Exact Controllability of the Suspension Bridge Model Proposed by Lazer and McKenna

H. LEIVA

Notas de Matemática

Serie: Pre-Print

No. 234

Mérida - Venezuela
2004

Exact Controllability of the Suspension Bridge Model Proposed by Lazer and McKenna

H. LEIVA

Abstract

In this paper we give a sufficient condition for the exact controllability of the following model of the suspension bridge equation proposed by Lazer and McKenna in [7] $$
\left\{\begin{array}{l} w_{t t}+c w_{t}+d w_{x x x x}+k w^{+}=p(t, x)+u(t, x)+f(t, w, u(t, x)), \quad 0<x<1 \\ w(t, 0)=w(t, 1)=w_{x x}(t, 0)=w_{x x}(t, 1)=0, \quad t \in \mathbb{R} \end{array}\right.
$$ where $t \geq 0, d>0, c>0, k>0$, the distributed control $u \in L^{2}\left(0, t_{1} ; L^{2}(0,1)\right), p: \mathbb{R} \times[0,1] \rightarrow$ \mathbb{R} is continuous and bounded, and the non-linear term $f:\left[0, t_{1}\right] \times \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ is a continuous function on t and globally Lipschitz in the other variables. i.e., there exists a constant $l>0$ such that for all $x_{1}, x_{2}, u_{1}, u_{2} \in \mathbb{R}$ we have $$
\left\|f\left(t, x_{2}, u_{2}\right)-f\left(t, x_{1}, u_{1}\right)\right\| \leq l\left\{\left\|x_{2}-x_{1}\right\|+\left\|u_{2}-u_{1}\right\|\right\}, \quad t \in\left[0, t_{1}\right] .
$$

To this end, we prove that the linear part of the system is exactly controllable on $\left[0, t_{1}\right]$. Then, we prove that the non-linear system is exactly controllable on $\left[0, t_{1}\right]$ for t_{1} small enough. That is to say, the controllability of the linear system is preserved under the non-linear perturbation $-k w^{+}+p(t, x)+f(t, w, u(t, x))$.

Key words. suspension bridge equation, strongly continuous groups, exact controllability.
AMS(MOS) subject classifications. primary: 34G10; secondary: 37B37.

Running Title: Exact Controllability of the suspension B.Eq.

1 Introduction

After The Tacoma Narrows Bridge collapsed on November 7, 1940 a lot of work have been done in the study of suspension bridge models. An important contribution is the work done by A.C. Lazer and P.J. McKenna in [7] and J. Glover, A.C. Lazer and P.J. McKenna in [6] who proposed the following mathematical model for suspension bridges

$$
\left\{\begin{array}{l}
w_{t t}+c w_{t}+d w_{x x x x}+k w^{+}=p(t, x), \quad 0<x<1, \quad t \in \mathbb{R}, \tag{1.1}\\
w(t, 0)=w(t, 1)=w_{x x}(t, 0)_{1}=w_{x x}(t, 1)=0, \quad t \in \mathbb{R}
\end{array}\right.
$$

where $d>0, c>0, k>0$ and $p: \mathbb{R} \times[0,1] \rightarrow \mathbb{R}$ is continuous and bounded function acting as an external force.

The existence of bounded solutions of this model (1.1) and other similar equations has been carried out recently in [2], [3], [1], [8], [9] and [5]. To our knowledge, the exact controllability of this model under non-linear action of the control has not been studied before. So, in this paper we give a sufficient condition for the exact controllability of the following controlled suspension bridge equation

$$
\left\{\begin{array}{l}
w_{t t}+c w_{t}+d w_{x x x x}+k w^{+}=p(t, x)+u(t, x)+f(t, w, u(t, x)), 0<x<1 \tag{1.2}\\
w(t, 0)=w(t, 1)=w_{x x}(t, 0)=w_{x x}(t, 1)=0, \quad t \in \mathbb{R}
\end{array}\right.
$$

where the distributed control u belong to $L^{2}\left(0, t_{1} ; L^{2}(0,1)\right)$ and $f:\left[0, t_{1}\right] \times \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ is a continuous function on t and globally Lipschitz in the other variables. i.e., there exists a constant $l>0$ such that for all $x_{1}, x_{2}, u_{1}, u_{2} \in \mathbb{R}$ we have

$$
\begin{equation*}
\left\|f\left(t, x_{2}, u_{2}\right)-f\left(t, x_{1}, u_{1}\right)\right\| \leq l\left\{\left\|x_{2}-x_{1}\right\|+\left\|u_{2}-u_{1}\right\|\right\}, \quad t \in\left[0, t_{1}\right] . \tag{1.3}
\end{equation*}
$$

To this end, we prove that the linear part of this system

$$
\left\{\begin{array}{l}
w_{t t}+c w_{t}+d w_{x x x x}+k w^{+}=u(t, x), 0<x<1 \tag{1.4}\\
w(t, 0)=w(t, 1)=w_{x x}(t, 0)=w_{x x}(t, 1)=0, \quad t \in \mathbb{R}
\end{array}\right.
$$

is exactly controllable on $\left[0, t_{1}\right]$ for all $t_{1}>0$; moreover, we find the formula(4.31) to compute explicitly the control $u \in L^{2}\left(0, t_{1} ; L^{2}(0,1)\right)$ steering an initial state $z_{0}=\left[w_{0}, v_{0}\right]^{T}$ to a final state $z_{1}=\left[w_{1}, v_{1}\right]^{T}$ in time $t_{1}>0$ for the the linear system (1.4). Then, we use this formula to construct a sequence of controls u_{n} that converges to a control u that steers an initial state z_{0} to a final state z_{1} for the non-linear system (1.2), which proves the exact controllability of this system. That is to say, the controllability of the linear system (1.4) is preserved under the non-linear perturbation $-k w^{+}+p(t, x)+f(t, w, u(t, x))$.

2 Abstract Formulation of the Problem

The system(1.2) can be written as anstract second order equation on the Hilbert Space $X=$ $L^{2}(0,1)$ as follows:

$$
\begin{equation*}
\ddot{w}+c \dot{w}+d A w+k w^{+}=P(t)+u(t)+f(t, w, u(t)), t \in \mathbb{R} \tag{2.5}
\end{equation*}
$$

where the unbounded operator A is given by $A \phi=\phi_{x x x x}$ with domain $D(A)=\left\{\phi \in X: \phi, \phi_{x}, \phi_{x x}, \phi_{x x x}\right.$ are absolutely continuous, $\quad \phi_{x x x x} \in X ; \quad \phi(0)=\phi(1)=$ $\left.\phi_{x x}(0)=\phi_{x x}(1)=1\right\}$, and has the following spectral decomposition:
a) For all $x \in D(A)$ we have

$$
\begin{equation*}
A x=\sum_{n=1}^{\infty} \lambda_{n}<x, \phi_{n}>\phi_{n}=\sum_{n=1}^{\infty} \lambda_{n} E_{n} x \tag{2.6}
\end{equation*}
$$

where $\left.\lambda_{n}=n^{4} \pi^{4}, \phi_{n}(x)=\sin n \pi x,<\cdot, \cdot\right\rangle$ is the inner product in X and

$$
\begin{equation*}
E_{n} x=<x, \phi_{n}>\phi_{n} . \tag{2.7}
\end{equation*}
$$

So, $\left\{E_{n}\right\}$ is a family of complete orthogonal projections in X and $x=\sum_{n=1}^{\infty} E_{n} x, \quad x \in X$.
b) $-A$ generates an analytic semigroup $\left\{e^{-A t}\right\}$ given by

$$
\begin{equation*}
e^{-A t} x=\sum_{n=1}^{\infty} e^{-\lambda_{n} t} E_{n} x \tag{2.8}
\end{equation*}
$$

c) The fractional powered spaces X^{r} are given by:

$$
X^{r}=D\left(A^{r}\right)=\left\{x \in X: \sum_{n=1}^{\infty}\left(\lambda_{n}\right)^{2 r}\left\|E_{n} x\right\|^{2}<\infty\right\}, \quad r \geq 0
$$

with the norm

$$
\|x\|_{r}=\left\|A^{r} x\right\|=\left\{\sum_{n=1}^{\infty} \lambda_{n}^{2 r}\left\|E_{n} x\right\|^{2}\right\}^{1 / 2}, \quad x \in X^{r}
$$

and

$$
\begin{equation*}
A^{r} x=\sum_{n=1}^{\infty} \lambda_{n}^{r} E_{n} x \tag{2.9}
\end{equation*}
$$

Also, for $r \geq 0$ we define $Z_{r}=X^{r} \times X$, which is a Hilbert Space with norm given by:

$$
\left\|\left[\begin{array}{c}
w \\
v
\end{array}\right]\right\|_{Z_{r}}^{2}=\|w\|_{r}^{2}+\|v\|^{2} .
$$

Using the change of variables $w^{\prime}=v$, the second order equation (2.5) can be written as a first order system of ordinary differential equations in the Hilbert space
$Z_{1 / 2}=D\left(A^{1 / 2}\right) \times X=X^{1 / 2} \times X$ as:

$$
\begin{equation*}
z^{\prime}=\mathcal{A} z+B u+F(t, z, u(t)) \quad z \in Z_{1 / 2}, \quad t \geq 0 \tag{2.10}
\end{equation*}
$$

where

$$
z=\left[\begin{array}{c}
w \tag{2.11}\\
v
\end{array}\right], \quad B=\left[\begin{array}{c}
0 \\
I_{X}
\end{array}\right], \quad \mathcal{A}=\left[\begin{array}{rr}
0 & I_{X} \\
-d A & -c I_{X}
\end{array}\right],
$$

\mathcal{A} is an unbounded linear operator with domain $D(\mathcal{A})=D(A) \times X, P(t)(x)=p(t, x), \quad x \in[0,1]$ and the function $F:\left[0, t_{1}\right] \times Z_{1 / 2} \times X \rightarrow Z_{1 / 2}$ is given by

$$
F(t, z, u)=\left[\begin{array}{c}
0 \tag{2.12}\\
P(t)-k w^{+}+f(t, w, u)
\end{array}\right] .
$$

Since $X^{1 / 2}$ is continuously included in X, we obtain (for all $z_{1}, z_{2} \in Z_{1 / 2}$ and $u_{1}, u_{2} \in X$) that

$$
\begin{equation*}
\left\|F\left(t, z_{2}, u_{2}\right)-F\left(t, z_{1}, u_{1}\right)\right\|_{z_{1 / 2}} \leq L\left\{\left\|z_{2}-z_{1}\right\|_{1 / 2}+\left\|u_{2}-u_{1}\right\|\right\}, \quad t \in\left[0, t_{1}\right] \tag{2.13}
\end{equation*}
$$

where $L=k+l$. Throughout this paper, without lost of generality we will assume that,

$$
c^{2}<4 d \lambda_{1} .
$$

3 The Uncontrolled Linear Equation

In this section we shall study the well-posedness of the following abstract linear Cauchy initial value problem

$$
\begin{equation*}
z^{\prime}=\mathcal{A} z, \quad(t \in \mathbb{R}) \quad z(0)=z_{0} \in D(\mathcal{A}) \tag{3.14}
\end{equation*}
$$

which is equivalent to prove that the operator \mathcal{A} generates a strongly continuous group. To this end, we shall use the following Lemma from [10].

Lemma 3.1 Let Z be a separable Hilbert space and $\left\{A_{n}\right\}_{n \geq 1},\left\{P_{n}\right\}_{n \geq 1}$ two families of bounded linear operators in Z with $\left\{P_{n}\right\}_{n \geq 1}$ being a complete family of orthogonal projections such that

$$
\begin{equation*}
A_{n} P_{n}=P_{n} A_{n}, \quad n=1,2,3, \ldots \tag{3.15}
\end{equation*}
$$

Define the following family of linear operators

$$
\begin{equation*}
T(t) z=\sum_{n=1}^{\infty} e^{A_{n} t} P_{n} z, \quad t \geq 0 \tag{3.16}
\end{equation*}
$$

Then:
(a) $T(t)$ is a linear bounded operator if

$$
\begin{equation*}
\left\|e^{A_{n} t}\right\| \leq g(t), \quad n=1,2,3, \ldots \tag{3.17}
\end{equation*}
$$

for some continuous real-valued function $g(t)$.
(b) under the condition (3.17) $\{T(t)\}_{t \geq 0}$ is a C_{0}-semigroup in the Hilbert space Z whose infinitesimal generator \mathcal{A} is given by

$$
\begin{equation*}
\mathcal{A} z=\sum_{n=1}^{\infty} A_{n} P_{n} z, \quad z \in D(\mathcal{A}) \tag{3.18}
\end{equation*}
$$

with

$$
\begin{equation*}
D(\mathcal{A})=\left\{z \in Z: \sum_{n=1}^{\infty}\left\|A_{n} P_{n} z\right\|^{2}<\infty\right\} \tag{3.19}
\end{equation*}
$$

(c) the spectrum $\sigma(\mathcal{A})$ of \mathcal{A} is given by

$$
\begin{equation*}
\sigma(\mathcal{A})=\overline{\bigcup_{n=1}^{\infty} \sigma\left(\bar{A}_{n}\right)} \tag{3.20}
\end{equation*}
$$

where $\bar{A}_{n}=A_{n} P_{n}$.

Theorem 3.1 The operator \mathcal{A} given by (2.11), is the infinitesimal generator of a strongly continuous group $\{T(t)\}_{t \in \mathbb{R}}$ given by

$$
\begin{equation*}
T(t) z=\sum_{n=1}^{\infty} e^{A_{n} t} P_{n} z, \quad z \in Z_{1 / 2}, \quad t \geq 0 \tag{3.21}
\end{equation*}
$$

where $\left\{P_{n}\right\}_{n \geq 0}$ is a complete family of orthogonal projections in the Hilbert space $Z_{1 / 2}$ given by

$$
\begin{equation*}
P_{n}=\operatorname{diag}\left[E_{n}, E_{n}\right], n \geq 1 \tag{3.22}
\end{equation*}
$$

and

$$
A_{n}=B_{n} P_{n}, \quad B_{n}=\left[\begin{array}{cc}
0 & 1 \tag{3.23}\\
-d \lambda_{n} & -c
\end{array}\right], n \geq 1 .
$$

This group $\{T(t)\}_{t \in \mathbb{R}}$ decays exponentially to zero. In fact, we have the following estimate

$$
\begin{equation*}
\|T(t)\| \leq M(c, d) e^{-\frac{c}{2} t}, \quad t \geq 0 \tag{3.24}
\end{equation*}
$$

where

$$
\frac{M(c, d)}{2 \sqrt{2}}=\sup _{n \geq 1}\left\{2\left|\frac{c \pm \sqrt{4 d \lambda_{n}-c^{2}}}{\sqrt{c^{2}-4 d \lambda_{n}}}\right|,\left|(2+d) \sqrt{\frac{\lambda_{n}}{4 d \lambda_{n}-c^{2}}}\right|\right\}
$$

Proof Computing $\mathcal{A} z$ yields,

$$
\begin{aligned}
\mathcal{A} z & =\left[\begin{array}{cc}
0 & I \\
-d A & -c
\end{array}\right]\left[\begin{array}{c}
w \\
v
\end{array}\right] \\
& =\left[\begin{array}{c}
v \\
-d A w-c v
\end{array}\right] \\
& =\left[\begin{array}{c}
\sum_{n=1}^{\infty} E_{n} v \\
-d \sum_{n=1}^{\infty} \lambda_{n} E_{n} w-c \sum_{n=1}^{\infty} E_{n} v
\end{array}\right] \\
& =\sum_{n=1}^{\infty}\left[\begin{array}{c}
E_{n} v \\
-d \lambda_{n} E_{n} w-c E_{n} v
\end{array}\right] \\
& =\sum_{n=1}^{\infty}\left[\begin{array}{cc}
0 & 1 \\
-d \lambda_{n} & -c
\end{array}\right]\left[\begin{array}{cc}
E_{n} & 0 \\
0 & E_{n}
\end{array}\right]\left[\begin{array}{l}
w \\
v
\end{array}\right] \\
& =\sum_{n=1}^{\infty} A_{n} P_{n} z .
\end{aligned}
$$

It is clear that $A_{n} P_{n}=P_{n} A_{n}$. Now, we need to check condition (3.17) from Lemma 3.1. To this end, we compute the spectrum of the matrix B_{n}. The characteristic equation of B_{n} is given
by

$$
\lambda^{2}+c \lambda+d \lambda_{n}=0
$$

and the eigenvalues $\sigma_{1}(n), \sigma_{2}(n)$ of the matrix B_{n} are given by

$$
\sigma_{1}(n)=-\mu+i l_{n}, \quad \sigma_{2}(n)=-\mu-i l_{n}
$$

where,

$$
\mu=\frac{c}{2} \text { and } l_{n}=\frac{1}{2} \sqrt{4 d \lambda_{n}-c^{2}} .
$$

Therefore,

$$
\begin{aligned}
e^{B_{n} t} & =e^{-\mu t}\left\{\cos l_{n} t I+\frac{1}{l_{n}}\left(B_{n}+\mu I\right)\right\} \\
& =e^{-\mu t}\left[\begin{array}{cc}
\cos l_{n} t+\frac{c}{2 l_{n}} \sin l_{n} t & \frac{\sin l_{n} t}{l_{n}} \\
-d S(n) \lambda_{n}^{1 / 2} \sin l_{n} t & \cos l_{n} t-\frac{c}{2 l_{n}} \sin l_{n} t
\end{array}\right]
\end{aligned}
$$

From the above formulas we obtain that

$$
e^{B_{n} t}=e^{-\mu t}\left[\begin{array}{cc}
a(n) & \frac{b(n)}{l_{n}} \\
-d S(n) \lambda_{n}^{1 / 2} c(n) & d(n)
\end{array}\right]
$$

where

$$
\begin{aligned}
& a(n)=\cos l_{n} t+\frac{c}{2 l_{n}} \sin l_{n} t, \quad b(n)=\sin l_{n} t \\
& c(n)=\sin l_{n} t, \quad d(n)=\cos l_{n} t-\frac{c}{2 l_{n}} \sin l_{n} t
\end{aligned}
$$

and

$$
S(n)=\sqrt{\frac{\lambda_{n}}{4 d \lambda_{n}-c^{2}}}
$$

Now, consider $z=\left(z_{1}, z_{2}\right)^{T} \in Z_{1 / 2}$ such that $\|z\|_{Z_{1 / 2}}=1$. Then,

$$
\left\|z_{1}\right\|_{1 / 2}^{2}=\sum_{j=1}^{\infty} \lambda_{j}\left\|E_{j} z_{1}\right\|^{2} \leq 1 \text { and }\left\|z_{2}\right\|_{X}^{2}=\sum_{j=1}^{\infty}\left\|E_{j} z_{2}\right\|^{2} \leq 1
$$

Therefore, $\lambda_{j}^{1 / 2}\left\|E_{j} z_{1}\right\| \leq 1,\left\|E_{j} z_{2}\right\| \leq 1, \quad j=1,2, \ldots$
and so,

$$
\begin{aligned}
\left\|e^{A_{n} t} z\right\|_{Z_{1 / 2}}^{2} & =e^{-2 \mu t}\left\|\left[\begin{array}{c}
a(n) E_{n} z_{1}+\frac{b(n)}{l_{n}} E_{n} z_{2} \\
-d S(n) c(n) \lambda_{n}^{\frac{1}{2}} E_{n} z_{1}+d(n) E_{n} z_{2}
\end{array}\right]\right\|_{Z_{1 / 2}}^{2} \\
& =e^{-2 \mu t}\left\|a(n) E_{n} z_{1}+\frac{b(n)}{l_{n}} E_{n} z_{2}\right\|_{\frac{1}{2}}^{2}+e^{-2 \mu t} \| \\
& -d S(n) c(n) \lambda_{n}^{\frac{1}{2}} E_{n} z_{1}+d(n) E_{n} z_{2} \|_{X}^{2} \\
& =e^{-2 \mu t} \sum_{j=1}^{\infty} \lambda_{j}\left\|E_{j}\left(a(n) E_{n} z_{1}+\frac{b(n)}{l_{n}} E_{n} z_{2}\right)\right\|^{2} \\
& +e^{-2 \mu t} \sum_{j=1}^{\infty}\left\|E_{j}\left(-d S(n) c(n) \lambda_{n}^{\frac{1}{2}} E_{n} z_{1}+d(n) E_{n} z_{2}\right)\right\|^{2} \\
& =e^{-2 \mu t} \lambda_{n}\left\|a(n) E_{n} z_{1}+\frac{b(n)}{l_{n}} E_{n} z_{2}\right\|^{2}+e^{-2 \mu t} \| \\
& -d S(n) c(n) \lambda_{n}^{\frac{1}{2}} E_{n} z_{1}+d(n) E_{n} z_{2} \|^{2} \\
& \leq e^{-2 \mu t}\left(|a(n)|+\left|\frac{\lambda^{\frac{1}{2}}}{l_{n}} b(n)\right|\right)^{2}+e^{-2 \mu t}(|d S(n) c(n)|+|d(n)|)^{2},
\end{aligned}
$$

where

$$
\left|\frac{\lambda^{\frac{1}{2}}}{l_{n}} b(n)\right|=\left|\sqrt{\frac{\lambda_{n}}{c^{2}-4 d \lambda_{n}}}\right| .
$$

If we set,

$$
\frac{M(c, d)}{2 \sqrt{2}}=\sup _{n \geq 1}\left\{2\left|\frac{c \pm \sqrt{4 d \lambda_{n}-c^{2}}}{\sqrt{c^{2}-4 d \lambda_{n}}}\right|,\left|(2+d) \sqrt{\frac{\lambda_{n}}{4 d \lambda_{n}-c^{2}}}\right|\right\}
$$

we have,

$$
\left\|e^{A_{n} t}\right\| \leq M(c, d) e^{-\mu t}, \quad t \geq 0 \quad n=1,2, \ldots
$$

Hence, applying Lemma 3.1 we obtain that \mathcal{A} generates a strongly continuous group given by (3.21). Next, we will prove this group decays exponentially to zero. In fact,

$$
\begin{aligned}
\|T(t) z\|^{2} & \leq \sum_{n=1}^{\infty}\left\|e^{A_{n} t} P_{n} z\right\|^{2} \\
& \leq \sum_{n=1}^{\infty}\left\|e^{A_{n} t}\right\|^{2}\left\|P_{n} z\right\|^{2} \\
& \leq M^{2}(c, d) e^{-2 \mu t} \sum_{n=1}^{\infty}\left\|P_{n} z\right\|^{2} \\
& =M^{2}(c, d) e^{-2 \mu t}\|z\|^{2} .
\end{aligned}
$$

Therefore,

$$
\|T(t)\| \leq M(c, d) e^{-\mu t}, \quad t \geq 0
$$

4 Exact Controllability of the Linear System

Now, we shall give the definition of controllability in terms of the linear system

$$
\begin{equation*}
z^{\prime}=\mathcal{A} z+B u \quad z \in Z_{1 / 2}, \quad t \geq 0 \tag{4.25}
\end{equation*}
$$

where

$$
z=\left[\begin{array}{c}
w \tag{4.26}\\
v
\end{array}\right], \quad B=\left[\begin{array}{c}
0 \\
I_{X}
\end{array}\right], \quad \mathcal{A}=\left[\begin{array}{rr}
0 & I_{X} \\
-d A & -c I_{X}
\end{array}\right] .
$$

For all $z_{0} \in Z_{1 / 2}$ equation (4.25) has a unique mild solution given by

$$
\begin{equation*}
z(t)=T(t) z_{0}+\int_{0}^{t} T(t-s) B u(s) d s, \quad 0 \leq t \leq t_{1} \tag{4.27}
\end{equation*}
$$

Definition 4.1 (Exact Controllability) We say that system (4.25) is exactly controllable on $\left[0, t_{1}\right], \quad t_{1}>0$, if for all $z_{0}, z_{1} \in Z_{r}$ there exists a control $u \in L^{2}\left(0, t_{1} ; X\right)$ such that the solution $z(t)$ of (4.27) corresponding to u, verifies: $z\left(t_{1}\right)=z_{1}$.

Consider the following bounded linear operator

$$
\begin{equation*}
G: L^{2}\left(0, t_{1} ; U\right) \rightarrow Z_{1 / 2}, \quad G u=\int_{0}^{t_{1}} T(-s) B(s) u(s) d s \tag{4.28}
\end{equation*}
$$

Then, the following proposition is a characterization of the exact controllability of the system (4.25).

Proposition 4.1 The system (4.25) is exactly controllable on $\left[0, t_{1}\right]$ if and only if, the operator G is surjective, that is to say

$$
G\left(L^{2}\left(0, t_{1} ; X\right)\right)=\operatorname{Range}(G)=Z_{1 / 2}
$$

Now, consider the following family of finite dimensional systems

$$
\begin{equation*}
y^{\prime}=A_{j} P_{j} y+P_{j} B u, \quad y \in \mathcal{R}\left(P_{j}\right) ; \quad j=1,2, \ldots, \infty \tag{4.29}
\end{equation*}
$$

where $\mathcal{R}\left(P_{j}\right)=\operatorname{Range}\left(P_{j}\right)$.
Then, the following proposition can be shown the same way as Lemma 1 from [11].

Proposition 4.2 The following statements are equivalent:
(a) System (4.29) is controllable on $\left[0, t_{1}\right]$.
(b) $B^{*} P_{j}^{*} e^{A_{j}^{*} t} y=0, \quad \forall t \in\left[0, t_{1}\right], \quad \Rightarrow y=0$,
(c) $\operatorname{Rank}\left[P_{j} B \vdots A_{j} P_{j} B\right]=2$
(d) The operator $W_{j}\left(t_{1}\right): \mathcal{R}\left(P_{j}\right) \rightarrow \mathcal{R}\left(P_{j}\right)$ given by:

$$
\begin{equation*}
W_{j}\left(t_{1}\right)=\int_{0}^{t_{1}} e^{-A_{j} s} B B^{*} e^{-A_{j}^{*} s} d s \tag{4.30}
\end{equation*}
$$

is invertible.

Now, we are ready to formulate the main result on exact controllability of the linear system (4.25).

Theorem 4.1 The system (4.25) is exactly controllable on $\left[0, t_{1}\right]$. Moreover, the control $u \in$ $L^{2}\left(0, t_{1} ; X\right)$ that steers an initial state z_{0} to a final state z_{1} at time $t_{1}>0$ is given by the following formula:

$$
\begin{equation*}
u(t)=B^{*} T^{*}(-t) \sum_{j=1}^{\infty} W_{j}^{-1}\left(t_{1}\right) P_{j}\left(T\left(-t_{1}\right) z_{1}-z_{0}\right) \tag{4.31}
\end{equation*}
$$

Proof . First, we shall prove that each of the following finite dimensional systems is controllable on $\left[0, t_{1}\right]$

$$
\begin{equation*}
y^{\prime}=A_{j} P_{j} y+P_{j} B u, \quad y \in \mathcal{R}\left(P_{j}\right) ; \quad j=1,2, \ldots, \infty \tag{4.32}
\end{equation*}
$$

In fact, we can check the condition for controllability of the systems

$$
B^{*} P_{j}^{*} e^{A_{j}^{*} t} y=0, \quad \forall t \in\left[0, t_{1}\right], \quad \Rightarrow y=0
$$

In this case the operators $A_{j}=B_{j} P_{j}$ and \mathcal{A} are given by

$$
B_{j}=\left[\begin{array}{cc}
0 & 1 \\
-d \lambda_{j} & -c
\end{array}\right], \quad \mathcal{A}=\left[\begin{array}{rc}
0 & I_{X} \\
-d A & -c I
\end{array}\right]
$$

and the eigenvalues $\sigma_{1}(j), \sigma_{2}(j)$ of the matrix B_{j} are given by

$$
\sigma_{1}(j)=-\mu+i l_{j}, \quad \sigma_{2}(j)=-\mu-i l_{j},
$$

where,

$$
\mu=\frac{c}{2} \quad \text { and } \quad l_{j}=\frac{1}{2} \sqrt{4 d \lambda_{j}-c^{2}} .
$$

Therefore, $A_{j}^{*}=B_{j}^{*} P_{j}$ with

$$
B_{j}^{*}=\left[\begin{array}{cc}
0 & -1 \\
d \lambda_{j} & -c
\end{array}\right]
$$

and

$$
\begin{aligned}
e^{B_{j} t} & =e^{-\mu t}\left\{\cos l_{j} t I+\frac{1}{l_{j}}\left(B_{j}+c I\right)\right\} \\
& =e^{-\mu t}\left[\begin{array}{cc}
\cos l_{j} t+\frac{c}{2 l_{j}} \sin l_{j} t & \frac{\sin l_{j} t}{l_{j}} \\
-d S(j) \lambda_{j}^{/ 2} \sin l_{j} t & \cos l_{j} t-\frac{c}{2 l_{j}} \sin l_{j} t
\end{array}\right], \\
e^{B_{j}^{*} t} & =e^{-\mu t}\left\{\cos l_{j} t I+\frac{1}{l_{j}}\left(B_{j}^{*}+\mu I\right)\right\} \\
& =e^{-\mu t}\left[\begin{array}{cc}
\cos l_{j} t+\frac{c}{2 l_{j}} \sin l_{j} t & -\frac{\sin l_{j} t}{l_{j}} \\
d S(j) \lambda_{j}^{1 / 2} \sin l_{j} t & \cos l_{j} t-\frac{c}{2 l_{j}} \sin l_{j} t
\end{array}\right], \\
B & =\left[\begin{array}{c}
0 \\
I_{X}
\end{array}\right], \quad B^{*}=\left[0, I_{X}\right] \text { and } B B^{*}=\left[\begin{array}{cc}
0 & 0 \\
0 & I_{X}
\end{array}\right] .
\end{aligned}
$$

Now, let $y=\left(y_{1}, y_{2}\right)^{T} \in \mathcal{R}\left(P_{j}\right)$ such that

$$
B^{*} P_{j}^{*} e^{A_{j}^{*} t} y=0, \quad \forall t \in\left[0, t_{1}\right]
$$

Then,

$$
e^{-\mu t}\left[d S(j) \lambda_{j}^{1 / 2} \sin l_{j} t y_{1}+\left(\cos l_{j} t-\frac{c}{2 l_{j}} \sin l_{j} t\right) y_{2}\right]=0, \quad \forall t \in\left[0, t_{1}\right]
$$

which implies that $y=0$.

From Proposition 4.2 the operator $W_{j}\left(t_{1}\right): \mathcal{R}\left(P_{j}\right) \rightarrow \mathcal{R}\left(P_{j}\right)$ given by:

$$
W_{j}\left(t_{1}\right)=\int_{0}^{t_{1}} e^{-A_{j} s} B B^{*} e^{-A_{j}^{*} s} d s=P_{j} \int_{0}^{t_{1}} e^{-B_{j} s} B B^{*} e^{-B_{j}^{*} s} d s P_{j}=P_{j} \bar{W}_{j}\left(t_{1}\right) P_{j}
$$

is invertible.

Since

$$
\begin{gathered}
\left\|e^{-A_{j} t}\right\| \leq M(c, d) e^{\mu t}, \quad\left\|e^{-A_{j}^{*} t}\right\| \leq M(c, d) e^{\mu t} \\
\left\|e^{-A_{j} t} B B^{*} e^{-A_{j}^{*} t}\right\| \leq M^{2}(c, d)\left\|B B^{*}\right\| e^{2 \mu t}
\end{gathered}
$$

we have

$$
\left\|W_{j}\left(t_{1}\right)\right\| \leq M^{2}(c, d)\left\|B B^{*}\right\| e^{2 \mu t_{1}} \leq L(c, d), \quad j=1,2, \ldots
$$

Now, we shall prove that the family of linear operators,

$$
W_{j}^{-1}\left(t_{1}\right)=\bar{W}_{j}^{-1}\left(t_{1}\right) P_{j}: Z_{1 / 2} \rightarrow Z_{1 / 2}
$$

is bounded and $\left\|W_{j}^{-1}\left(t_{1}\right)\right\|$ is uniformly bounded. To this end, we shall compute explicitly the matrix $\bar{W}_{j}^{-1}\left(t_{1}\right)$. From the above formulas we obtain that

$$
e^{B_{j} t}=e^{-\mu t}\left[\begin{array}{cc}
a(j) & b(j) \\
-a(j) & c(j)
\end{array}\right], \quad e^{B_{j}^{*} t}=e^{-\mu t}\left[\begin{array}{cc}
a(j) & -b(j) \\
d(j) & c(j)
\end{array}\right],
$$

where

$$
\begin{gathered}
a(j)=\cos l_{j} t+\frac{c}{2 l_{j}} \sin l_{j} t, \quad b(j)=\frac{\sin l_{j} t}{l_{j}}, \\
c(j)=d S(j) \lambda_{j}^{1 / 2} \sin l_{j} t, \quad d(j)=\cos l_{j} t-\frac{c}{2 l_{j}} \sin l_{j} t,
\end{gathered}
$$

and

$$
S(j)=\sqrt{\frac{\lambda_{j}}{4 d \lambda_{j}-c^{2}}} .
$$

Then

$$
e^{-B_{j} s} B B^{*} e^{-B_{j}^{*} s}=\left[\begin{array}{cc}
b(j) c(j) \lambda_{j}^{1 / 2} I & -b(j) d(j) I \\
-d(j) c(j) \lambda_{j}^{1 / 2} I & d^{2}(j) I
\end{array}\right] .
$$

Therefore,

$$
\bar{W}_{j}\left(t_{1}\right)=\left[\begin{array}{cc}
\frac{d S(j) \lambda_{j}^{1 / 2}}{l_{j}} k_{11}(j) & \frac{1}{l_{j}} k_{12}(j) \\
-d S(j) \lambda_{j}^{1 / 2} k_{21}(j) & k_{22}(j)
\end{array}\right],
$$

where

$$
\begin{aligned}
k_{11}(j) & =\int_{0}^{t_{1}} e^{2 c s} \sin ^{2} l_{j} s d s \\
k_{12}(j) & =-\int_{0}^{t_{1}} e^{2 c s}\left[\sin l_{j} s \cos l_{j} s-\frac{c \sin ^{2} l_{j} s}{2 l_{j}}\right] d s \\
k_{21}(j) & =\int_{0}^{t_{1}} e^{2 c s}\left[\sin l_{j} s \cos l_{j} s-\frac{c \sin ^{2} l_{j} s}{2 l_{j}}\right] d s \\
k_{22}(j) & =\int_{0}^{t_{1}} e^{2 c s}\left[\cos l_{j} s-\frac{c \sin l_{j} s}{2 l_{j}}\right]^{2} d s
\end{aligned}
$$

The determinant $\Delta(j)$ of the matrix $\bar{W}_{j}\left(t_{1}\right)$ is given by

$$
\begin{aligned}
\Delta(j) & =\frac{d S(j) \lambda_{j}^{1 / 2}}{l_{j}}\left[k_{11}(j) k_{22}(j)-k_{12}(j) k_{21}(j)\right] \\
& =\frac{d S(j) \lambda_{j}^{1 / 2}}{l_{j}}\left\{\left(\int_{0}^{t_{1}} e^{2 \mu s} \sin ^{2} l_{j} s d s\right)\left(\int_{0}^{t_{1}} e^{2 \mu s}\left[\cos l_{j} s-\frac{c \sin l_{j} s}{2 l_{j}}\right]^{2} d s\right)\right. \\
& \left.-\left(\int_{0}^{t_{1}} e^{2 \mu s}\left[\sin l_{j} s \cos l_{j} s-\frac{c \sin ^{2} l_{j} s}{2 l_{j}}\right] d s\right)^{2}\right\} .
\end{aligned}
$$

Passing to the limit as j goes to ∞, we obtain,

$$
\lim _{j \rightarrow \infty} \Delta(j)=\frac{\left(e^{2 \mu t_{1}}-1\right)\left(1-2 e^{\mu t_{1}}+e^{2 \mu t_{1}}\right)}{2^{4} \mu^{3}}
$$

Therefore, there exist constants $R_{1}, R_{2}>0$ such that

$$
0<R_{1}<|\Delta(j)|<R_{2}, \quad j=1,2,3, \ldots
$$

Hence,

$$
\begin{aligned}
\bar{W}^{-1}(j) & =\frac{1}{\Delta(j)}\left[\begin{array}{cc}
k_{22}(j) & -\frac{1}{l_{j}} k_{12}(j) \\
d S(j) \lambda_{j}^{1 / 2} k_{21}(j) & \frac{d S(j) \lambda_{j}^{1 / 2}}{l_{j}} k_{11}(j)
\end{array}\right] \\
& =\left[\begin{array}{cc}
b_{11}(j) & b_{12}(j) \\
b_{21}(j) \lambda_{j}^{1 / 2} & b_{22}(j)
\end{array}\right],
\end{aligned}
$$

where $b_{n, m}(j), \quad n=1,2 ; m=1,2 ; j=1,2, \ldots$ are bounded. Using the same computation as in Theorem 3.1 we can prove the existence of constant $L_{2}(c, d)$ such that

$$
\left\|W_{j}^{-1}\left(t_{1}\right)\right\|_{Z_{1 / 2}} \leq L_{2}(c, d), \quad j=1,2, \ldots
$$

Now, we define the following linear bounded operators

$$
W\left(t_{1}\right): Z_{1 / 2} \rightarrow Z_{1 / 2}, \quad W^{-1}\left(t_{1}\right): Z_{1 / 2} \rightarrow Z_{1 / 2}
$$

by

$$
W\left(t_{1}\right) z=\sum_{j=1}^{\infty} W_{j}\left(t_{1}\right) P_{j} z, \quad W^{-1}\left(t_{1}\right) z=\sum_{j=1}^{\infty} W_{j}^{-1}\left(t_{1}\right) P_{j} z
$$

Using the definition we see that, $W\left(t_{1}\right) W^{-1}\left(t_{1}\right) z=z$ and

$$
W\left(t_{1}\right) z=\int_{0}^{t_{1}} T(-s) B B^{*} T^{*}(-s) z d s
$$

Next, we will show that given $z \in Z_{1 / 2}$ there exists a control $u \in L^{2}\left(0, t_{1} ; X\right)$ such that $G u=z$. In fact, let u be the following control

$$
u(t)=B^{*} T^{*}(-t) W^{-1}\left(t_{1}\right) z, \quad t \in\left[0, t_{1}\right] .
$$

Then,

$$
\begin{aligned}
G u & =\int_{0}^{t_{1}} T(-s) B u(s) d s \\
& =\int_{0}^{t_{1}} T(-s) B B^{*} T^{*}(-s) W^{-1}\left(t_{1}\right) z d s \\
& =\left(\int_{0}^{t_{1}} T(-s) B B^{*} T^{*}(-s) d s\right) W^{-1}\left(t_{1}\right) z \\
& =W\left(t_{1}\right) W^{-1}\left(t_{1}\right) z=z .
\end{aligned}
$$

Then, the control steering an initial state z_{0} to a final state z_{1} in time $t_{1}>0$ is given by

$$
\begin{aligned}
& u(t)=B^{*} T^{*}(-t) W^{-1}\left(t_{1}\right)\left(T\left(-t_{1}\right) z_{1}-z_{0}\right) \\
= & B^{*} T^{*}(-t) \sum_{j=1}^{\infty} W_{j}^{-1}\left(t_{1}\right) P_{j}\left(T\left(-t_{1}\right) z_{1}-z_{0}\right) .
\end{aligned}
$$

5 Exact Controllability of the Non-Linear System

Now, we shall give the definition of controllability in terms of the non-linear systems

$$
\left\{\begin{align*}
z^{\prime} & =\mathcal{A} z+B u+F(t, z, u(t)) \quad z \in Z_{1 / 2}, \quad t>0 \tag{5.33}\\
z(0) & =z_{0}
\end{align*}\right.
$$

For all $z_{0} \in Z_{1 / 2}$ equation (5.33) has a unique mild solution given by

$$
\begin{equation*}
z(t)=T(t) z_{0}+\int_{0}^{t} T(t) T(-s)[B u(s)+F(s, z(s), u(s))] d s \tag{5.34}
\end{equation*}
$$

Definition 5.1 (Exact Controllability) We say that system (5.33) is exactly controllable on $\left[0, t_{1}\right], \quad t_{1}>0$, if for all $z_{0}, z_{1} \in Z_{1 / 2}$ there exists a control $u \in L^{2}\left(0, t_{1} ; X\right)$ such that the solution $z(t)$ of (5.34) corresponding to u, verifies: $z\left(t_{1}\right)=z_{1}$.

Consider the following non-linear operator

$$
\begin{equation*}
G_{F}: L^{2}\left(0, t_{1} ; U\right) \rightarrow Z_{1 / 2} \tag{5.35}
\end{equation*}
$$

given by

$$
\begin{equation*}
G_{F} u=\int_{0}^{t_{1}} T(-s) B(s) u(s) d s+\int_{0}^{t_{1}} T(-s) F(s, z(s), u(s)) d s \tag{5.36}
\end{equation*}
$$

where $z(t)=z\left(t ; z_{0}, u\right)$ is the corresponding solution of (5.34).

Then, the following proposition is a characterization of the exact controllability of the nonlinear system (5.33).

Proposition 5.1 The system (5.33) is exactly controllable on $\left[0, t_{1}\right]$ if and only if, the operator G_{F} is surjective, that is to say

$$
G_{F}\left(L^{2}\left(0, t_{1} ; X\right)\right)=\operatorname{Range}\left(G_{F}\right)=Z_{1 / 2} .
$$

Lemma 5.1 Let $u_{1}, u_{2} \in L^{2}\left(0, t_{1} ; X\right), z_{0} \in Z_{1 / 2}$ and $z_{1}\left(t ; z_{0}, u_{1}\right), z_{2}\left(t ; z_{0}, u_{2}\right)$ the corresponding solutions of (5.34). Then the following estimate holds:

$$
\begin{equation*}
\left\|z_{1}(t)-z_{2}(t)\right\|_{z_{1 / 2}} \leq M[\|B\|+L] e^{M L t_{1}} \sqrt{t_{1}}\left\|u_{1}-u_{2}\right\|_{L^{2}\left(0, t_{1} ; X\right)} \tag{5.37}
\end{equation*}
$$

where $0 \leq t \leq t_{1}$ and

$$
\begin{equation*}
M=\sup _{0 \leq s \leq t \leq t_{1}}\{\|T(t)\|\|T(-s)\|\} \tag{5.38}
\end{equation*}
$$

Proof Let z_{1}, z_{2} be solutions of (5.34) corresponding to u_{1}, u_{2} respectively. Then

$$
\begin{aligned}
\left\|z_{1}(t)-z_{2}(t)\right\| & \leq \int_{0}^{t}\|T(t)\|\|T(-s)\|\|B\|\left\|u_{1}(s)-u_{2}(s)\right\| \\
& +\int_{0}^{t}\|T(t)\|\|T(-s)\|\left\|F\left(s, z_{1}(s), u_{1}(s)\right)-F\left(s, z_{2}(s), u_{2}(s)\right)\right\| d s \\
& \leq M[\|B\|+L] \int_{0}^{t}\left\|u_{1}(s)-u_{2}(s)\right\|+M L \int_{0}^{t}\left\|z_{1}(s)-z_{2}(s)\right\| d s \\
& \leq M[\|B\|+L] \sqrt{t_{1}}\left\|u_{1}-u_{2}\right\|+M L \int_{0}^{t_{1}}\left\|z_{1}(s)-z_{2}(s)\right\| d s .
\end{aligned}
$$

Using Gronwall's inequality we obtain

$$
\left\|z_{1}(t)-z_{2}(t)\right\|_{z_{1 / 2}} \leq M[\|B\|+L] e^{M L t_{1}} \sqrt{t_{1}}\left\|u_{1}-u_{2}\right\|_{L^{2}\left(0, t_{1} ; X\right)}, \quad 0 \leq t \leq t_{1}
$$

Now, we are ready to formulate and prove the main Theorem of this section

Theorem 5.1 If the following estimate holds

$$
\begin{equation*}
\|B\| M L\left\|W^{-1}\left(t_{1}\right)\right\| H\left(t_{1}\right) t_{1}<1 \tag{5.39}
\end{equation*}
$$

where $H\left(t_{1}\right)=M[\|B\|+L] e^{M L t_{1}} t_{1}+1$, then the non-linear system (5.33) is exactly controllable on $\left[0, t_{1}\right]$.

Proof Given the initial state z_{0} and the final state z_{1}, and $u_{1} \in L^{2}\left(0, t_{1} ; X\right)$, there exists $u_{2} \in$ $L^{2}\left(0, t_{1} ; X\right)$ such that

$$
0=z_{1}-\int_{0}^{t_{1}} T(-s) F\left(s, z_{1}(s), u_{1}(s)\right) d s-\int_{0}^{t_{1}} T(-s) B u_{2}(s) d s
$$

where $z_{1}(t)=z\left(t ; z_{0}, u_{1}\right)$ is the corresponding solution of (5.34).

Moreover, u_{2} can be chosen as follows:

$$
u_{2}(t)=B^{*} T^{*}(-t) W^{-1}\left(t_{1}\right)\left(z_{1}-\int_{0}^{t_{1}} T(-s) F\left(s, z_{1}(s), u_{1}(s)\right) d s\right)
$$

For such u_{2} there exists $u_{3} \in L^{2}\left(0, t_{1} ; X\right)$ such that

$$
0=z_{1}-\int_{0}^{t_{1}} T(-s) F\left(s, z_{2}(s), u_{2}(s)\right) d s-\int_{0}^{t_{1}} T(-s) B u_{3}(s) d s
$$

where $z_{2}(t)=z\left(t ; z_{0}, u_{2}\right)$ is the corresponding solution of (5.34), and u_{3} can be taken as follows:

$$
u_{3}(t)=B^{*} T^{*}(-t) W^{-1}\left(t_{1}\right)\left(z_{1}-\int_{0}^{t_{1}} T(-s) F\left(s, z_{2}(s), u_{2}(s)\right) d s\right)
$$

Following this process we obtain two sequences

$$
\left\{u_{n}\right\} \subset L^{2}\left(0, t_{1} ; X\right), \quad\left\{z_{n}\right\} \subset L^{2}\left(0, t_{1} ; Z_{1 / 2}\right),\left(z_{n}(t)=z\left(t ; z_{0}, u_{n}\right)\right) \quad n=1,2, \ldots,
$$

such that

$$
\begin{align*}
u_{n+1}(t) & =B^{*} T^{*}(-t) W^{-1}\left(t_{1}\right)\left(z_{1}-\int_{0}^{t_{1}} T(-s) F\left(s, z_{n}(s), u_{n}(s)\right) d s\right) \tag{5.40}\\
0 & =z_{1}-\int_{0}^{t_{1}} T(-s) F\left(s, z_{n}(s), u_{n}(s)\right) d s-\int_{0}^{t_{1}} T(-s) B u_{n+1}(s) d s \tag{5.41}
\end{align*}
$$

Now, we shall prove that $\left\{z_{n}\right\}$ is a Cauchy sequence in $L^{2}\left(0, t_{1} ; Z_{1 / 2}\right)$. In fact, from formula (5.40) we obtain that

$$
\begin{aligned}
& u_{n+1}(t)-u_{n}(t)= \\
& B^{*} T^{*}(-t) W^{-1}\left(t_{1}\right)\left(\int_{0}^{t_{1}} T(-s)\left(F\left(s, z_{n-1}(s), u_{n-1}(s)\right)-F\left(s, z_{n}(s), u_{n}(s)\right)\right) d s\right) .
\end{aligned}
$$

Hence, using lemma 5.1 we obtain

$$
\begin{aligned}
& \left\|u_{n+1}(t)-u_{n}(t)\right\| \\
\leq & \|B\| M L\left\|W^{-1}\left(t_{1}\right)\right\| \int_{0}^{t_{1}}\left(\left\|z_{n}(s)-z_{n-1}(s)\right\|+\left\|u_{n}(s)-u_{n-1}(s)\right\|\right) d s \\
\leq & \|B\| M L\left\|W^{-1}\left(t_{1}\right)\right\| \int_{0}^{t_{1}} M[\|B\|+L] e^{M L t_{1}} \sqrt{t_{1}}\left\|u_{n}(s)-u_{n-1}(s)\right\| d s \\
+ & \|B\| M L\left\|W^{-1}\left(t_{1}\right) \int_{0}^{t_{1}}\right\| u_{n}(s)-u_{n-1}(s) \| d s .
\end{aligned}
$$

Using Hóder's inequality we obtain

$$
\begin{equation*}
\left\|u_{n+1}-u_{n}\right\|_{L^{2}\left(0, t_{1} ; X\right)} \leq\|B\| M L\left\|W^{-1}\left(t_{1}\right)\right\| H\left(t_{1}\right) t_{1}\left\|u_{n+1}-u_{n}\right\|_{L^{2}\left(0, t_{1} ; X\right)} . \tag{5.42}
\end{equation*}
$$

Since $\|B\| M L\left\|W^{-1}\left(t_{1}\right)\right\| H\left(t_{1}\right) t_{1}<1$, then $\left\{u_{n}\right\}$ is a Cauchy sequence in $L^{2}\left(0, t_{1} ; X\right)$ and therefore there exists $u \in L^{2}\left(0, t_{1} ; X\right)$ such that $\lim _{n \rightarrow \infty} u_{n}=u$ in $L^{2}\left(0, t_{1} ; X\right)$.

Let $z(t)=z\left(t ; z_{0}, u\right)$ be the corresponding solution of (5.34). Then we shall prove that

$$
\lim _{n \rightarrow \infty} \int_{0}^{t_{1}} T(-s) F\left(s, z_{n}(s), u_{n}(s)\right) d s=\int_{0}^{t_{1}} T(-s) F(s, z(s), u(s)) d s
$$

In fact, using lemma 5.1 we obtain that

$$
\begin{aligned}
& \left\|\int_{0}^{t_{1}} T(-s)\left[F\left(s, z_{n}(s), u_{n}(s)\right)-F(s, z(s), u(s))\right] d s\right\| \\
\leq & \int_{0}^{t_{1}} M L\left[\left\|z_{n}(s)-z(s)\right\|+\left\|u_{n}(s)-u(s)\right\|\right] d s \\
\leq & \int_{0}^{t_{1}} M L\left[M[\|B\|+L] e^{M L t_{1}} \sqrt{t_{1}}\left\|u_{n}-u\right\|_{L^{2}\left(0, t_{1} ; X\right)}+\left\|u_{n}(s)-u(s)\right\|\right] d s \\
\leq & M L K\left(t_{1}\right) \sqrt{t_{1}}\left\|u_{n}-u\right\|_{L^{2}\left(0, t_{1} ; X\right)} .
\end{aligned}
$$

From here we obtain the result.

Finally, passing to the limit in (5.41) as n goes to ∞ we obtain that

$$
0=z_{1}-\int_{0}^{t_{1}} T(-s) F(s, z(s), u(s)) d s-\int_{0}^{t_{1}} T(-s) B u(s) d s
$$

i.e.,

$$
G_{F} u=z_{1} .
$$

Remark 5.1 a) The controllability of the system (1.2) is independent of the external force $P(t)$ since condition (5.39) does not depend on $P(t)$.
b) If $f=0$, the condition for the exact controllability of the system (1.2) can be expressed in terms of k. i.e.,

$$
\|B\| M k\left\|W^{-1}\left(t_{1}\right)\right\| H\left(t_{1}\right) t_{1}<1 .
$$

References

[1] J.M. ALONSO, J. MAWHIN AND R. ORTEGA, "Bounded solutions of second order semilinear evolution equations and applications to the telegraph equation", J.Math. Pures Appl., 78, 49-63 (1999).
[2] J.M. ALONSO AND R. ORTEGA, "Boundedness and Global Asymptotic Stability of a Forced Oscillator", Nonlinear Anal. 25 (1995), 297-309.
[3] J.M. ALONSO AND R. ORTEGA, "Global Asymptotic Stability of a Forced Newtonian System with Dissipation", J.Math. Anal. Appl. 196 (1995), 965-986.
[4] R.F. CURTAIN and A.J. PRITCHARD, "Infinite Dimensional Linear Systems", Lecture Notes in Control and Information Sciences, Vol. 8. Springer Verlag, Berlin (1978).
[5] L. GARCIA and H. LEIVA, "Center Manifold and Exponentially Bounded Solutions of a Forced Newtonian System with Dissipation"E. Journal Differential Equations. conf. 05, 2000, pp. 69-77.
[6] J.GLOVER, A.C. LAZER AND P.J. MCKENNA "Existence and Stability of Large-scale Nonlinear Oscillatations in Suspension Bridges" ZAMP, Vol. 40, 1989, pp. 171-200
[7] A.C. LAZER AND P.J.MCKENNA"Large-Amplitude Periodic Oscillations in Suspension Bridges: Some New Connections with Nonlinear Analysis"SIAM Review, Vol. 32, N0 4, 1990, pp. 537-578.
[8] H. LEIVA, "Existence of Bounded Solutions of a Second Order System with Dissipation" J. Math. Analysis and Appl. 237, 288-302(1999).
[9] H. LEIVA, "Existence of Bounded Solutions of a Second Order Evolution Equation and Applications"Journal Math. Physics. Vol. 41, N0 11, 2000.
[10] H. LEIVA, "A Lemma on C_{0}-Semigroups and Applications PDEs Systems" Report Series of CDSNS 99-353.
[11] H. LEIVA and H. ZAMBRANO "Rank condition for the controllability of a linear timevarying system" International Journal of Control, Vol. 72, 920-931(1999)

