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INTRODUCTION

Following the pioneering works by Rosenblatt and Parzen,
several authors have studied the estimation of density func
tions and their derivatives and some functionals related

with them.

Wegman has given a survey of the methods and of the most im-

portant results up to 1972,

Using the kernel's method, Bhattacharyya (1967), gave for
the first time an estimation of the Fisher's information
function:

I(e) = [[ g% In f£(x - 9)]2 f(x - 9)dx =

2
= }{:Q—i Inf(x - 8)] f(x - 8)dx .
38

Later, Dmitriev~Tarasenko (1973) obtained some new results
for I(8) with a similar estimation, and also studied an

estimation for the entropy

Jf(y) In £(y) dy.

Singh (1976) worked with multidimensional distribution fiunc-
tions and found kernel estimations for the density function

and their derivatives.



Csakil and Vincze, using a lemma for real function due to
the second author, obtained an estimator of the informa ~

tion function in the unidimensional case with location pa-

rameter.

In the present work, a similar lemma for the n~dimensional

case will be proved. On the basis of this lemma we are

able to estimate:

a) the Fisher's information function for unidimensional

location parameter;

b} the information matrix for the case of location parame-

ter in the multivariate case;

¢) PFisher's information function for ihe general case which

can be done in the frame of the learning model only.

For a), b} and c} conditions will be given in order to abtain

consistency in probability and consistency with probability

one .

An estimation for the quotient

Vf(Po) ) fl(Po) fzwa) ' fn(pO}
f(Po) f(PO) f{PO) f(PO)

will be given too, where fi(Po) = %§~ (Po).
i



1. THE MULTIVARIATE LEMMA.

We begin with the proof of the following

LEMMA 1.1. Let f: R® + R be a positive function with con
tinuous first partial derivatives in a neighbourhood of a
point Po. Let us suppose that this point belongs to a
p-dimensional parallelepiped C, contained in the same

neighbourhoocd of Po.

S and M stand for the mass center of C with respect to

the given function and the middle point of C respectively.

If the sides of C are Axl. sz......,Axp we can denote

by |C| = Ax, . sz....Axp the volume of C.

If we let C tending to Po in such a way that

Ax

—.—.—.—i_—._—- e ai' i=1,...,p (101)

with 0 < ai< 1 and X ai2 = 1, then

—
: 2
(M S) a, )
— ey 1 2 o _
2 > - -1-2- - P ’ j = l, .....,p
— e 2

where (M S)j is the j-th oonponent of the vector (M S).



., -

PROOF. Due to the assumption concerning f we can write
= -y ; - .3
£(x) = £lx ) + (x - r , VE(xr)) +ollz -z D (1.3)

where r is the position vector of a point P in ¢ and

I, igs the position vector of Po' (...} stands for the inner

product.

.

For the sake of simplicity and without loss of generality

we may take Po = (0,0,...,0).

If m is the position vector of M, then

(
| (£ -m £(x) av
- C .

e
s

X
n
i

J £(r)av
C

f (x - m}{£(Q) + (x, VE(Q)) + o ({gﬁ)]dv
C

-

=

f [f(g) + (r, VE(0)) + o (fg_t)]dv
‘C

Integration in the denominator gives:

f
J f(0)av = £(0)|c],
¢

j (z,9£(0))av = <] r dav, VE(Q)) = |c|(m, V£(0)) and,
¢ c

according to (1.1)

j ollr]av < of \ﬁixl)z o x )% fel= otlel MRy el
C



in the numerator, we have:

j (r -~ m}£(0)av = 0, by symmetry,
C

J (m - r) (r, V£(0))av =
C

I< (m - r) (r-m, VE(O)})av + j (m -~ r} (m, VE(0))av.
C C

The second summand is again zero. For the first, we consi~-

der the j-th component and get

jc(xj - mj)iil (x; - my) £:(0)av =

: \ |
= - ~m.) £!(0)av + - '{0)av
jc ig‘ej(xj n) Gxgmmg) £3(0) jc(xj n)? £3(00
, | ax? ax?
3 2 i
(xj - mj) (x, = m;)
i#] 1 1 k#1
pxt A% #1.3
3 i
Ax%
(x; = m )3 ’
PR S N l ; Axk £1(0).
3 | kfy kO
Ax%
J
Here, Axl (sz) stands for the lower (upper) extremes of

3 3
the j-th side of C.



The first gum is zexo and the last term is egual to:

3
Ax £ (0}
£2 (0) ——dee T bx, = lc| S o Ax% .
3 12 k# 3 12 3

The absolute value of the j-th component of the third term

is

L

< bxy o ( xﬁbx1)2+...*(6xp)2)lcl.

”c(xj - mj) o (lxfav

S, we have:

- . 2 f
(MS) "i]"'i Icgfj(gmxj + Vel = m o(lxhav 5

BRE el P[lcie@ + [clmat@)+ | ollzha]
C

The quotient
Ax§ Ax?/il ax? a;
lc|?/P 3 (Ax% f—»-;-z—)sz gai/p
1=} ‘§k"l k i=1
by (1.1).

For the second term in the numerator, we consilder

I (x=m.) o(|x])av YA 2
! ¢ 3 ; —I ! 5 ij °<4Vg21 ¥eout Axp) _
{CEI /p) + - ic| /p
Ax
—d . 0q1)
Z sz
5 .
14

k

Axk ‘)2/9



B

and this tends to zero.

In the dencominator, the second term tends to zero since

m ~—> 0 and the last term tends obviously to zero.

REMARK. If C is a p-dimensional cube, i.e.

Axi = ij 1,3 =1,cce..,P0
then
a2
-_....i._.......,. = l,
g 2/p
a
is] *

since, in this case, a; = 1 / Y. 1 = 1,2,.00.,p.

Therefore
W o1 vf(pc)
lc|%/P 12 s

For p = 1, this result agrees with that of Vincze.



2. THE ESTIMATION OF Vﬂ(po)/ f(pO)

Let now f(P) be a density function in the p-dimensional

euclidean space.

As a first applicaetion of Lemma 1.1 we will show how to es-~

timate the quotient V£ / £ in a point Po = !Q(xg,xg,,.”mg),

where the conditions of the lerma are fulfilled for f(PO).

Let us suppose that X;» xz,...,xn ig a random sample ta«~

ken from a population with density function £(P).

If C = Cn is a parallelepiped containing PO, with m as
its middle point, we denote by xlc'xzc""'xvc the ele -

ments of the sample lying in Cn and define by

thelr sample mean.

The parallelepiped € depends on the sample size n in
such a way that the volume of C, [C| tends tc zero as
n —> w ., The exact way of dependence will be made precise

in the following theorem.

if 2 b (&l;az‘-e'.'ag) and "b‘ = (bl'bz'...’bp} are two p"di’

mensional vectors, we put



a *® B = (albl’azt}zlnoefapbp}*

-y

Let us define the wvector

/ 2/p 2/p 2/p
fla Ha la
b o i i i m—n—% “
- \ 2 ' & & e a z
et 2 P y

where alga?,.,.,ap are the constants defined in (1.1).

THEOREM 2.1. Let X be a random vector with density func-

tion f(xl,ngs¢..,xp) positive and differentiable at the

point Pc, angd let xl,xz,*..,xn be a random sample for X.

The estimator

X, - m
T o=l e b
n _;- gcﬁzfp

a) converges stochastically to Vf(PO) / f(Po) if

/
fcn!(2/p3+l o> m when no——> o

b) converges with probability 1 to
VE(P) / £(e,)

if .
- EP
pt2

icni = n when n —> », 0 < g < 1.

For the proof of this theorem we will need the following



LEMMA 2.1. Let £ be the density function of a random

variable X with valuves on an interval of length A. If

u = EX and xl,xz,...ng is a random sample of X, then

E[ﬁf - u)ﬂ = 0(a%/ v8/2 (2.2)

For even 8 v tending to infinity and A > 0.

4

PROQF.

4 S
I (%, - ui] |
(% - w® = 222 =

vS

- 8 v t
=y ey (%1,,.tv I (X, - n) 1
s i=]

where § = {(tl""‘tv)= I t, = s, ti nonnegative integersi.

Since the xi's are independent, we have

8 v t
= 8- -8 . i
Ef(X - wy =y "} (; ;) I B(X, - u)
S tlboet i

=l
vy
1f ti = 1, E(xi - u} = ¢ andg for ti # 1
. ti
E(x, - u) =00,
Therefore
Vv t
. - i _ 8,
igl E(Xi 'y = 0 (A7),



The multinomial coefficient

s \
5 4
(tl"'tq] 8.

g0 it remains to be calculated the number of terms in the

sum which are different from zero, i.e. the cardinal of

the set

i v
Ay = {{tyreaost): 7 ot

Ly i = S ti ¥ 1, ti nonnegative inte-

gers}.

I1f we consider the function

gi{x) = (1 + X2+ e V= ¥ ay x*

k=0

the coefficients ay are the cardinals of the sets Ak.

But
glx) = (1 + x_ Vo= § (Vrxk 1.
1-x k=0 k (1-x)
v v, 2k P ~k r . r
= 7 ()x F (7T7) (=17 x =
k=0 k r=0 r
4 ps v -k r r+2k
= Z 2 ( )y (7)) (-1)" x .
k=0 r=o k r
therefore
v -k



-] Qo

where the gum is taken over all the values of k and r such

chat: o <k £ v, ¥ > 0 and 2k + v = 3.

Calling 8= §/2 we can write v = 2{g'~ k}, and

o d 2(s'~k) Va( -K - 3 v o \\
d&‘ = ? (""1) (kl \\2(3"“}{}) = kz (k) 2(5"‘}{?)

k=0 =0

The coefficient

8/2

(;) = 0 (v Y, for k =o0,1,...,8" .

Furthermore

¥ -k ’
s g ’
28f-k-1
3 (ﬂs'-k)) = ] - )
k=0 k=0 k-1

does not depend on v.

Then

a, = 0 (v¥/%),

and the proof of the lemma is complete.

PROOF: (of theorem (2.1)).

X
VE(R.) Cy = m £.(P_)
Tn - (] = - ] b | bj - jf Q
£, ) L (2,)



-}l

o3 = By b, + o B b, - £, 1
. 2 s e
1%2 o] /p 112 l<f!2/p £(p,)

feg B, L EK T ™ b, - 1% | (2.3)
1 2 :

Here, the second term tends to zero, by the lemma (1.1).

Let E,U denote the conditional expectation of U, given

Cc
ue C.

By lemma 2.1

X.. - EX,.\2
Eg ¢l i RS = 0 . (2.4)
O
1 2/p
13 lcl

If we take now the expectation with respect to v we need

* /1 - 1
E('{?\) E(?J’“‘G)-
NoO/f
This can be estimated with the following result?

LEMMA 2.2. If Y is a binomlial random variable with para-

meters p and n then, for a positive integer s

#/ 1 /1 1 ‘)
E{==] =g{-=|Y#£0] =0
<Y3) <Ys ? ) <(EY)5,

for np = EY » =«




-12-

PROOPF:
n
n k -
] (,J-% p* (1 - p™k
e /_;L_) k=1 k |
\¥8/ = )
. 1 - (1 - p)n
n n 1 k n-k
const. k£1 (k) D) (Rr2y - Tksay P (1-9)
<
1-@1-p° ~
(2.5)
since 1 /k < C;/(k+i) for some constant C; .
The sum in (2.5) is equal to:
4 n+s k+s n-k
2()::(1—9) < 1.1
k=1 \ k+s (n+1)(n+2)...(n+s)p8 nsps (ey)®
On the other hand:
(1-p)" » ™ —> 0 as np —> =
Therefore
E* <l;> < (const.f i 5
Y (EY)
Expectation with respect to v in (2.4) gives
- 2 ' 2
R Tlaur) Y / 2 o 1
¢ 1 eo2p | \ n ICl1+(4]p) ' nlc{1+(2/9)
12 \ .

since v has a binomial distribution with parametér n
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and p[x € c] = £(p_)[c| + o(|c|) and n.p[X€ C] » = for
both hypothesis in the statement of the theorem.

By the Markov's inequality the first summand in (2.3} tends

stochastically to zeroc as n + «

The convergence with probability one can be achievéd using

lemma (2.1):

X,.. - EX X B X
1 2 ' '
13 lel*/? 1z lel®® /] ¢

for any even positive integer s.

But the right member is

1
2+
02 c]®

0

by lemmas (2.1} and (2.2}.

Using the statement b/ of the theorem, we get a power %‘(l~e)
of n. Choosing s 1in such a way that % (l-g)=1l +afor a>0

the convergence with probability one follows from the Borel-

-Cantelll lemma.



3. ESTIMATIOR OF THE INFORMATION

In the case of a p~dimensional random vector X we can

uge Lemma 1.1 to estimate the information matrix or, more

generally, to estimate

E p( ZE)

where f is the density function of X and ¢y is a function
defined on ®F.

We will consider the case in which f has a finite rectan

gular support C.

Let us take a partition of size N of C as follows: '
2} the.elements C,; of the partition are all:equals with

! Sideﬁ ~A.xj:} j*—‘:l,z, v e ,iﬁ",—'"for'\ éaCh j--
b} If W > w

Ax
! Z . 2
[Ax FyeaaFAX
( 1 2

L@—~> ai e 3=l,..,p (3.1}

where the a, are real constants such that 0 < aj < 1

j .

and

If the sample size is n, let be the number of sample

Vi
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P

elements which lie in Ci, xi the sample mean of the elements

in C;, m, the middle point of C;, and E, = E(X/ X € C;}.

THEOREM 2.1. Let f be a p-dimensional density function
differentiable in €. The function ¢ : (RP —> R) will be

assumed twice differentiable with

32 y(r)

X, ox

i %%y

< T i‘j = lf.col"p s

" Then:

n X,~ m ’
Fp| 42—t «pl s E [% (9%5 {] (3.2)
=1 \ 1o /e

i3 1€y

stochastically if n and K tend to infinity and

N=o (nP/PF2))

s

: o 5
Here, b 1is the vector with the components b, = I ajz/%//al
. 3=1 :

and the notation a * b = (albl,azhz,....,apbp) ig used.

PROOF. If Vzw denotes the matrix of the second derivatives

of ¢ we may write:

T

$(x) = w(xy) + (Vylr ).ar) + ar'v? y(r_ + @ ar) or  (3.3)

where aT meang the transpose of a, Ar = r - Lo 0 <8 < 1.



We apply (3.3) to the following vectors:

o2

r=1r_ , = M*E'anﬁ

Iz" 5“1'2/p

[}

j £{r) AV, we know by the definition of the
4C
i

integral and Lemma 1.1 that

If P

s \
0 B, - m \ /e |
Lov / . = * b p, —>E (Lw ‘\%‘Ei |
i=1 ‘\‘ w:_'l*;n f(w [2/? - / .
VLS|
if N+ = and (3.1 holds.
Therefore, we have to prove that
N Y N\ N ( \ Vo
g Wil ! ) S
iil $lx ) <!1 p%! 4 1£l \V Plry,) . Arij =
H m 2 7 vi
1521 arl 7S ylr , + @ ary) o Arg {(3.4)



17~
tends to zero.

The vector roq is bounded (Lemma 1.1}, therefore[whbi)b:a

for N large enough.

Using the Cauchy inequality:

N v, 2 N v, - np 2
3) e pi> =y A4 /B, <
i=1 \ " i=1  n/pg

and this tends stochastically to zero, if n and N tends
to infinity.

vy (roi) is also a bounded vector for N large enocugh,
because of the continuity of 3y /axj. j=l, ..., and the

boundedness of roi. Therafore:

v,
, 1
(th(roi). &ri) 2B L

e~
i e
ry
o
[ S
| S
5

i3

where Arij is the j-th component of Ari .

Again, the Cauchy's inequality leads to:



N 2 v N X, -E, 2 v
.:g§<Ar\ f 1 dep g G S P R |
T i=1 3=l 13) =1 n 1 =1 1 !CJZ/p i =n

(3.5)
The expectation of this expresion is
N R ci. /vy vy
p} E b -d (3.6)
i=l §=1 3 .1 e /P
122 4

where Uij denotes the conditional variance of the j—-th

component of X given that x € Cy-

So

g

fj =0 (Ag§) :

By the assumptions on the partition of C:

1/p
legl = -'%—l-and Axy = Icill/p = (-‘%—l—> ,

therefore, (3.6) is

Then the second term of (3.4) tends to zero in probability
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if N=o (np/(2+p)) by the Markov inequality.

The assumptions about ¢ makes the absclute value of the

third term less than or equal to

N \ v N 2 v B
Ty /]S? |ar, iz)-nﬁii Ty bty <21
il \\j‘fl PR i=1 j=1 J n =1

and this iz, except for the constants, equal to (3.5).

NOTE. For p=l, this result agrees with that of Csgé&ki and

Vineze.

COROLLARY 3.]1. Let X be a p-dimensiconal random vector

with density function f(xl - G,,..,,xp— 8) positive on a

p-dimensional cube C. Let xl"""xn be a random sample
of X. If f verifies the hypothesis of the theorem, the

estimate of the information

/ N 2
1(6) = B Qﬂ%ﬁv

can he

N,

_ 2

] ¥ Pt bj\ he 3

i=l \4=1 1 ,. ;2/p n
i ¢l /

This estimator is asimptotically consistent in probability

if
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{Here, we use the mame notation as in the theorem).
/ 2
PROGOF. It suffices to take ¢ (x) = .E xj) because the

&.jﬁl

information is the expectation of

(32)"- (135 3)°- (3 9)"

(A

The result now follows from the theorem.

In the case of a multidimensional location parameter
9 = fel,---.,ap)

the information is a matrix with general term

= dlg £ 2dlg £ P
Iij J... j 391 aej £ dv 1,3=1,....p.

COROLLARY 3.2. Let X be a p-dimensional random vector

with density function

f(xl—el,xz-ez,....,xp—ep).

Using the same notation as in the theorem, if £ verifies
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the above hypothesis, then an estimator of the general term

Ijk in the matrix informaticon can be

N X,, ~m__ X, .
iJ lj b.- b '—%"

i=1 1 2 3
T7 ¢4 & iz Iyl

This estimation is asimptotically consistent in probability,
if

N =0 (npA2+p))-

PROOF. Taking ¢(x) = xj Xy the corollary follows easily »

from the theorem.
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4. THE LEARNING MODEL.
We congider now a learning model, i.e. we repeat ar experi-

ment n~times independently and get the values of a random

variable

xl, xZ"o “e .,Xn

and the corresponding values of a parameter

01' 02'..‘.-,611 .
‘The Xis pay be the values of a random variable as well as
a statistic obtained in the i-th experiment.

Let £(x/0) be the density function of X given the parame-

ter €. The information of X for & is:

,
1o = | (RLEEN T ri/eran -

| £ (x/9) "\ 2
- j (..._.._.. £(x/0) dAx . (4.1)
-\ £(x/8)

Our aim is to estimﬁte thig information if we have the va-

lues of the learning model:

(X108y) v (Xye8hreveesXpebp) .
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We denote by £(x,8) and ¢(8} the joint density of (X,6) and

the marginal density of © (or a priori density) respecti-

vely.

If we write

f(x,9) = £(x/0)¢(0)

differentiating with respect to 0,'we obtain:

£3(x,8) = £2(x/8)¢(8) + £(x/6)¢"(8)

and

£4(x,8) £3(x/0)  ¢'(8)
= + .
£(x,0)  £(x/8)  ¢(8)

Finally
f'(x/e)> £4(x, m) $* (e))
£ (x/8) (;f(x,e) O\ ¢ (0)

_ o 8 4rie)
£({x,6 ¢ (8)

Therefore, an estimaticn of the information function (4.1)

can be obtained by estimating each of the following terms:

J :E'(x G)) : <¢'(G)>2
f(x/€e}) dx + -
£(x,0) ¢ (8)
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$'(8) fo(X,O)
-2 I f{x/8) dx . (4.2)

¢ (@) £(x,8)
Let us take a fixed Oo and a neighbourhood of it
- -5 §
J (0c 5 Go + 7) .

We asgume that £(x,8) and £(x/8) are positive only on a

finite interval (a,ﬁ).

Let 11'12""'IN be a partition of (a,b) with length

v,y ¥Will stand for the number of elements of the learning
model in I1 x J.

va will be the nu@ber of elements of the learning model in
(g,b) x J.

3iJ denote the s;ﬁple mean of the @'s in I, x J and U& is

the sample mean of the 8's in J.

THEOREM 4.1. Let £(x,8)., £(x/@) and ¢(9) be unknown densi-

ties with continuous first derivatives V x 6 (a,b) and 0 € J.

Then the information function defined in (4.2) can be esti-

mated by
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) 2 ) 2
813 = % e & 8- 8 _
1 \ 1 2
neabe J 1—26
- 2 958, ? 8,3~ % Vi (4.3)
1 .2 i=1 1 v
I?G i§6¢5b9 J

This estimation is asimptotically consistent in probability

if N scd(n1/4) and § ~ ¢/N and with probability one if

N=knl/¥"P o, <1/4. Here,

az .
b, = 9 where a, = lim S5 __ and
e a a ()

x 0 €,6+0 \/62+ EZ

= € 2 2 _
a lim —~——— and ag + a_ 1. (4.4)

* €,8+0 e°+6

PROOF. PFirst we consider the term

fe(x,e ) 2
2 f(x/eo) dx of (4.2)
Jf(x,Qo)‘

and its estimator

) iJ =~ % - Yig
i=1\ 1 ‘ Vg
ﬁ €6 be,



As bhefore, we write:

(@ 612 =3 E,.9 + E

2 _
13 = 9) = (85 = Eyy 13 9-8,)" =

2 2
= (@5 - E 407 + (E;;0-8)" +

+2(51J - EiJG) (EiJO - oo).

If the notation

Py = P[x€ 1,78 ] ==L £(x/6_) dx
1

E; 9 = E(0](x,8) € I,xJ)

i

is used, we know that

' 2 2
N /E, .86 -8 £1(x,0_ )
) 13 o Pi/o —— [ 8o ; f(x/(;o)dxf
=\ A €s b £(x,8) |

12 o

Therefore, we have to prove that the following terms tend

to zero:

(4.5)
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N 3. - E® 2 v

) iJ 13 viJ (2.6)
i=1 ]_12 €6 b, J

? (8,7 = E;g®) (E;40 - 8,) vyq (4.7)
L ) _ *
i=1 (112 € s by )2 J .

The expression
EiJO - 90 2

1
]'_‘265 be

is bounded for € and § small enough because of Lemma 1.1.

and

N |v N v,
iJ iJ
z ——— - p. = 2 —— - p + P - p <
i=11 Y3 i/o i=1l V3 i/J3 i/J i/0
N | v, N
iJd
< St 1+ Lleyy-p

with p;, =P [x e1,/0 €J] .

For the first sum, we have:

N \ 2
<1£1 112_91/3') <5



28~

But

it

2 ~ 2
1 .2 N
’N P = -
E[ (vJ va‘ ) ;\)J tJ 0 (—gt )

then, the expectation with respect to v lemma (2.2) and

J'
the hypothesis about & vyield

-
2 2 4
1 .2 | N° ) N
E*| (= N =0 |53 |=0 .
[("J Vg )J’ (na ) (nz)

Therefore éL X3J:N tends to zero with probability one
J

by Markov's inequality and Borel Cantelli lemma for both

values of N in the hypothesis.

For the second sum in (4.8).

PiXeI,, 86¢€eJ
Pisg = P[x € Ii,‘ &€ J} = [p[e :J] 1.

]JIiXJ £(x,0)dx 4o

[.J ¢(6) de

”11"‘7 [f (x,8 ) +£,(x,8 ) (6-8 )+ o([e-eo!)de ae

>
J[[peg) + 4" @) (6 - 8g) + o(le=8,]) | a8
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2
fIiEf(x/eomeo)a + o(s ):Idx

6(8) & + o (8%)

0

inf(x/éo) dx + o(s¢€)

4 -
1 + o(é) .

Therefore, 'pi/J - pi/o' = o(6 €), and

N

L 1Py/g = Pyl = NoBE) = o).

So, (4,5) tends to zero with probability one if N and n

tends to infinity.

In (4.6) we take expectation for a fixed value of vJ# 0

and get:
2

N g

L e = (4.9)

=] 1 J

( 6 5 be)
2 = =

where o), = Var (0] (x,0) € I,XJ) 0 (8).

By lemma (2.2)

E¥( == ) =0 ( 2)
J
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174y

gince né ven/N + « as n + = and N = o(n

Therefore, the expected value of (4.6) is

526 né \n

and the stochastic convergence to zero of this term follows

from Markov's ineguality and the assumption on N.

For the third texrm (4.7) we can apply an analogous drgument,

because

@, ~ E; ;9 (E ;6 ~ 8.) v

o) Yig |, k’{ 185 ~ By 8l vy
vy | — '

2
1 1 . : i=1 1 N
(Tltes,be) Les ny VI

1J

N
L

i

and the Cauchy's inequality gives:

| 8 - B,

and now we follow as in (4.6).
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For the second term in (4.2) it suffices to estimate #(9)/¢(86).

Let us use the statistic

eJ - eo
1,2
W)

But .
85 =0, - 6; ~E;0+E0 -6, _ by - E 0 . E;0 - 8,
1,2 1.2 1 .2 1 .2
13¢ 17 8 77 8 13 8

The second term converges to ¢'(60)/¢(eo) if § + 0, so we

only need to prove the: quotient (5J - EJO)/ I%— 62 tends

to zero.

hs before, we can consider the following expectation, for

fixed OJ:
- 2 2
v
J 1 .2 1 .4 1 .4
-—= § § v 6 v
12 ‘ 122 J 122 J

- ;i- 0 (1/52).

Taking again expectation, with respect to Vg this time,and

applying lemma 2.2 we get:

8. - E.0)\ 2 3
\ fé 52 ng> n
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and :zhe stechastic convergence follows easily.

For the last term in (4.2) we only need te prove that

N85 8, Vvig

hh

i=1 1 . .
i§6 € be

igs a consistent estimater of

fé(x,e)
J e F (% /0) AX.
f{x,8)
Writing eiJ - 90 = eiJ - EiJe- + EiJO - Bo, (4.10) can be

written in the following way:

N E, 8 -6 N E 0-8 [y,
W ] (e,
i =
I € 8bg 8€ebg
. ? 8,5~ Eig® Vg
1=1 L seb Y3
) 9

The first sum converges to

J fé(xrg)
e E (% /6) dx

f(x,8)



by the definitien of the integral and lemma 1l.l.

The second sum tends to zero with probability one for the sa-~

me reasong as the term (4.5) does.

For the last term, the application of the Cauchy's ineguality

leads to (4.6).
This completes the proof of the stochastic convergence.

In order to obtain the convergence with probability one, we

will use lemma 2.1.

Iet s be an integer. Then: for fixed v 1=1,.c..N

ig’

N
z t.=s
i=1 "
3 TR I
.(GZJ - EGZJ) Vo3 NJ
Since 613'5 are stochastically independent, this is equal to

Lt .,=8 t

. N 5 2¢, t,
) ( t) 141 By (855 - Eem) Vig T
i l..' N
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17
Then
r N 2 s
) (8,5 = E6,4) viJ.I
8 i=1 e _
E,(A)° = E - J -
1
(I§ () be) 2
. 0(62sN_5_2___) I (___z;f) _
8 ) s s
3 (€ §) vy €
= --—1-; o (N38y
Vs
Therefore
‘ : 3s 4s
N N
E(E(A)s =o( >=o< )
| v ) nsss ns ’

by lemma 2.2.

Therefore, if we choose an even s such that (l+a) = 4sp for

a given 1/4 > p > 0 and o > 0, we have, by Markov's inequa-

lity:

P!I-Al >1{

(]
~d
s
[}
\4
-
w
Areermmscend
i

8 4s
E(A”) _ N =
s 0<. sL)

‘O (n~4ps>= 0<-Tl;-&-> .

n
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