NOTAS DE MATEMATICAS
N= 110

ON THE OPTIMAL CONTROL IN BANACH SPACES

BY

HUGO. LETVA AND DIOMEDES BARCENAS

UNIVERSIDAD DE LOS ANDES
FACULTAD DE CIENCIAS
DEPARTAMENTO DE MATEMATICAS
MERIDA-VENEZUELA

1991
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ABSTRACT.

VIn this paper we prove some properties of attanaible sets
of the abstract control system x = Ax.+ Bu, where the controls
u take their values almost everywhere in a convex weakly
compact subset & of the control space. Furthermore we cha-
racterize the extremal controls and give a neccesary and suffi-
cient condition for the normality of the system. After we
prove an existence theorem for time optimal control, and
establish a Maximum Principle for that control. Moreover, under
certain conditions, the minimal control is the unique control
that satisfies the tranversality conditiion; that is we can obtain

a sufficient condition for optimality.
1. INTRODUCTION AND PRELIMINARIES.

In this  paper let X be a reflexive Banach space, U a
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separable reflexive Banach space, A-with domain D(A) - the
infinitesimal generator of a strongly continuous semigroup
S(t) (t > 0) in the Banach space X, B a linear bounded ope-
rator whose domain is U and its range is contained in X
(B € L(U,X)); X* and U* the respective dual spaces of X and

U, <.,.> the duality and @ a nonempty subset of U.

We will study the property of the set of attanaible

.

points and the time optimal control problem associated with

the infinite-dimensional system

x(t) Ax(t) + B u(t) t >0

(1.1)

X(O) =2 X g

where the state x(t) € X and the admissible controls are defined

ou :m+0=[o,w) and take their values is { almost everywhere.

Each control is a measurable and essentially bounded function

"on finite intervals of R+0 (we will denote this functions by

Lloc

(<]

For each admissible control U(.) , the mild solution of

(1.1) is given by

t
(1.2) x (t) = S(t)x_+ ( S(t-a)B u(e)da, t >0
u o 0 Z

DEFINITION 1.1. Given t. > 0 the set of admissibles control

1



on [0,t,] is defined by

C(tl) = {ue L (0,t;; U) : u(t) e 9 a.e}
and the corresponding set of attanadible points by

K(t;) = {xu(tl): x,(.) 1s a mild solution of (1.1), u e(th)}

.

DEFINITION 1.2. A control u ¢ C(tl) is called an extremal

control 1f the corresponding solution xu satisfies

Xu(tl) € BK(tl).

DEFINITION 1.3. For each t > 0, consider a target -set
G(t) C X. Suppose t* > 0 and U* & C(t*) such that x*(t*)e G(t*).

Then u* is called an optimal control if

t* = inf {t e[0,%): R(t) G(t) # @},

In: references [1] and [5] the authors the time optimal
control problem for the case in that , G(t) = {xi}, but they
did not characterize the normality either analyze the

transversality as a sufficient condition of optimality.

We will use the following notation:
wCc(x) = {K ¢ 2X \ {#} : K is convex and closed}.

DEFINITION 1.4. on 2%\ {#} the Hausdorff pseudometric »p



is defined by

D(Kl, Kz) = max {sup d(a,B), sup d(A,b)},
achA beB

Since p(A,B) = 0 <=> A = B, the pseudometric p restric-
ted to the closed subsets of X is a metric which can take the
value « and if we constrain it to WC(X), we get that WC(X)

is a complete metric space (see [8]).

To given an idea about this work, we recall some results
on attainable sets time optimal control problem, for finite-di-

mensional linear control systems:

If X =R, v = R"

and £ is a nonempty compact subset
of U, then in [4] and [7] it is proved that K(t) is convex,
compact and varying continuously with t, respect to the Haus-
dorff metric. In this case to characterize the extremal con-
trols they use the fact that in finite-dimensional space

foreach boundary point of a closed convex set there is a su-

pport hyperplane and the following selection theorem.

For every non-trivial solution n(.) of adjoint equation

Y= - YA, there is u e C(ti) such that

n(t)Bu(t) = max n(t)Bv a.e on [:O,tl:].
: veSR

Then by mean of this characterization they find a maximum



principle for optimal control.

In infinite-dimensional case we don't have either support
hyperplane for each boundary point of a closed convex set or
adjoint equation. However each statement of the following

proposition can be seen in [9].
We recall that X and U are reflexive Banach spaces.

PROPOSITION 1.1. If Q is convex and weakly compact, then

a) C(tl) is convex and weakly compact in

Lp(O,tliU) (1 < p < =),
b) K(tl) is convex and weakly compact in X.
c) The family of functions
£: X* —> R (t e[0,t,])
defined by
ft(x*) = max <x*, S(t)Bv>

veSR

is equicontinuous.

d) For each x* e X*, the mapping

t e ]:O,tl] -—> max <x*, S(t)Bv>
veR

is continuous.

el If 0 ¢ Q, for each x* ¢ X* there exists u ¢ C(tl)sucwﬂﬂmt




<x*, S(t) Bu(t)> = max <x*, S(t) Bv> a.e
vefl

in [0,t,].

REMARK. The statements (a)-(d) had been obtained in a more

general context by BArcenas-Leiva [2].

Throught this work we will suppose K(t) has nonempty in-

terior (int K(t) # #).

Linear control systems with this property (int K(t) # ¢)

had been broadly characterized (see for example [3], [9]).

In all this work we will suppose 0 €  and Q is a weakly compact set.

2. CHARACTERIZATiON OF EXTREMAL CONTROLS.

PROPOSITION 2.1. K(t) varies continuously with t > 0 respect

to the Hausdorff metric.

PROOF. Let t1 > 0 be fixed and € > 0, we must find § > O

such that .

[t, = ty] < 8 => p(K(t), K(ty) < e.

Let t, be with [tl - t2| < t;. If x e K(t;), there exists

u € C(tl) such that

t
X = S(t;)xg + Jol S(tl—a) Bu(a)da.



If we define the control

then

2) .

and

t
Hxﬂliﬂﬂgmo-ﬂamgkwlL2m5mwﬁmmw1

1
Y
; J I 8(t,~)Bula) - S(t,-a) Bu(a) | da. (1)
)
It is easy to see that
tliﬂ I s(t)x, - S(tl)xoll= 0
2771
and
t, _
lim | f S(tz—a)Bu(a)daH = 0.
t2+t1 tl
Since
linm || S(tz-a)Bu(a)—S(tl-a)BU(a)Il= 0,
£ty

and, by Hille-Yosida's Theorem there exist M,w > 0 such that



w(tl—&)

4

|| s(t, -a)Bu(a)-S(t,~a)Bu(a) || < Me
2 1 -

so by applying dominated convergence theorem to the first

term on the right of (1), we can find 0 < § < 1 such that

lt, = tg] < & = || x-y]| < e.

2

.

This concludes the proof when ty> 0. The case t, = 0 is evident. #

COROLLARY 2.1. If p € int K(tl), there is a neigborhood N

of p and § > 0 such that N C:K(t2) for ltz—tll < 8.

PROOF. Since p € int K(tl) there is r > 0 such that

B(p,r) € K(t;). We put
o = inf{|| x-y|| : x € 3B(p,xr), ¥y € 3 K(tl)} > 0

without loss of generality can suppose a-2r > 0. Hence, by

proposition 2.1 there is § > 0 such that

[ty = tg] < 8 => p(K(t)), K(t,) < amar | (2)

If X, € B(p,xr) C K(t2), there is x* € X* which satisfies the

condition

K(tz) c {x & X: x*¥(x) < x*(xo)}.

On the other hands we have



I xgyll 2 |l y=2ll = || % -z

> o - ]]xo—zjl; y € 3K(t,), z ¢ 3B,

hence

[l x =yl > ar y € 3K(t))

which implies that there exists Y € :aK(tl) such that

L _ a—2r

inf || x-y [l > =5~

erxo
where on = {x é X 1 <x*, X=X > = 0}.
Thus

. -2

inf || x-y || > 425

xeK(t:)

This contradicts the formula (2). #

THEOREM 2.1. A control u € C(tl) is extremal if and only if

there is a non-zero XxX* g X¥* such that

<X¥*, S(tl—t)Bu(t) > = max <x¥*, S(tl—t)Bv>
Vel

a.e on [p,tij.
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PROOF. If u is an extremal control, the corresponding solu-

tion x(.) satisfies x(tl) € 23 K(tl)' Since K(tl) is convex

and - weakly compact  and itK(t,) # # (t;> 0) there is

X* € X¥*; x* ¥ 0 such that
<x*, x = x(£;)> <0 ¥x e K(t)).

Suppose that there exists E c:[p,ti] with positive measure

such .that

<x*, S(tl—t) Bu(t) >=< max <x*, S(t,-t),Bv> (t e E).
vel?

By proposition 1.1, there exists U e C(tl) such that

<x*, S(t -t)Bﬁ(t)> = max <x*, S(t,-t)Bv>
1 vel 1

~a.e on I:O,tlj ard the corresponding solution x(.) satisfies the

inequality

<x*, §(tl) - x(tl)> =

t )
= I l[%X*, S(tl'a)B&(u)> - <x*, S(tl-a)Bu(u){]du
0

which contradicts the choices of x*. Hence

<x*, S(,-t)Bu(t)>=max <x*, S(tl~t)BV>

1 vell

a.e en [B,t,].
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Conversely if u ¢ C(tl) and x* e X* different from zero

for which

<x*, S(tl—t) Bu(t)> = max <x%*, S(ti—t)BV> a.e
' vef

~

on [D,ti] and x(.) is the corresponding solution for u; for

A\
each x(tl) £ K(tl) there is ﬁ € C(tl) such that

t

" 3 1 _ "
X(tl) = S(tl)XO + fo S(tl a) Bu(a)da.
Hence
t
N l \
<x*, X(tl) - X(tl)> = J <x¥*, S(tl—u)B(u(a)—u(a))du>
0 . '
< 0,

which implies x(tl) 3 aK(tl). #

COROLLARY 2.2. Let u € C(tl) be an extremal control with
solution x(.); Then for every 1 € (O,ti], the restriction
of u to the interval [b,w] is an exéremal control. Further-
more, if x* & X* separates x(tl) and K(tl), then x* separa-

tes x(1) and X(1).
PROOF. It is not hard.
3. NORMAL CONTROL SYSTEMS.

DEFINITION 3.1. The control system (1.1) is called normal if
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the following implication holds: If u.,u, ¢ C(t,) transfer x
0

1772 1

a.e on [p,tl].

1

to the same p ¢ BK(tl), then u, = u,

Theorem 3.1. If the control system (1.1) is normal, then

K(tl) is strictly convex.

PROOF. Suppose there exists a support hyperplane Ht for
’ 1

K(tl) for which Ht n K(tl) contains a line's segment L.
1
Let pc?1 7 Py, € L with u s u € C(tl) their corresponding

controls respectively.

We now considerer the Banach space Y = X x X with the

)

(=2

norm

Y = H Xl||X+ “ X2HX

el - }

and the function

S(tl-t) Bua(t)

£(t)= , teJds= fo,t,].
S(tl—t) Bub(t)

with values in Y. Clearly f ¢ L (O{tl,Y). By Liapunov's

theorem (see [5]) the set

F = {w(D)=f f(t)dt: D € J is measurable!}
D

has convex closure. Thus

%‘-w(J) =%W(J) +%W(¢) e F ;
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therefore there exists a sequence {w(Dn)} contained in F

such that
, 1 . 1
lim w(D_ ) = 5 w(J); lim w(J\D ) = 5 w(J).
n->o n n->co n

Consider the controls

ua(t) ’ t € D

n .
u1E2)(t)=<
Lub(t) , t e J\ D,
ua(t) t e I\ D
(2) _
u (t)=<
ub(t) t e Dn'
. . . (1) (2) .
with corresponding solutions X, (.) and X - It is easy to
see that
. (1) - 1s (2) -1 1
lim x (tl) = lim X (tl) =3 P, + 5 Py -
n-o n>o

Since C(tl) is weakly compact in Lp (O,tl; u),
(1)
n }

(1 < p < »); we can suppose that the sequences {u and

{uéz)} converge weakly to the controlsu,, u, ¢ C(t)) respecti-
vely. Therefore for each x* ¢ X* we have
t

. . (1) :
lim <x*,x = * -
¥ (t])> <X*, S(t])xO + J S(t] u)Bul(u)du>




t
1
Pyt 3 P> = <x*, s(t)xo + IOS(tl-a)Buz(a)da>

N =

= {x*,

lim <x¥, x(zy(tl)>.
n--o n

This implies
S(tl—a)Bul(a)da
, €
= S(t )xO + J s(tl-u)Buz(a)du ;

because X 1is a reflexive Banach space and so S*{(t) (t

is a strongly continuous semigroup on X* (see EE]).

Thus, by normality of the system (1.1) we obtain

(3.1) ’ u, (t) = u,(t) a.e on J = [b,ti].

-14-

Since C(tl) C Lp (O,tl;U) (1 < p < =), from equality

(3.1) we get

lim <u¥*, u(l)- u(2)> = 0 for each u* ¢ L_ (0,t,;U)*
- n n P 1

. *
Lq _(.O,tl, U*) ,

where

o [
+
=
]
-

Thereforxey by uél) and uéz), definitions we get
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<u*, u_-u,> =0 for each u* ¢ L (0,t u*).
a q9

b 17

Thus u_(t) = u (t) a.e on J = [O,tlj; and consequently p,_=p,

which is a contradiction. This concludes the proof. #

THEOREM 3.2. The control system (1.1) is normal if and only
if for each x* € X* non-zero and for each pair of controls

u u, € C(tl),‘such that ' .

1!

(3.2) <x*, S(t;~t)Buy(t)> = <x*, S(tl-t)Bué(t)>

= max <x*, S(t;-t)Bv> a.e on [p,tl]
vell '

we have u;, = u, a.e on [0,t;].

PROOF. We suppose the control system (1.1) normal and consi-
derer x* € X* a continuous linear functional non-zero. Let
ul(.), u2(.) be controls in C(tl) with the corresponding so-

lutions xl(.), x2(.) such that

<x*, S(tl—t)Bul(t)> = <x*, S(tl—t)BuZ(t)>

= max <x*, S(t;-t)Bv> a.e ou [O,tl].
vell

Let I be the hyperplane defined by

I=1{xe X s <x*, x—xl(t1)>= 0> .
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That hyperplane is supporting K(tl) in the points X(tl)
and)%(tz) and by previous theorem)ﬁ(tl) =X2(t1). Since (1.1)

is supposed normal, then ul(t) = uz(t) a.e on J.

Conversely, if we suppose (3.2) and p e 3 K(t.) then

1

there exists x* € X*; x* # 0 such that
I={xeX; <x* x-p>= 0}

is supporting K(t;) at P because int K(tl) # 8

Let u,, u, be controls belonging Cﬁj) which transfer X

to p. Then, by Theorem 2,1,

<x*, S(ti-t)Bul(t)> = <x*, S(tl—t)Buz(t)>

= max <x*, S(t,-t)Bv a.e ou [0,t,].
vell ' 1 , 1

Therefore, by (3.2) we obtain u,(t) = u,(t) a.e on [p,tij.

Hence the system (1.1) is normal. #

COROLLARY 3.1. If the system (1.1) is normal on [0,t, ] then

it is normal on [0,1] for 0 < T <t
PROOF. It is easy to get. #

In following we will give an example in which the system

(1.1) is normal and, of course, K(tl) is strictly convex.

BXAMBLE 4.3, HOE 0 Be 3 seprietly convex and weakly compact
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‘set and suppose Ker B*s*(t) = {0}, for each t ¢ [b,ti].

Under these conditions the system (1.1) is normal. 1In

fact, by theorem 3.2 it is sufficient to prove:
Ugs U, € C(tl) and x g X*, x* # 0;

<x*, S(t) Bul(t)> = <x%, S(t)Buz(t)>

= max <x*, S(t)Bv> a.e on ]:O,tl]
Ve

because xé = B* S*(t)x* # 0, x} attains a maximum on 2 at a

t
unique point. So, the system (1.1) is normal and consequen-

tly K(tl) is strictly convex. #

4. TIME OPTIMAL CONTROL.

In this section we will prove an existence theorem for

time optimal control according to definition 1.3.

THEOREM 4.1. Suppose the target set G(t) € X is convex,
weakly compact and varies continuously with t on 0 < t < Ty -
If there exists a control u ¢ C(tl) such that xu(tl)e G(tl),

then there exists a time optimal control u* e C(t¥*).

PROOF. We put

H={te [0,1,] : K(t) N G(t) # o).
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To prove that H 1is a compact subset of R it is sufficient
to prove that H is closed. If {tn} is a sequence in H

with 1lim tn = t' and K(t') N G(t') = g, then

n->co

d = inf{|| x-y|| : x e K(t'), y e G(t")} > 0.

On the other hands, there exists N € N such that

.

n.> N = p(K(t), K(¢') < §, o(alt),ae) < 9.

Then, by the definition of -the Hausdorff metric there

exists X € K(t'), ¥ € G(t') such that

— d — d
Ixg =% <&, lixgwil<d.

Wi )
ith Xy € G(tN) n K(tN).

This implies,

which_ contradicts ‘the choice of d.
Hence, if t* = min H, then K(t*) N G(t*) # #

If u* ¢ C(t*) such that the corresponding solution x,(.) sa-

tisfies x,(t*) e G(t*), then u*(.) is an optimal control

required. #

REMARK 4.1. Theorem 4.1 remains valid i1f we change convex



and weakly compact target sets by compactness.

THEOREM 4.2. Under the hypotheses ¢f previous theorem, if

u* ¢ C(t*), 0 < t* < T, is an iptimal control, with corres-

ponding solution x,(.) then wu*(.) is extremal. That is:

(4.1) m(t) = max <x¥*, S(tl—t)Bv = <x*,S(tfﬁﬂBuﬁﬂ>
ves

a.e. on [p,t{], for some 0 # x* ¢ X*, Moreover, if G(t)= G

is canstant, then

(4.2) x,(t*) ¢ [PK(t*)\ U K(t)].
O<t<t*

PROOF. If x,(t*) € intK(t*), then by corollary 2.1, there
are an open subset N of X such that x,(t*) e Nand ¢ > 0 such

that

(4. 3) t*¥ - § < t < t* => N < K(t).

If

it

G(t) N N=g t e (t*-§,t*),
then G(t) ¢ N°, where N® denotes the complement of N.

We assert that G(t*) < N°. 1In fact, if x_ € G(t¥)

but X € Nc, then

0<d-= inch xo-xH < inf || x-x|| (t e (t*=8,t()).
XeN xeG(t)

~Hence we have
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p(G(t*, G(t) > 0 (t e(t*-§,t*)), which contradicts the continuity of
G(t) respect to the Hausderff metric. Therefore G(t*) C N°. In particular
G(t*)'Q N = . Which contradicts the definition of N. Thus there is

t é}(t*—é,t*) such that G(tl)(\ N # #. ﬂence from (4.3) we

1
obtain

K(tq) N G(t,) # 9 ,

.

and this contradicts that u*(.) is a time optimal control.
Thus x,(t*) e 3K(t*) which means that wu*(.) is an extremal

control. Hence by theorem 2.1 there exists x* & X* non-zero,

such that

m(t) = max <x*, S(t*-S)Bv> = <x*,S5(t*-S)Bu(s)>
vef

a.e on [b,t*]. Moreover the hyperplane

M(t*) = {x e X*: <x*, x-x,(t*)> =0}

is supporting . K(t*) at x,(t*).

Now, we suppose G(t) = G is constant. Then, since
u* is an optimal control, x,(t*) e K(t*) N G; therefore

X, (t*) ¢ K(t) ¥t e [0,£%). This implies

x,(t*) e BK(t*)\ U K(tI. #
O<t<t*
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REMARK 4.2. If S(t), (t € IR) is a strongly continuous group,

then given s € IR, for each XI € X* there exists xg £ X*

such that 8*(-s) xg = x{. In this case theorem 2.1 takes the

following form:

A control u € C(tl) is extremal if and only if, there

is 0 # x* ¢ X* such that

.

max <n(s),Bv> = <n(s), Bu(s)> a.e on |0,t ]
Vel

where

n(s) = s*(-s)x* , 0 < s < tl’

This 1s a generalization of a result for the finite-di-

mensional case (see |7]).

THEOREM 4.3. Suppose X, € D(A), S(t) (t € IR) is a strongly
continuous group on X,G(t) = G,is constant and u* e C(t*) is

an optimal control which satisfies

S(-s) Bu*(s) € D(A) a.e on [O,t¥], t* > 0
(4.4)
S(t-.) Bu*(.) € L (0,t;X) for all' t e [0,t%).

Then

M(t) = max <n(t), Ax,(t) + Bv> = <n(t), Ax§(t)+Bu*(t)>
vef

E aerined a.e on [0,t%], whare x,(.) = x () and n(t)=S(-t)x*
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with x* ¥ 0 according to Remark 4.2. Moreover we can choose
"n(t*) such that
(4.5) M(t*) > 0.

Furthemore, if G 1s convex we can choese n(t*) satis-

faying the transversality condition. Namely, the hyperpla-

ne

M(t*) = {x: <n t*, x-x,(t*)> = 0}

‘separates K(t*) and G at the point x,(t¥*).
PROOF. If hypothesis (4.4) is satisfied, then lemma 2.22
of [3] implies

X, (t) = BAx,(t) + Bu*(t) a.e on [0,t¥] ,

which implies M(t) is well defined. We will use a limit
process to- prove M(t*) > 0 because x,(.) may not be diffe-

rentiable.

From (4.2) we obtain x,(t,) ¢ K(t), if 0 < t; < t*.

Thus, by Theorem 9.1 of [3] there is n(t,) € X*, with
Iniepll = 1 and
(4.6) 0 < infl| x,(t¥)-x]|| = inf <nlty), x, (%) -x>

xeK(ty) - xeK(t,)
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Since K(tl) 1s weakly compact, there is x(tl) € K(tl)

such that

(4.7) 0 < infl| x, (t¥*) - x|| = nlty), x,(t*%)-x(t,)>

X € K(tl)

From (4.6) and (4.7) we get
<n(tl), X, (t)-x> < 0, for every x ¢ K(t,).
This means that

(4.8) <n(t;), x,(t*) - x(t;)> > 0 and <snty),x-x(ty)> <0

X € K(tl)’

Thus n(t;) separates x,(t*) of K(ty) at
x(ty) e K(t,).

A

We will now -*prove : that there is tl e-(tl,t*) such

that <n(tl), k(tl)> > 0. Otherwise, if for each t ¢ (£, %),

.

where %, (t) exists we have
<nlty), kX,(t)><ga.e on I:tl,t*:[,
fhen, since x,(.) is absolutely continuous,

t*

J <n(ty), X, (t)> dt < 0 <=> <nlty), x, (£*)-x,(t;)> < 0
t

3
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which implies

<nty),x, (%) - x(t)> = <n(t,), x*(t*)—x*(ti)>

toan(ty), x, () -x(t)> .

This contradicts (4.8).

In this way we can choose a sequence

satisfying
(4.9) <n(tn),,5<*(tn)> > 0 <=> <n(t ),Ax,(t ) +Bu*(t )>>0.

By weak cémpactness and uniform boundeness of the sets

K(t) 0 < t < t*, we can suppose:

1lim u*(En) ¥Yuegq, lim n(t ) ¥oo(e*)

n-—o n->oo
(4.10)

lim <n(tn), x(tn)> = o € IR

n-c

where denotes the weak convergence.

Consider the hyperplane 1II(t*) given by

M(t*) = {x e X: <n(t*), x-x,(t*)> = 0} .
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We will show that [II(t*) separates x,(t*) and K(t¥*).

In fact, i1f there is X, € K(t*) such that
(4.11) <n(t*), X = x, (t*)> > 0,
since from (4.8) we get
(4.12) <n(tn), x=x(t )> >0 (x € K(tn)) )
then, by the inequality
), x (89 =x(t )> < ] x, (£%)-x, (£ ) ||
and (4.10) we get

lim <n(t ) ,x(t ) > = <n(t*),x,(t*)>
n-w n:

Since 1lim p(K(tn),K(t*)) = 0, we can get a sequence
N>

x, € K(t)) n=1,2,... with lim I §n—£<o||'= 0 and by (4.12)

n-o
we have

(4.13) <nftn), En-x(tn)> < 0, n=1,2,...
Hence

0 < lim <n(t.), xn—x(tn)> = lim Lfn(tl),xn-xo>
n -+ n-o



-26-

+ <n(tn),xo> - <n(tn),x(tn)>

= <n(t*), xo-x*(t*)> > 0,

is a contradiction which (4.13).So N(t*) separates x,(t*) and
K(t*).

Since A 1is a closed operator, from (4.4) we get
t
n
0

" A x*(gn) = AS(il:\n)xO + As(gn) f S(~s)Bu*(s)ds

t
n

0

S(-s) ABu*(s)ds

It

S(tn)Axo + S(tn) J

which implies that

~ t*
lim Ax,(t ) S(t*)Ax_ + S(t¥*) J S(-s)ABu*(s)ds
n-o n © 0

It

]

Ax, (£*).

Hence, by taking limit in (4.9) we obtain M(t*) > 0.

If G 1is convex, by an analogous process we can find

a hyperplane  #fl*(t*) which separates K(t*) and G through

xo(t*)- #

COROLLARY 4.1. If A is a bounded operator and u e C(t;)

is an extremal control, then

(4.14) M(t) = max <n(t), Ax(t) + Bv>
vefl
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= <n(t), Ax(t) + Bu(t)> a.e on |:O,tl:|

is well defined and constant.

PROOF. Since A is a bounded operator, D(A) = X and

S(t) = exp(tA) is a strongly continuous group. In this way the
hypoteses of Theorem 4.3 are satisfied. Therefore M(.) is we.:ll defined -
and:pmoceeding as in Proposition 1.1, we get that M(.) is absolutely

continuous and hence differentiable almost everywhere on [:O,tlj .

We will estimate the derivative of M(t) at t = 7 where

1

it exists. Suppose T, > T, Then

M(Tz)'M(Tl)'> <n(T2);Ax(Tz) + Bu(Tl)> - <n(q0,Atg)+Buhi)>

T2"Tl T2"T

X(1,)-x(t,) n(t,)- n(t,)
_ 2 1 2 1
= <nlt,), A T > + < - » BAx(T,)>

n(t,) - nity)
+ < 1:2 =3 1 ' BU(T1)>.
2 1

Whithout loss generality we can suppose that x(T)
exists. If x* € X* satisfies the equation n(t)=exp(—A€)x*,

with x* # 0 then
n (t) = - A* exp(-A*t)x* = -A* n(t).

'Thus, by taking the limit as 7T, + 74, We have
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L > <nlry), Ax(ry) > + < i(r)), Ax(r;)>+< A(t;), Bulr,) >
= < n(Tl), A(Ax(rl) + Bu(Tl) > = < A*n(Tl), Ax(Tl)>
- { A% n(rl), Bu(Tl) > = 0,

Similar calculation shows that %% (r;) < 0. Consequently M

is constant on [b,ti] .

“

The following theorem proves that, under normality condi -
tions, the Maximum Principle (4.1) is sufficient for optimality,
provided that the optimal control exists and is the unique ex-

tremal control which satisfies. the transversality condition.

THEOREM 4.4. Let A be a bounded linear operator such that the

following conditions are satisfied:

a) (1.1) is normal for t > 0
b) G 1is a convex and weakly compact subset of X

c) If t >0, uecCc(t) and xu(E) € G then there exists a control

— loc

ue L, (Il+ U) such that xa(t) € G (t>%t) and u is

OI
not extremal at any t > E.
Let u; € C(tl), u, € C(tz) satisfy the transversality con-
ditions. Then t; = t, = t* and uz(t) = ul(t) a.e on [0,t*].

In particular U, = u* is the unique extremal control.
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PROOF.

I) If tl = t2, then K(tl) intersects G only at boundary
points. Since xl(tll and xz(tz) belong to 3G and the pro-
blem (1.1) is normal, K(tl) is strictly convex. By the
transversality condition there is a hyperplane which separa-
tes K(tl) and G; but the line segment joining xl(tl) and
x2(t2) is contained in K(tl) N G, then this segment is con-
taiped in 8K(t1); which implies xl(t) = xz(t). The nor-

mality implies now that u, (t) = u,(t) a.e on [0,t,]-

II) If tl < tz, by the transversality condition we have that
there is a hyperplane that separates K(tz) and G. By

hypothesis (c) K(tz) N G # g which is a contradictioh. Thus

g ¥
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