.

(16)⇒(17)⇒(18) Obvious.

(18)⇒(1) Let V be a relatively compact open Baire set in T . Then V ∈ B0(V ) since it is
shown in the proof of ‘(5)⇒(1)’ that the open Baire sets in B0(V ) are precisely the open Baire
sets in T which are contained in V . Then the hypothesis implies that m0 is B0(V )-inner regular
in each open Baire set in V and hence particularly in V . Therefore, by Theorem 8(xxix) of [P5],
ũV is weakly compact. Then, given U ∈ V , arguing as in the last part of the proof of ‘(10)⇒(1)’,
we can show that ũU is weakly compact. Hence (1) holds.

(1)⇒(20) Let f be a bounded Borel measurable function on T with support K ∈ C. Then by
Lemma 18.2, N(f) ∈ δ(C) and N(f) ∩ f−1(U) ∈ δ(C) ⊂ Bc(T ) for open sets U in KI. Hence f is
Bc(T )-measurable. Clearly, Bc(T )-measurable functions are Borel measurable. Let V ∈ V such
thatK ⊂ V . Let U be the family of open sets in T . U∩V is the family of open sets in V and hence
by Theorem 5.E of [H], B(V ) = σ(U ∩ V ) = σ(U)∩ V = B(T )∩ V . Since f is Bc(T )-measurable,
f−1(U) ∩ N(f) ∈ Bc(T ) ⊂ B(T ) for U open in KI and clearly, f−1(U) ∩ N(f) ⊂ V . Hence
f−1(U)∩N(f)∩V = f−1(U)∩N(f) and hence f is B(V )-measurable. By (1), ũV is weakly com-
pact. Then by Theorem 9(xxxi) of [P5], f is mV -integrable in T and

∫
T fdm =

∫
T fdmV ∈ X.

(See Definition 3 of [P5] and note that {mV (A) : A ∈ B(V )} = {m(A) : A ∈ B(V )} is τe-bounded
in X∗∗.) Hence (20) holds.
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(20)⇒(21)⇒(22) Obvious.

(22)⇒(5) Let U ∈ V ∩ B0(T ). Then by Lemma 18.3 there exists (Kn)
∞
1 ⊂ C such that

Kn ↗ U . Then by an argument based on Urysohn’s lemma there exists (fn)∞1 ⊂ Cc(U) such
that fn ↗ χU in T . Hence χU belongs to the first Baire class, and clearly has compact support.
Then by hypothesis, m(U) ∈ X and hence (5) holds.

(22)⇒(23) Each bounded function f belonging to the first Baire class is Baire measurable.
Moerover, let f have compact support K and choose V ∈ V such that K ⊂ V . Then by
Definition 19.3, uV : Cc(V ) → X is continuous and hence has continuous extension ũV on
C0(V ). Then m0(A) = mV (A) = u∗∗V (χA) for A ∈ B0(V ). Then x∗ ◦ uV ∈ K(V )∗b and
<
∫
T fd(m0)V , x

∗ >=
∫
T fd(x

∗ ◦ (m0)V ) =
∫
T fd(u

∗
V x
∗) =< f, u∗V x

∗ >=< u∗∗V f, x
∗ > for

x∗ ∈ X∗. Hence u∗∗V f =
∫
T fd(m0)V =

∫
T fdm ∈ X. Thus (23) holds.

(23)⇒(5) As seen in the proof of ‘(22)⇒(5)’, χV belongs to the first Baire class for each
V ∈ V ∩ B0(T ) and has compact support. Then by (23), m(V ) = mV (V ) = u∗∗V (χV ) ∈ X and
hence (5) holds.

(1)⇒(24) Let (ϕn)∞1 satisfy the hypothesis so that supn ||ϕn||T =M (say ) <∞, there exists
K ∈ C such that ϕn(t) = 0 for t ∈ T\K and for all n and limn ϕn(t) = 0 for t ∈ T . Let V ∈ V
with K ⊂ V . Then (ϕn)∞1 ⊂ C0(V ) and by (1), ũV is weakly compact. Then by Theorem 19.7(i),
u(ϕn) = ũV (ϕn)→ 0 in X.

(24)⇒(1) Let V ∈ V . Let (ϕn)∞1 ⊂ C0(V ) with limn ϕn(t) = 0 for each t ∈ V and
supn ||ϕn||T = M < ∞. By Theorem 50.D of [H] there exists U ∈ V such that Ū ⊂ U . As
(ϕn)

∞
1 ⊂ C0(V ), ϕn, n ∈ NI, vanish on T\V̄ and hence by (24), limn u(ϕn) = 0. Then by Theo-

rem 19.7(i), ũV is weakly compact and hence (1) holds.

This completes the proof of the theorem.

Theorem 19.13. Let X be a quasicomplete lcHs with topology τ and let u : K(T ) → X

be a Radon operator with the representing measure m. Let H be a set in X∗ having the Orlicz
property such that τ is identical with the topology of uniform convergence in equicontinuous
subsets of H. Let μx∗u be the complex Radon measure induced by x∗u as in Definition 4.3 of
[P1]. Then the following statements are equivalent:

(i) u is prolongable.

(ii) For each V ∈ V , there exists xV ∈ X such that x∗(xV ) = (x∗ ◦m)(V ) for each x∗ ∈ H.

(iii) Similar to (ii) with V ∈ B0(T ) ∩ V .

(iv) For each K ∈ C, there exists xK ∈ X such that x∗(xK) = (x∗ ◦m)(K) for each x∗ ∈ H.
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(v) Similar to (iv) with K ∈ C0.

(vi) For each V ∈ V , there exists xV ∈ X such that x∗(xV ) =
∫
T χV d(μx∗u) for x

∗ ∈ H.

(vii) Similar to (vi) with V ∈ B0(T ) ∩ V .

(viii) Similar to (vi) with V replaced by K ∈ C.

(ix) Similar to (viii) with K ∈ C0.

Proof. (i)⇒(ii)→(iii) by (2) of Theorem 19.12.

(iii)⇒(i) Let V ∈ B0(T ) ∩ V . Then as observed in the proof of ‘(5)⇒(1)’ in the proof of
Theorem 19.12, B0(V ) is the σ-ring generated by the family UV of all open Baire sets in T which
are contained in V . If U ∈ B0(V ) and if U is open in T , then U ∈ UV ⊂ V ∩ B0(T ) by the proof
of ‘(5)⇒(1)’ in the proof of Theorem 19.12.

Hence, for each open set U ∈ B0(V ), by hypothesis there exists xU ∈ X such that x∗(xU ) =
(x∗ ◦m)(U) for x∗ ∈ H and hence by Theorem 18.16, ũV is weakly compact. If W ∈ V , then by
Theorem 50.D of [H] and by Lemma 18.3, there exists V ∈ B0(T ) ∩ V such that W ⊂ W̄ ⊂ V .
Then by the above argument ũV is weakly compact and hence ũW = ũV |C0(W ) is weakly compact
and hence (i) holds.

By (2) of Theorem 19.12, (i)⇒(iv)⇒(v).

(v)⇒(iii) Let V ∈ B0(T ) ∩ V . Then V̄ ∈ C and by Theorem 50.D of [H] there exists K ∈ C0
such that V̄ ⊂ K. Then by hypothesis, there exists xK ∈ X such that x∗(xK) = (x∗ ◦m)(K) for
x∗ ∈ H. As K\V ∈ C0 by Theorem 51.D of [H], by hypothesis there exists xK\V ∈ X such that
x∗(xK\V ) = (x

∗ ◦m)(K\V ) for x∗ ∈ H. Then, as V = K\(K\V ), (x∗ ◦m)(V ) = x∗(xK −xK\V )
for x∗ ∈ H and hence (iii) holds.

First we prove the following result.

Claim 1. (x∗u) ∈ K(T )∗ and μx∗u = x∗ ◦m on δ(C) for x∗ ∈ X∗.

In fact, as u is continuous on K(T ), x∗u ∈ K(T )∗. By Theorem 19.4, u(ϕ) =
∫
T ϕdm for

ϕ ∈ K(T ) and consequently, by Lemma 6(ii) of [P3],
∫

T

ϕd(x∗ ◦m) = x∗u(ϕ) =
∫

T

ϕd(μx∗u) (19.13.1)

for ϕ ∈ K(T ). Choose V ∈ V such that suppϕ ⊂ V . Since x∗ ◦m and μx∗u are regular on δ(C) by
Theorem 19.4 above and by Theorem 4.4(i) of [P2], respectively, both of them are B(V )-regular
on B(V ). Moreover, both of them are σ-additive on B(V ). Since (19.13.1) holds for all ψ ∈ Cc(V ),
by the uniqueness part of the Riesz representation theorem we have (x∗ ◦m)|B(V ) = (μx∗u)|B(V ).
Since δ(C) =

⋃
V ∈V B(V ), we have (x

∗ ◦m)(A) = μx∗u(A) for A ∈ δ(C). Hence the claim holds.
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Let u be prolongable. Let V ∈ V , U ∈ V∩B0(T ), K ∈ C andK0 ∈ C0. Then by (ii) (resp. (iii),
(iv), (v)) there exists xV ∈ X (resp. xU ∈ X,xK ∈ X,xK0 ∈ X) such that (x

∗ ◦m)(V ) = x∗(xV )
(resp. (x∗ ◦ m)(U) = x∗(xU ), (x∗ ◦ m)(K) = x∗(xK), (x∗ ◦ m)(K0) = x∗(xK0)) for x

∗ ∈ H.
Consequently, by Claim 1, (vi) (resp. (vii), (viii), (ix)) holds.

Finally, by Claim 1, (vi) (resp. (vii), (viii), (ix)) implies (ii) (resp. (iii), (iv), (v)) and hence
each one implies that u is prolongable.

Theorem 19.14. Let X, u, H, μx∗u for x∗ ∈ H and m be as in Theorem 19.13. Then:
(a) The following statements are equivalent:

(i) u is a weakly compact Radon operator.

(ii) For each open set U in T there exists xU ∈ X such that x∗(xU ) =
∫
T χUd(μx∗u) for x

∗ ∈ H.

(iii) Similar to (ii) with U σ-Borel open sets in T .

(iv) Similar to (ii) with U open Baire sets in T .

(v) Similar to (ii) with U Fσ- open sets in T .

(vi) Similar to (ii) with U σ-compact open sets in T .

(vii) Similar to (ii) with U replaced by closed sets F in T .

(viii) Similar to (vii) with F closed Gδ-sets in T .

(b) If u is a weakly compact Radon operator, then u is prolongable and the function χT is mu-
integrable in T .

Proof. (a) is proved using Claim 1 in the proof of Theorem 19.13 and Theorem 19.7(ii).
The first part of (b) is immediate from Definition 19.8. As mu is X-valued and σ-additive on
B(T ) by Theorem 2 of [P5],χT ismu-integrable in T by Theorem 11.9(i) and Remark 12.5 of [P12].

Theorem 19.15. Let X be a quasicomplete lcHs and let u : (Cc(T ), || ∙ ||T ) → X be a
continuous linear mapping. Let ũ be the continuous linear extension of u to C0(T ) and let m
be the representing measure of ũ in the sense of Definition 4 of [P5]. Let mc = m|Bc(T ) and
m0 =m|B0(T ) .Then the following statements are equivalent:

(i) u is a weakly compact Radon operator.

(ii) u is prolongable and given ε > 0 and q ∈ Γ, there exists K ∈ C such that ||m||q(T\K) < ε.

(iii) u is prolongable and given ε > 0 and q ∈ Γ, there exists K ∈ C such that ||mc||q(T\K) < ε

where ||mc||q(T\K) = supA∈Bc(T ),A⊂T\K ||mc||q(A).

(iv) u is prolongable and given ε > 0 and q ∈ Γ, there existsK0 ∈ C0 such that ||m0||q(T\K0) < ε

where ||m0||q(T\K0) = supA∈B0(T ),A⊂T\K0 ||m0||q(A).
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Proof. (i)⇒(ii) Let V ∈ V . Then ũV = ũ|C0(V ) is weakly compact and hence u is prolongable.
By Theorem 6(xxi) of [P5] and by Proposition 2.2 of [P10] the other part of (ii) holds.

Clearly, (ii)⇒(iii)⇒(iv) since for K ∈ C, by Theorem 50.D of [H] there exists K0 ∈ C0 such
that K ⊂ K0.

(iv)⇒(i) Let K0 ∈ C0. Choose V ∈ V such that K0 ⊂ V . By hypothesis, ũV is weakly
compact and hence by Theorem 8(xxx) of [P5] and by Proposition 2.2 of [P10], given ε > 0 and
q ∈ Γ, there exists U ∈ B0(V ), U open in V such that K0 ⊂ U and ||mV ||q(U\K0) < ε. As V is
open in T , U is open in T and by Lemma 18.3, U ∈ B0(T ). This proves that m0 is Baire outer
regular in each K0 ∈ C0. The other hypothesis in (iv) implies that m0 is Baire inner regular in T
and hence by Theorem 8(xxx) of [P5], ũ is weakly compact. Hence (i) holds.
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