
Universidad de Los Andes
Facultad de Ciencias
Departamento de Matemáticas

Exact Controllability of the Suspension Bridge Model Proposed by Lazer
and McKenna

H. LEIVA

Notas de Matemática
Serie: Pre-Print

No. 234

Mérida - Venezuela

2004



Exact Controllability of the Suspension Bridge Model Proposed
by Lazer and McKenna

H. LEIVA

Abstract

In this paper we give a sufficient condition for the exact controllability of the following model
of the suspension bridge equation proposed by Lazer and McKenna in [7]

{
wtt + cwt + dwxxxx + kw

+ = p(t, x) + u(t, x) + f(t, w, u(t, x)), 0 < x < 1
w(t, 0) = w(t, 1) = wxx(t, 0) = wxx(t, 1) = 0, t ∈ IR

where t ≥ 0, d > 0, c > 0, k > 0, the distributed control u ∈ L2(0, t1;L2(0, 1)), p : IR×[0, 1]→
IR is continuous and bounded, and the non-linear term
f : [0, t1] × IR × IR → IR is a continuous function on t and globally Lipschitz in the other
variables. i.e., there exists a constant l > 0 such that for all x1, x2, u1, u2 ∈ IR we have

‖f(t, x2, u2)− f(t, x1, u1)‖ ≤ l {‖x2 − x1‖+ ‖u2 − u1‖} , t ∈ [0, t1].

To this end, we prove that the linear part of the system is exactly controllable on [0, t1]. Then,
we prove that the non-linear system is exactly controllable on [0, t1] for t1 small enough. That
is to say, the controllability of the linear system is preserved under the non-linear perturbation
−kw+ + p(t, x) + f(t, w, u(t, x)).
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1 Introduction

After The Tacoma Narrows Bridge collapsed on November 7, 1940 a lot of work have been done

in the study of suspension bridge models. An important contribution is the work done by A.C.

Lazer and P.J. McKenna in [7] and J. Glover, A.C. Lazer and P.J. McKenna in [6] who proposed

the following mathematical model for suspension bridges

{
wtt + cwt + dwxxxx + kw

+ = p(t, x), 0 < x < 1, t ∈ IR,
w(t, 0) = w(t, 1) = wxx(t, 0) = wxx(t, 1) = 0, t ∈ IR

(1.1)
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where d > 0, c > 0, k > 0 and p : IR × [0, 1]→ IR is continuous and bounded function acting as

an external force.

The existence of bounded solutions of this model (1.1) and other similar equations has been

carried out recently in [2], [3], [1], [8], [9] and [5]. To our knowledge, the exact controllability of

this model under non-linear action of the control has not been studied before. So, in this paper

we give a sufficient condition for the exact controllability of the following controlled suspension

bridge equation

{
wtt + cwt + dwxxxx + kw

+ = p(t, x) + u(t, x) + f(t, w, u(t, x)), 0 < x < 1
w(t, 0) = w(t, 1) = wxx(t, 0) = wxx(t, 1) = 0, t ∈ IR

(1.2)

where the distributed control u belong to L2(0, t1;L2(0, 1)) and f : [0, t1] × IR × IR → IR is a

continuous function on t and globally Lipschitz in the other variables. i.e., there exists a constant

l > 0 such that for all x1, x2, u1, u2 ∈ IR we have

‖f(t, x2, u2)− f(t, x1, u1)‖ ≤ l {‖x2 − x1‖+ ‖u2 − u1‖} , t ∈ [0, t1]. (1.3)

To this end, we prove that the linear part of this system

{
wtt + cwt + dwxxxx + kw

+ = u(t, x), 0 < x < 1
w(t, 0) = w(t, 1) = wxx(t, 0) = wxx(t, 1) = 0, t ∈ IR

(1.4)

is exactly controllable on [0, t1] for all t1 > 0; moreover, we find the formula(4.31) to compute

explicitly the control u ∈ L2(0, t1;L2(0, 1)) steering an initial state z0 = [w0, v0]T to a final

state z1 = [w1, v1]T in time t1 > 0 for the the linear system (1.4). Then, we use this formula

to construct a sequence of controls un that converges to a control u that steers an initial state

z0 to a final state z1 for the non-linear system (1.2), which proves the exact controllability of

this system. That is to say, the controllability of the linear system (1.4) is preserved under the

non-linear perturbation −kw+ + p(t, x) + f(t, w, u(t, x)).



2 Abstract Formulation of the Problem

The system(1.2) can be written as an abstract second order equation on the Hilbert Space X =

L2(0, 1) as follows:

ẅ + cẇ + dAw + kw+ = P (t) + u(t) + f(t, w, u(t)), t ∈ IR, (2.5)

where the unbounded operator A is given by Aφ = φxxxx with domain

D(A) = {φ ∈ X : φ, φx, φxx, φxxx are absolutely continuous, φxxxx ∈ X; φ(0) = φ(1) =

φxx(0) = φxx(1) = 1}, and has the following spectral decomposition:

a) For all x ∈ D(A) we have

Ax =
∞∑

n=1

λn < x, φn > φn =
∞∑

n=1

λnEnx, (2.6)

where λn = n4π4, φn(x) = sinnπx, < ∙, ∙ > is the inner product in X and

Enx =< x, φn > φn. (2.7)

So, {En} is a family of complete orthogonal projections in X and

x =
∑∞
n=1Enx, x ∈ X.

b) −A generates an analytic semigroup {e−At} given by

e−Atx =
∞∑

n=1

e−λntEnx. (2.8)

c) The fractional powered spaces Xr are given by:

Xr = D(Ar) = {x ∈ X :
∞∑

n=1

(λn)
2r‖Enx‖

2 <∞}, r ≥ 0,

with the norm

‖x‖r = ‖A
rx‖ =

{
∞∑

n=1

λ2rn ‖Enx‖
2

}1/2

, x ∈ Xr,



and

Arx =
∞∑

n=1

λrnEnx. (2.9)

Also, for r ≥ 0 we define Zr = Xr ×X, which is a Hilbert Space with norm given by:

∥
∥
∥
∥

[
w

v

]∥∥
∥
∥

2

Zr

= ‖w‖2r + ‖v‖
2.

Using the change of variables w′ = v, the second order equation (2.5) can be written as a first

order system of ordinary differential equations in the Hilbert space

Z1/2 = D(A
1/2)×X = X1/2 ×X as:

z′ = Az +Bu+ F (t, z, u(t)) z ∈ Z1/2, t ≥ 0, (2.10)

where

z =

[
w

v

]

, B =

[
0
IX

]

, A =

[
0 IX

−dA −cIX

]

, (2.11)

A is an unbounded linear operator with domain D(A) = D(A)×X, P (t)(x) = p(t, x), x ∈ [0, 1]

and the function F : [0, t1]× Z1/2 ×X → Z1/2 is given by

F (t, z, u) =

[
0

P (t)− kw+ + f(t, w, u)

]

. (2.12)

Since X1/2 is continuously included in X, we obtain (for all z1, z2 ∈ Z1/2 and u1, u2 ∈ X) that

‖F (t, z2, u2)− F (t, z1, u1)‖Z1/2 ≤ L
{
‖z2 − z1‖1/2 + ‖u2 − u1‖

}
, t ∈ [0, t1], (2.13)

where L = k + l. Throughout this paper, without lost of generality we will assume that,

c2 < 4dλ1.

3 The Uncontrolled Linear Equation

In this section we shall study the well-posedness of the following abstract linear Cauchy initial

value problem

z′ = Az, (t ∈ IR) z(0) = z0 ∈ D(A), (3.14)



which is equivalent to prove that the operator A generates a strongly continuous group. To this

end, we shall use the following Lemma from [10].

Lemma 3.1 Let Z be a separable Hilbert space and {An}n≥1, {Pn}n≥1 two families of bounded

linear operators in Z with {Pn}n≥1 being a complete family of orthogonal projections such that

AnPn = PnAn, n = 1, 2, 3, . . . (3.15)

Define the following family of linear operators

T (t)z =
∞∑

n=1

eAntPnz, t ≥ 0. (3.16)

Then:

(a) T (t) is a linear bounded operator if

‖eAnt‖ ≤ g(t), n = 1, 2, 3, . . . (3.17)

for some continuous real-valued function g(t).

(b) under the condition (3.17) {T (t)}t≥0 is a C0-semigroup in the Hilbert space Z whose infinites-

imal generator A is given by

Az =
∞∑

n=1

AnPnz, z ∈ D(A) (3.18)

with

D(A) = {z ∈ Z :
∞∑

n=1

‖AnPnz‖
2 <∞} (3.19)

(c) the spectrum σ(A) of A is given by

σ(A) =
∞⋃

n=1

σ(Ān), (3.20)

where Ān = AnPn.



Theorem 3.1 The operator A given by (2.11), is the infinitesimal generator of a strongly con-

tinuous group {T (t)}t∈IR given by

T (t)z =
∞∑

n=1

eAntPnz, z ∈ Z1/2, t ≥ 0 (3.21)

where {Pn}n≥0 is a complete family of orthogonal projections in the Hilbert space Z1/2 given by

Pn = diag [En, En] , n ≥ 1 , (3.22)

and

An = BnPn, Bn =

[
0 1
−dλn −c

]

, n ≥ 1. (3.23)

This group {T (t)}t∈IR decays exponentially to zero. In fact, we have the following estimate

‖T (t)‖ ≤M(c, d)e−
c
2
t, t ≥ 0, (3.24)

where

M(c, d)

2
√
2
= sup
n≥1

{

2

∣
∣
∣
∣
c+
√
4dλn − c2√
c2 − 4dλn

∣
∣
∣
∣ ,

∣
∣
∣
∣
∣
(2 + d)

√
λn

4dλn − c2

∣
∣
∣
∣
∣

}

.

Proof Computing Az yields,

Az =

[
0 I

−dA −c

] [
w

v

]

=

[
v

−dAw − cv

]

=

[ ∑∞
n=1Env

−d
∑∞
n=1 λnEnw − c

∑∞
n=1Env

]

=
∞∑

n=1

[
Env

−dλnEnw − cEnv

]

=
∞∑

n=1

[
0 1
−dλn −c

] [
En 0
0 En

] [
w

v

]

=

∞∑

n=1

AnPnz.

It is clear that AnPn = PnAn. Now, we need to check condition (3.17) from Lemma 3.1. To

this end, we compute the spectrum of the matrix Bn. The characteristic equation of Bn is given



by

λ2 + cλ+ dλn = 0,

and the eigenvalues σ1(n), σ2(n) of the matrix Bn are given by

σ1(n) = −μ+ iln, σ2(n) = −μ− iln,

where,

μ =
c

2
and ln =

1

2

√
4dλn − c2.

Therefore,

eBnt = e−μt
{

cos lntI +
1

ln
(Bn + μI)

}

= e−μt

[
cos lnt+

c
2ln
sin lnt

sin lnt
ln

−dS(n)λ1/2n sin lnt cos lnt− c
2ln
sin lnt

]

,

From the above formulas we obtain that

eBnt = e−μt

[
a(n) b(n)

ln

−dS(n)λ1/2n c(n) d(n)

]

where

a(n) = cos lnt+
c

2ln
sin lnt, b(n) = sin lnt,

c(n) = sin lnt, d(n) = cos lnt−
c

2ln
sin lnt,

and

S(n) =

√
λn

4dλn − c2
.

Now, consider z = (z1, z2)T ∈ Z1/2 such that ‖z‖Z1/2 = 1. Then,

‖z1‖
2
1/2 =

∞∑

j=1

λj‖Ejz1‖
2 ≤ 1 and ‖z2‖

2
X =

∞∑

j=1

‖Ejz2‖
2 ≤ 1.

Therefore, λ1/2j ‖Ejz1‖ ≤ 1, ‖Ejz2‖ ≤ 1, j = 1, 2, . . . .



and so,

‖eAntz‖2Z1/2 = e−2μt

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

[
a(n)Enz1 +

b(n)
ln
Enz2

−dS(n)c(n)λ
1
2
nEnz1 + d(n)Enz2

]∣∣
∣
∣
∣

∣
∣
∣
∣
∣

2

Z1/2

= e−2μt‖a(n)Enz1 +
b(n)

ln
Enz2‖

2
1
2

+ e−2μt‖

− dS(n)c(n)λ
1
2
nEnz1 + d(n)Enz2‖

2
X

= e−2μt
∞∑

j=1

λj‖Ej

(

a(n)Enz1 +
b(n)

ln
Enz2

)

‖2

+ e−2μt
∞∑

j=1

‖Ej

(

−dS(n)c(n)λ
1
2
nEnz1 + d(n)Enz2

)

‖2

= e−2μtλn‖a(n)Enz1 +
b(n)

ln
Enz2‖

2 + e−2μt‖

− dS(n)c(n)λ
1
2
nEnz1 + d(n)Enz2‖

2

≤ e−2μt(|a(n)|+ |
λ
1
2

ln
b(n)|)2 + e−2μt(|dS(n)c(n)|+ |d(n)|)2,

where

|
λ
1
2

ln
b(n)| =

∣
∣
∣
∣
∣

√
λn

c2 − 4dλn

∣
∣
∣
∣
∣
.

If we set,

M(c, d)

2
√
2

= sup
n≥1

{

2

∣
∣
∣
∣
c+
√
4dλn − c2√
c2 − 4dλn

∣
∣
∣
∣ ,

∣
∣
∣
∣
∣
(2 + d)

√
λn

4dλn − c2

∣
∣
∣
∣
∣

}

,

we have,

‖eAnt‖ ≤M(c, d)e−μt, t ≥ 0 n = 1, 2, . . . .

Hence, applying Lemma 3.1 we obtain that A generates a strongly continuous group given by

(3.21). Next, we will prove this group decays exponentially to zero. In fact,

‖T (t)z‖2 ≤
∞∑

n=1

‖eAntPnz‖
2

≤
∞∑

n=1

‖eAnt‖2‖Pnz‖
2

≤ M2(c, d)e−2μt
∞∑

n=1

‖Pnz‖
2

= M2(c, d)e−2μt‖z‖2.



Therefore,

‖T (t)‖ ≤M(c, d)e−μt, t ≥ 0.

4 Exact Controllability of the Linear System

Now, we shall give the definition of controllability in terms of the linear system

z′ = Az +Bu z ∈ Z1/2, t ≥ 0, (4.25)

where

z =

[
w

v

]

, B =

[
0
IX

]

, A =

[
0 IX

−dA −cIX

]

. (4.26)

For all z0 ∈ Z1/2 equation (4.25) has a unique mild solution given by

z(t) = T (t)z0 +

∫ t

0
T (t− s)Bu(s)ds, 0 ≤ t ≤ t1. (4.27)

Definition 4.1 (Exact Controllability) We say that system (4.25) is exactly controllable on

[0, t1], t1 > 0, if for all z0, z1 ∈ Zr there exists a control u ∈ L2(0, t1;X) such that the solution

z(t) of (4.27) corresponding to u, verifies: z(t1) = z1.

Consider the following bounded linear operator

G : L2(0, t1;U)→ Z1/2, Gu =
∫ t1

0
T (−s)B(s)u(s)ds. (4.28)

Then, the following proposition is a characterization of the exact controllability of the system

(4.25).

Proposition 4.1 The system (4.25) is exactly controllable on [0, t1] if and only if, the operator

G is surjective, that is to say

G(L2(0, t1;X)) = Range(G) = Z1/2.



Now, consider the following family of finite dimensional systems

y′ = AjPjy + PjBu, y ∈ R(Pj); j = 1, 2, . . . ,∞, (4.29)

where R(Pj) = Range(Pj).

Then, the following proposition can be shown the same way as Lemma 1 from [11].

Proposition 4.2 The following statements are equivalent:

(a) System (4.29) is controllable on [0, t1].

(b) B∗P ∗j e
A∗j ty = 0, ∀t ∈ [0, t1], ⇒ y = 0,

(c) Rank

[

PjB
...AjPjB

]

= 2

(d) The operator Wj(t1) : R(Pj)→R(Pj) given by:

Wj(t1) =

∫ t1

0
e−AjsBB∗e−A

∗
j sds, (4.30)

is invertible.

Now, we are ready to formulate the main result on exact controllability of the linear system

(4.25).

Theorem 4.1 The system (4.25) is exactly controllable on [0, t1]. Moreover, the control u ∈

L2(0, t1;X) that steers an initial state z0 to a final state z1 at time t1 > 0 is given by the

following formula:

u(t) = B∗T ∗(−t)
∞∑

j=1

W−1j (t1)Pj(T (−t1)z1 − z0). (4.31)

Proof . First, we shall prove that each of the following finite dimensional systems is controllable

on [0, t1]

y′ = AjPjy + PjBu, y ∈ R(Pj); j = 1, 2, . . . ,∞. (4.32)

In fact, we can check the condition for controllability of the systems

B∗P ∗j e
A∗j ty = 0, ∀t ∈ [0, t1], ⇒ y = 0.



In this case the operators Aj = BjPj and A are given by

Bj =

[
0 1
−dλj −c

]

, A =

[
0 IX

−dA −cI

]

,

and the eigenvalues σ1(j), σ2(j) of the matrix Bj are given by

σ1(j) = −μ+ ilj , σ2(j) = −μ− ilj ,

where,

μ =
c

2
and lj =

1

2

√
4dλj − c2.

Therefore, A∗j = B
∗
jPj with

B∗j =

[
0 −1
dλj −c

]

,

and

eBjt = e−μt
{

cos ljtI +
1

lj
(Bj + cI)

}

= e−μt

[
cos ljt+

c
2lj
sin ljt

sin ljt
lj

−dS(j)λ1/2j sin ljt cos ljt−
c
2lj
sin ljt

]

,

eB
∗
j t = e−μt

{

cos ljtI +
1

lj

(
B∗j + μI

)
}

= e−μt

[
cos ljt+

c
2lj
sin ljt − sin ljtlj

dS(j)λ
1/2
j sin ljt cos ljt− c

2lj
sin ljt

]

,

B =

[
0
IX

]

, B∗ = [0, IX ] and BB
∗ =

[
0 0
0 IX

]

.

Now, let y = (y1, y2)T ∈ R(Pj) such that

B∗P ∗j e
A∗j ty = 0, ∀t ∈ [0, t1].

Then,

e−μt
[

dS(j)λ
1/2
j sin ljty1 +

(

cos ljt−
c

2lj
sin ljt

)

y2

]

= 0, ∀t ∈ [0, t1],

which implies that y = 0.



From Proposition 4.2 the operator Wj(t1) : R(Pj)→R(Pj) given by:

Wj(t1) =

∫ t1

0
e−AjsBB∗e−A

∗
j sds = Pj

∫ t1

0
e−BjsBB∗e−B

∗
j sdsPj = PjW j(t1)Pj

is invertible.

Since

‖e−Ajt‖ ≤M(c, d)eμt, ‖e−A
∗
j t‖ ≤M(c, d)eμt,

‖e−AjtBB∗e−A
∗
j t‖ ≤M2(c, d)‖BB∗‖e2μt,

we have

‖Wj(t1)‖ ≤M
2(c, d)‖BB∗‖e2μt1 ≤ L(c, d), j = 1, 2, . . . .

Now, we shall prove that the family of linear operators,

W−1j (t1) =W
−1
j (t1)Pj : Z1/2 → Z1/2

is bounded and ‖W−1j (t1)‖ is uniformly bounded. To this end, we shall compute explicitly the

matrix W
−1
j (t1). From the above formulas we obtain that

eBjt = e−μt
[
a(j) b(j)
−a(j) c(j)

]

, eB
∗
j t = e−μt

[
a(j) −b(j)
d(j) c(j)

]

,

where

a(j) = cos ljt+
c

2lj
sin ljt, b(j) =

sin ljt

lj
,

c(j) = dS(j)λ
1/2
j sin ljt, d(j) = cos ljt−

c

2lj
sin ljt,

and

S(j) =

√
λj

4dλj − c2
.

Then

e−BjsBB∗e−B
∗
j s =

[
b(j)c(j)λ

1/2
j I −b(j)d(j)I

−d(j)c(j)λ1/2j I d2(j)I

]

.



Therefore,

W j(t1) =




dS(j)λ

1/2
j

lj
k11(j)

1
lj
k12(j)

−dS(j)λ1/2j k21(j) k22(j)



 ,

where

k11(j) =

∫ t1

0
e2cs sin2 ljsds

k12(j) = −
∫ t1

0
e2cs

[

sin ljs cos ljs−
c sin2 ljs

2lj

]

ds

k21(j) =

∫ t1

0
e2cs

[

sin ljs cos ljs−
c sin2 ljs

2lj

]

ds

k22(j) =

∫ t1

0
e2cs

[

cos ljs−
c sin ljs

2lj

]2
ds.

The determinant Δ(j) of the matrix W j(t1) is given by

Δ(j) =
dS(j)λ

1/2
j

lj
[k11(j)k22(j)− k12(j)k21(j)]

=
dS(j)λ

1/2
j

lj
{

(∫ t1

0
e2μs sin2 ljsds

)(∫ t1

0
e2μs

[

cos ljs−
c sin ljs

2lj

]2
ds

)

−

(∫ t1

0
e2μs

[

sin ljs cos ljs−
c sin2 ljs

2lj

]

ds

)2
}.

Passing to the limit as j goes to ∞, we obtain,

lim
j→∞

Δ(j) =
(e2μt1 − 1)(1− 2eμt1 + e2μt1)

24μ3
.

Therefore, there exist constants R1, R2 > 0 such that

0 < R1 < |Δ(j)| < R2, j = 1, 2, 3, . . .

Hence,

W
−1
(j) =

1

Δ(j)




k22(j) − 1lj k12(j)

dS(j)λ
1/2
j k21(j)

dS(j)λ
1/2
j

lj
k11(j)





=

[
b11(j) b12(j)

b21(j)λ
1/2
j b22(j)

]

,



where bn,m(j), n = 1, 2;m = 1, 2; j = 1, 2, . . . are bounded. Using the same computation as in

Theorem 3.1 we can prove the existence of constant L2(c, d) such that

‖W−1j (t1)‖Z1/2 ≤ L2(c, d), j = 1, 2, . . . .

Now, we define the following linear bounded operators

W (t1) : Z1/2 → Z1/2, W
−1(t1) : Z1/2 → Z1/2,

by

W (t1)z =
∞∑

j=1

Wj(t1)Pjz, W
−1(t1)z =

∞∑

j=1

W−1j (t1)Pjz.

Using the definition we see that, W (t1)W−1(t1)z = z and

W (t1)z =

∫ t1

0
T (−s)BB∗T ∗(−s)zds.

Next, we will show that given z ∈ Z1/2 there exists a control u ∈ L
2(0, t1;X) such that Gu = z.

In fact, let u be the following control

u(t) = B∗T ∗(−t)W−1(t1)z, t ∈ [0, t1].

Then,

Gu =

∫ t1

0
T (−s)Bu(s)ds

=

∫ t1

0
T (−s)BB∗T ∗(−s)W−1(t1)zds

=

(∫ t1

0
T (−s)BB∗T ∗(−s)ds

)

W−1(t1)z

= W (t1)W
−1(t1)z = z.

Then, the control steering an initial state z0 to a final state z1 in time t1 > 0 is given by

u(t) = B∗T ∗(−t)W−1(t1)(T (−t1)z1 − z0)

= B∗T ∗(−t)
∞∑

j=1

W−1j (t1)Pj(T (−t1)z1 − z0).



5 Exact Controllability of the Non-Linear System

Now, we shall give the definition of controllability in terms of the non-linear systems

{
z′ = Az +Bu+ F (t, z, u(t)) z ∈ Z1/2, t > 0,

z(0) = z0.
(5.33)

For all z0 ∈ Z1/2 equation (5.33) has a unique mild solution given by

z(t) = T (t)z0 +

∫ t

0
T (t)T (−s)[Bu(s) + F (s, z(s), u(s))]ds. (5.34)

Definition 5.1 (Exact Controllability) We say that system (5.33) is exactly controllable on

[0, t1], t1 > 0, if for all z0, z1 ∈ Z1/2 there exists a control u ∈ L
2(0, t1;X) such that the solution

z(t) of (5.34) corresponding to u, verifies: z(t1) = z1.

Consider the following non-linear operator

GF : L
2(0, t1;U)→ Z1/2, (5.35)

given by

GFu =

∫ t1

0
T (−s)B(s)u(s)ds+

∫ t1

0
T (−s)F (s, z(s), u(s))ds, (5.36)

where z(t) = z(t; z0, u) is the corresponding solution of (5.34).

Then, the following proposition is a characterization of the exact controllability of the non-

linear system (5.33).

Proposition 5.1 The system (5.33) is exactly controllable on [0, t1] if and only if, the operator

GF is surjective, that is to say

GF (L
2(0, t1;X)) = Range(GF ) = Z1/2.

Lemma 5.1 Let u1, u2 ∈ L2(0, t1;X), z0 ∈ Z1/2 and z1(t; z0, u1), z2(t; z0, u2) the corresponding

solutions of (5.34). Then the following estimate holds:

‖z1(t)− z2(t)‖Z1/2 ≤M [‖B‖+ L]e
MLt1

√
t1‖u1 − u2‖L2(0,t1;X), (5.37)



where 0 ≤ t ≤ t1 and

M = sup
0≤s≤t≤t1

{‖T (t)‖‖T (−s)‖}. (5.38)

Proof Let z1, z2 be solutions of (5.34) corresponding to u1, u2 respectively. Then

‖z1(t)− z2(t)‖ ≤
∫ t

0
‖T (t)‖‖T (−s)‖‖B‖‖u1(s)− u2(s)‖

+

∫ t

0
‖T (t)‖‖T (−s)‖‖F (s, z1(s), u1(s))− F (s, z2(s), u2(s))‖ds

≤ M [‖B‖+ L]
∫ t

0
‖u1(s)− u2(s)‖+ML

∫ t

0
‖z1(s)− z2(s)‖ds

≤ M [‖B‖+ L]
√
t1‖u1 − u2‖+ML

∫ t1

0
‖z1(s)− z2(s)‖ds.

Using Gronwall’s inequality we obtain

‖z1(t)− z2(t)‖Z1/2 ≤M [‖B‖+ L]e
MLt1

√
t1‖u1 − u2‖L2(0,t1;X), 0 ≤ t ≤ t1.

Now, we are ready to formulate and prove the main Theorem of this section

Theorem 5.1 If the following estimate holds

‖B‖ML‖W−1(t1)‖H(t1)t1 < 1, (5.39)

where H(t1) =M [‖B‖+ L]eMLt1t1 + 1, then the non-linear system (5.33) is exactly controllable

on [0, t1].

Proof Given the initial state z0 and the final state z1, and u1 ∈ L2(0, t1;X), there exists u2 ∈

L2(0, t1;X) such that

0 = z1 −
∫ t1

0
T (−s)F (s, z1(s), u1(s))ds−

∫ t1

0
T (−s)Bu2(s)ds,

where z1(t) = z(t; z0, u1) is the corresponding solution of (5.34).



Moreover, u2 can be chosen as follows:

u2(t) = B
∗T ∗(−t)W−1(t1)

(

z1 −
∫ t1

0
T (−s)F (s, z1(s), u1(s))ds

)

.

For such u2 there exists u3 ∈ L2(0, t1;X) such that

0 = z1 −
∫ t1

0
T (−s)F (s, z2(s), u2(s))ds−

∫ t1

0
T (−s)Bu3(s)ds,

where z2(t) = z(t; z0, u2) is the corresponding solution of (5.34), and u3 can be taken as follows:

u3(t) = B
∗T ∗(−t)W−1(t1)

(

z1 −
∫ t1

0
T (−s)F (s, z2(s), u2(s))ds

)

.

Following this process we obtain two sequences

{un} ⊂ L
2(0, t1;X), {zn} ⊂ L

2(0, t1;Z1/2), (zn(t) = z(t; z0, un)) n = 1, 2, . . . ,

such that

un+1(t) = B∗T ∗(−t)W−1(t1)

(

z1 −
∫ t1

0
T (−s)F (s, zn(s), un(s))ds

)

(5.40)

0 = z1 −
∫ t1

0
T (−s)F (s, zn(s), un(s))ds−

∫ t1

0
T (−s)Bun+1(s)ds. (5.41)

Now, we shall prove that {zn} is a Cauchy sequence in L2(0, t1;Z1/2). In fact, from formula (5.40)

we obtain that

un+1(t)− un(t) =

B∗T ∗(−t)W−1(t1)

(∫ t1

0
T (−s) (F (s, zn−1(s), un−1(s))− F (s, zn(s), un(s))) ds

)

.

Hence, using lemma 5.1 we obtain

‖un+1(t)− un(t)‖

≤ ‖B‖ML‖W−1(t1)‖
∫ t1

0
(‖zn(s)− zn−1(s)‖+ ‖un(s)− un−1(s)‖) ds

≤ ‖B‖ML‖W−1(t1)‖
∫ t1

0
M [‖B‖+ L]eMLt1

√
t1‖un(s)− un−1(s)‖ds

+ ‖B‖ML‖W−1(t1)
∫ t1

0
‖un(s)− un−1(s)‖ds.



Using Hóder’s inequality we obtain

‖un+1 − un‖L2(0,t1;X) ≤ ‖B‖ML‖W
−1(t1)‖H(t1)t1‖un+1 − un‖L2(0,t1;X). (5.42)

Since ‖B‖ML‖W−1(t1)‖H(t1)t1 < 1, then {un} is a Cauchy sequence in L2(0, t1;X) and therefore

there exists u ∈ L2(0, t1;X) such that limn→∞ un = u in L2(0, t1;X).

Let z(t) = z(t; z0, u) be the corresponding solution of (5.34). Then we shall prove that

lim
n→∞

∫ t1

0
T (−s)F (s, zn(s), un(s))ds =

∫ t1

0
T (−s)F (s, z(s), u(s))ds.

In fact, using lemma 5.1 we obtain that
∥
∥
∥
∥

∫ t1

0
T (−s)[F (s, zn(s), un(s))− F (s, z(s), u(s))]ds

∥
∥
∥
∥

≤
∫ t1

0
ML[‖zn(s)− z(s)‖+ ‖un(s)− u(s)‖]ds

≤
∫ t1

0
ML[M [‖B‖+ L]eMLt1

√
t1‖un − u‖L2(0,t1;X) + ‖un(s)− u(s)‖]ds

≤ MLK(t1)
√
t1‖un − u‖L2(0,t1;X).

From here we obtain the result.

Finally, passing to the limit in (5.41) as n goes to ∞ we obtain that

0 = z1 −
∫ t1

0
T (−s)F (s, z(s), u(s))ds−

∫ t1

0
T (−s)Bu(s)ds.

i.e.,

GFu = z1.

Remark 5.1 a) The controllability of the system (1.2) is independent of the external force P (t)

since condition (5.39) does not depend on P (t).

b) If f = 0, the condition for the exact controllability of the system (1.2) can be expressed in

terms of k. i.e.,

‖B‖Mk‖W−1(t1)‖H(t1)t1 < 1.
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