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AbslracL An invariant characterization of warped spacetimes is given and a clauillcalion 
scheme for them is proposed. Some resuits on the cuvature StNCtUre (Petrov and Segre 
types of the Weyl and Ricci lensom) are given and a thomugh study of the hometry 
group that each class of warped spacetime may admit is carried out. 

1. Introduction 

Given two manifolds (one Lorentzian and one Riemannian) (Ml, h l )  and ( M , ,  h,) 
and given a smooth function 0 : h4, + W (henceforth called the ’warping function’), 
one can build a new Lorentz manifold ( M , g )  by setting A4 = Ml x A4, and 
g = hl @ ez8h2. 

We call (M, g) a ’warped product manifold’ and denote it as M E M I  x o  h4,. 
The case dim M = 4 corresponds to (M, g) being a spacetime, and will therefore 
be called a ’warped product spacetime’ (or simply ’warped spacetime’) from now on. 

The aim of this paper is to study these warped spacetimes from both a geometrical 
and a physical point of view. It should be noted that the study of such spacetimes is 
of interest in general relativity, since they comprise a wide variety of exact solutions 
to Einstein’s field equations: Bertotti-Robinson, Robertson-Wlker, Schwarzschild, 
Reissner-Nordstrom, de Sitter, etc. Also warped spacetimes can be regarded, in 
some sense, as generalizations of locally decomposable spacetimes in the sense usually 
meant in general relativity [1,2]. 

Special types of warped spacetimes have been studied by Allison [3,4], Beem 
and Powell [SI, Beem and Ehrlich [6] and Kemp [I, and brief accounts of some 
general results may be found in O’Neill [S] and Beem and Ehrlich [9]. More recently, 
Deszn et af [lo] looked into the symmetty properties of the Riemann tensor of these 
spacetimes. 

In the present paper we provide an invariant Characterization of warped 
spacetimes based mainly in the holonomy classification in Hall and Kay [2] and 
put forward a classification scheme for these spacetimes. This is done in section 2. 
In section 3 we study the curvature structure, i.e. the allowed Petrov and Segre types 
of the Weyl and Ricci tensors in each case and give some specific results in particular 
cases. 

Section 4 is devoted to the study of the isometry group that each class of warped 
spacetime may admit; discussing both the general form of the Killing vectors and the 
maximal dimension of the Lie algebra that they form. 
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Finally, in seetion 5 we present some examples and make some further 
considerations. 

2. Invariant characterization of the warped product spacetimes 

As stated in the previous section, a warped product spacetime (M,g) is such that 
the spacetime manifold M is the product of two others M = MI x M,, each one 
of which is endowed with a metric; h, and h, respectively (such that the g defined 
helow is of Lorentz signature); and the spacetime metric g can be written as 

g = h, @ eZeh, (1) 
B being a smoth real function, called the 'warping function' 

B : M ,  - R. (2) 

Given a certain spacetime, the question now arises as to how can one decide whether 
it is warped or not, or in other words whether there exists a coordinate change that 
brings the metric into the form (l), subject to the restriction (2). 

RI answer this question, first note that (1) can be re-written as 

g = e2@(h; @ h2) = ezSG (3) 

where hi  = e-2ehl is a metric on MI by virtue of (2); so a warped spacetime (M, g) 
may he thought of as conformal to a locally decomposable one [1,2] say (M, a);  the 
conformal factor being a function of the coordinates of just one of the submanifolds 
whose product defines M. Next, let us give a brief summary of the results on locally 
decomposable spacetimes; which will be of use later on. 

The spacetime (M, 6 )  will be locally decomposable if its holonomy group is non- 
degenerately reducible [1,2], Le. its holonomy type is R,, R,, R4,R6,  &, RI, or RI, 
(see [Ill for a definition of R,,,); and globally decomposable if and only if M is 
simply connected. 

One then has the following possibilities [2] (see also 112,131). 
(i) The spacetime (M, G )  is 1 + 3 metrically decomposable, i.e. it admits a global, 

non-null, convanantly constant, nowhere zero vector field. (M, G) is then said to be 
1 + 3 spacelike or 1 + 3 timelike depending on the nature of the three-dimensional 
submanifold orthogonal to the covariantly constant vector field. This corresponds to 
the holonomy types being R,, (case 1+3 spacelike) or 4, R, or R,, (case 1 + 3 
timelike). The l i e  element associated with the metric 6 takes then the form 

dBZ = cdu2 $ h,p(+Y)dzadx@ e = &I. (4) 

If there exists another non-null, covariantly constant, nowhere zero vector field, then 
(M, f i )  decomposes still further and it is then referred to as being 1 $ 1$2 spacelike 
or 1 + 1 + 2  timelie in an obvious notation (holonomy types R, and R, respectively). 

(ii) The spacetime (M, 6) is 2+2 locally decomposable, i.e. no global, covariantly 
constant, nowhere zero vector field exists but two global, linearly independent 
recurrent null vector fields are admitted. The latter is equivalent to (M, $) admitting 
two global, linearly independent covariantly constant tensor fields of rank 2, such that 

gab = + 4 . b  (5) 
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that is pbb and QSb are two-dimensional metria acting on mutually orthogonal two- 
dimensional surfaces; satisfying-s tensor fields on M- 

A 

pa,;, = Qa2r;c = 0. (6) 

One can then choose coordinates in the two mutually orthogonal surfaces, say {zA} ,  
A = 1,2 for the surface with metric a,, ( M ,  for instance) and {re}, a = 3,4 for 
the surface with metric Qa6(M2) ;  such that the line element can be (locally) written 
as 

d6'= EAB(zD)dzAdrB +ja ,p(rY)dredz,p.  (7) 

The holonomy type in this case is &. 

(3)), it appears natural to consider the following classes of warped spacetimes. 

Class A. (M, g )  is conformally related to a 1 + 3 locally decomposable spacetime 
( M ,  6). ( M  = MI x M2 and 6 = h; h,). 

Returning to (M, g) (the warped spacetime conformally related to (M, 6 )  via 

l k o  different subclasses are to be distinguished here, depending on the respective 

(i) A,: dimM, = 1 and dimM, = 3. The line element associated with g can 
dimensions of M ,  and M,: 

therefore be written as 

d s 2 = E d U Z + e 2 8 ( " ) h e p ( z ~ ) d l n d r ~  ~ = & 1  a,p, ... = 1,2,3 (8) 

where { U }  is the local coordinate chart in M ,  and { Z Y } ~ = , , ~ , ~  the one in M2; and h, 
and h, read, in their respective charts: h,  = Edu@ du ; h, = hep(xY)dse @ dxp. 

The case E = +l(-1) corresponds to M ,  being Riemannian (Lorentzian) and 
consequently M, is Lorentzian (Riemannian). 

Since hap(.?) is a three-dimensional metric on Mz,  it is always possible to cast 
it in diagonal form (irrespectively of its signature); and therefore in most cases we 
shall write the line element (8) as 

(9) dsz = Edu2 + (-&'(*+ ,Y 1 dv2 .+ e2B('J+z,Y) dz2 .+ ezc(*~s,Y) dy2). 

Henceforth, we shall refer to (9) as the canonical form of the metric for warped 
spacetimes of the class A,. Notice that all Robertson-Walker spacetimes belong to 
this class. 

(ii) 4 : dim M ,  = 3, dim M, = 1. The associated line element then takes the 
form 

ds2=~eZo(s ' ) )duZ+  hep(sY)dzedzP ~ = & 1  a,@, ... =1 ,2 ,3 .  (10) 

Now { Z Y ) ~ = , , ~ , ~  is the local coordinate chart in M ,  and {U} the one in M,; whilst h, 
and h, are written, in these charts, as h, = he8(zY) dxe@ dxp and h, = Edu@ du. 

The same remarks as in the previous case, regarding signature and diagonability 
of he,+ also apply here. 
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Class B. (M,g)  is conformally related to a 2 + 2 locally decompa~able spacetime 
(M, a) ,  M = M, x M ,  and 6 = h; @ h, with dim M, = dim M z  = 2. The line 
element of (M, g) can then be written as 

J Carot and J da Costa 

ds2 = gas (zC)dsAdzB +eZe(rC)g,B(z7)dzedzP u , p ,  ... = 3 , 4  

A ,  B ,  . . . = 1,2 (W 
where { z ~ } ~ = , , ~  and {za}a=3,4 designate the local coordinate charts in M, and M, 
respectively, and h, = gAe(sC)dzA @ dzB,h, = geg(z7)dz* @ d d  are their 
respective metria expressed in the chosen coordinate charts. 

Again the same comments about the nature (Riemann or Lorentz) of the 
submanifolds M, and M ,  apply here. Furthermore, since a two-dimensional space 
or spacetime is always conformally Bat, one can always write ( l l a )  as 

ds’ = eZA(ZD)(cduZ + dz’) + e2e(”C)e2B(Z7)(-cdvZ f dy’) ( l l b )  

and again ( l l b )  will be referred to as the canonical form for warped spacetimes of 
the class B. 

Notice that Schwarzschdd, Vaidya, Reissner-Nordstron and, in general, all the 
(simply connected) spacetimes which admit a three-dimensional group of isometries 
acting transitively on non-null two-dimensional orbits, belong to this class (this 
includes all spherically symmetric solutions). This is due to a theorem by Schmidt [17] 
(see also [14]) stating that if a group G, of motions of T = i d  ( d  + 1) parameters 
has orbits of dimension d(d > l), then the orbits admit orthogonal surfaces. 

One should notice that there are spacetimes that belong to both classes A and B, 
for example, spacetimes whose metric are of the form 

ds2 = C d d  + eZ8(‘)(-edvz + eZC(y9’)( d g  + d 2 ) )  (12) 

and many others. 
We shall designate this class of spacetimes as class C, i.e. C = A n  B; but they 

will not be of much concern to us, since they can be regarded as special cases of 
either of the two previously defined classes. 

In order to characterize each one of the classes A,, A,, B of warped spacetimes 
invariantly, we recall the special properties (preferred vector or tensor fields) that 
the conformally related, locally decomposable spacetime has and look into what they 
imply in the warped one. Thus, if we re-write the line element (8)  (i.e. class A 
spacetimes) as 

ds2 = ezs(U){~e-ze(Y) du’ + h a@ ( z r )  dz7 dzp} = ez8 dS’ 

dBZ = edu” + hap(zY)dze dzB 

(13) 

and re-scale the coordinate U to a new coordinate U’( du’ = e-Odu), so as to have 

(14) 

the vector field 6 3 a,, becomes a non-null, nowhere zero covariantly constant vector 
field in (M, 6 )  (and therefore, a Killing vector in this spacetime). It can immediately 
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be seen that this vector field is now a (proper) conformal Killing vector (CKV) in 
(M, 9). If we now consider 

(15) = e - e p  

i.e. unit vector (in (M, 9)) parallel to the CKv ha; it is easy to see that its associated 
shear (ua6), rotation (wab)  and acceleration (Ca) are all zero, and that its expansion 
0(0 # 0) is only a function of U' (equivalently of U); i.e. 

where ha, 5 gab - cuaub is the orthogonal projector to ua. (See Kramer et al [14] 
for the definitons of uab,wab,zi,,O in the case U" timelike ( E  = -1). The proof for 
ua being spacelike follows along the same lies;  for the definition of shear, rotation, 
acceleration and expansion in this case see [SI.) 

Conversely, if a spacetime admits a global, non-null, nowhere zero unit vector field 
which is geodesic, shearfree, hypersurface orthogonal, and such that the gradient of 
its expansion 0 is parallel to it, then a coordinate system exists [I61 in which the 
metric takes the form (8) with 

0 E 3UbBqb = 3cc,0. (18) 

We have thus proven the following proposition. 

Pmpmifim I .  The necessary and sufficient condition for a spacetime ( M , g )  be 
warped of class A, is that a global, non-null, nowhere zero unit vector field exists 
that is geodesic, hypersurface orthogonal, shearfree and such that its expansion 0 
satisfies O,,h: = 0. 

A similar result holds for warped spacetimes of the class A2, although in this 
case the preferred vector field is no longer geodesic, and it turns out that it must be 
non-expanding; so we can state the following proposition. 

ProposiiiOn 2. The necessary and sufficient condition that a spacetime (M, 9) be 
warped of class A2 is that a global, non-null, nowhere zero unit vector field exists that 
is hypersurface orthogonal, shear-free, non-expanding and such that its acceleration 
is a gradient (it turns out that zi, = 

The proof is almost identical to the one sketched earlier. 
These two propositions can easily be seen to be equivalent to the following two 

theorems. 

Theorem 1. Let ( M , g )  be a spacetime. Then the following conditions are 
equivalent. 

(a) (M, g) is conformally equivalent to a 1 + 3 locally decomposable spacetime. 
(b) There exists a nowhere zero, nowhere null, hypersurface orthogonal conformal 

Killing vector 12 in M such that if 0 E ,/-, then the vector field U = e-$C is 
shearfree and tia = --EO,= + emumu,, 0 = 3um0,,. 
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Theorem 2. Let ( M ,  g )  be a spacetime conformally equivalent to a 1 + 3 locally 
decomposable spacetime; and let U be the vector field whose existence is guaranteed 
by theorem 1. Then 

(a) (M, g )  is of class A, if and only if U, = 0; 
(b) (M, g )  is of class A, if and only if 0 = 0. 
The existence of further non-null vector fields in M with the same properties as 

U would then imply that in fact (M, g) belongs to class C. Class B warped product 
spacetimes cannot be characterized in such a neat way as spacetimes of class A. 
Nevertheless, an invariant characterization is still possible and, as in the previous 
we ,  it follows from the existence of vector fields with special properties in the 
conformally related 2 + 2 locally decomposable spacetime (A{, 8). A 2 + 2 locally 
decomposable spacetime always admits two null recurrent vector fields, p and k', 
such that fig, = -1 [13]; and they can always be scaled in such a way that the 
recurrence vector is parallel to one of them, say fa, i.e. 

(19) 
* I  

S a f b  = &lb La,, = -akaib 

where CY is a smooth real function of the coordinates associated with the integrable 
distribution spanned by f" and ha; and a stroke denotes the covariant derivative with 
respect to the connection associated to G. 

If one defines now vector fields la, ka in ( M ,  g )  as 1' E e-'f" and ka s e-',@ 
(associated 1-forms 1, = eela, k, = eehe satisfying laic,, = -1) and computes their 
covariant derivatives in the connection associated with g, one gets (see [14] for the 
relationship between the connections associated with g and 6): 

la;b = P ' e l b  - e,c%lb + g e b ( e , c l c )  

ka;b = -Pk,lb - e,,kb Sede,$) (20) 

where P ae-@ 
It is easy to see now from (20) and the expressions of the Newman-Penrose 

spin coefficients K , U  and w (see, for instance, [14] p 78) specified to 1, and ka, 
that both 1" and k' are geodesic (although non-affinely parametrized), shearfree and 
hypersurface orthogonal, and their respective expansions are given by 

o, = e,,ic 0, = B+,kC. (21) 

Had we defined La s e-zop and K" E Lo( L a K a  = -1) their covariant derivatives 
would read 

L ~ ; b = ~ L n L b - e ~ , L b - e b L ~ + ( e , ~ L E ) g a b  

Ka$ -CCK,Lb + e > b I i ,  - e + K b  + (B,,Ke)g,b (22) 

and again La and K" would turn out to be hypersurface Orthogonal, shearfree and 
geodesic, but in this m e  La is affinely parametrized. Their expansions are 

o, = e*,L= o, = e%,w.  (23) 

The expressions (20) and (21) or, alternatively, (22) and (23) lead to an invariant 
characterization of 2 + 2 warped product spacetimes. Using one or the other is just 
a matter of choice. We can therefore state the following theorem. 
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Theorem 3. Let (M, g )  be a spacetime. Then 
(a) If (M, g) is conformally equivalent to a 2 + 2 locally decomposable spacetime 

( M , G )  with g = e2'6 then there exist null geodesic, shearfree and hypersulface 
orthogonal vector fields P , k "  (or alternatively La, K") on M whose covariant 
derivatives are given by (20) and their expansions by (21) (respectively (22) and 

(b) If there exists a function 0 : M -P R and null vector fields Ea, kQ on M 
satisfying Pk, = -1 (or null vector fields La, K" satisfying L 5 K ,  = -1) and 
their covariant derivatives are given by (20) (respectively (22)), then the spacetime is 
conformal to a 2 + 2 locally decomposable spacetime (M, 6)  where 6 = e-28g. 

Theorem 4. Let (M, g )  be a spacetime conformally equivalent to a 2 + 2 locally 
decomposable spacetime ( M , a ) ;  and 6',P,ka (or i ? , L a , K a )  the function and 
vector fields whose existence is guaranteed by Theorem 3. Let ha,  E 21(a k,) and 

spacetime of class B if and only if either h,,B* = 0 or hibob = 0 (respectively 
Habob = 0 or H i b o b  = 0). 

(23)). 

ha,  L -  = gab - h,,,(H,, = 2 L c a K b ) , H i b  E gab - Ha, ) .  Then ( M , g )  is a warped 

Notice that in the first situation, i.e. h,,Bb = H,,Bb = 0; the vector fields E" and 
k" (La and K " )  are expansion-free. This case corresponds to MI being Riemannian, 
whilst the other possibility, namely htbOb = 0, takes place when M I  is Loren= 

We have now a complete characterization of warped product spacetimes. 

3. The curvature structure 

In this section we shall study the possibilities for the Petrov and Segre types of 
the Weyl and Ricci tensors, respectively, for the different classes of warped product 
spacetimes. 

Since evely warped product spacetime is conformally related to a locally 
decomposable spacetime and conformal scaling of the metric does not affect the 
Weyl tensor, the allowed Petrov types for a given class of warped spacetimes will be 
exactly those allowed for the type of locally decomposable spacetime that this class is 
related to and one can simply read this information from the table in [2] .  

Thus, class A warped spacetimes are conformal to 1 + 3 locally decomposable 
spacetimes; i.e. holonomy types R,, R6 or RI, in the case 1 + 3 timelike (the 
covariantly constant vector field in the decomposable spacetime is spacelike); and 
RI, when it is 1 + 3 spacelike (the covariantly constant vector field is timelie). In 
the first case (1 4.3 timelike) there are no restrictions on the Petrov type of the Weyl 
tensor, while in the second case (1 4. 3 spacelike) it can only be I, D or 0. Class 
B warped spacetimes are conformal to 2 + 2 locally decomposable spacetimes whose 
holonomy type is 4; therefore [2] their Petrov type can only be D or 0. 

Unfortunately, conformal scaling of the metric does change the Ricci tensor in 
general, and therefore looking into the conformally related locally decomposable 
spacetime is of little or no use in order to work out the algebraic structure of the 
Ricci tensor in the warped spacetime. Nevertheless, a few conclusions can still be 
reached. 
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Proposition 3. Let ( M , g )  be a warped product spacetime of class A; then, the (non- 
null) vector field spanning the onedimensional submanifold (M, for subclass A, and 
M2 for subclass Az) is a Ricci eigenvector. 

Recalling that g = e''& where (M, 4) is a 1 + 3 decomposable spacetime, and 
that the unit vector spanning the onedimensional submanifold in ( M , i ) ,  say O', is 
covariantly constant with respect to the connection associated with G; i.e. &a,b = 0; 
one has: 

(a) Subclass A, : 0 = S(u). Define now the unit vector field U' in (M,g) as 
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= e-8c" 

Le. ua = esOa. One has OZc = BO, = 8e-OuC, where a dot indicates differentiation 
with respect to the coordinate U. Evaluating now the Ricci identity for U, in (M, g), 
it follows that 

- -$e-Z8,$g - ) - 1, ~d "a;[bc] - ab c GC b - 2 d abc' 

Contracting now with gab one gets 

Rd,vd = 3(ie-z'u,. 

(b) Subclass A2 : e = 8(z7),8,,  = 0. Proceeding as before we get, in this case, 

R ~ ~ u ~  = -gab(e ;ab  + e,eb)u, 

which completes the proof of the proposition. 0 

Notice that if the coordinate U is timelike (M, or Rf, of Lorentz type in the 
subclasses A, and 4 respectively), the Ricci tensor is of the diagonal Segre type 
[18], since it admits a timelike eigenvector. 

In the case of warped spacetimes of class B, there are no restrictions on the Segre 
type, all types being possible in general. 

'Ib close this section, we next give the expression for the components of the 
Riemann and Ricci tensors, which will be useful for further developments. In 
what follows we shall denote the coordinates in (MI, h,) by zA,B,C,- and those 
in ( M , ,  hZ)  by xaif l ,7 , - ,  and the geometrical objects (connection, Riemann tensor, 
etc) defined on each one of them by means of an index 1 or 2 respectively. Also, we 
shall write n for the dimension of M2(n = 1,2 or 3). 

We now have, for the Riemann tensor, 

RABc D =l  RABc D 

RABCD = RAB,, = RAB,, = RAfl,, = 0 

RDBCD = ReflcD = ReBy6 = Rebc6 = 0 

e B A  
RAflC6 = -e (e ) ; C 2  06 

ReBB,, = -e-'(e') ;BD6; 
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From these expressions it can immediately be seen that the components of the Ricci 
tensor are 

R,, =1 R,, - ne-%(e8);,, 

RE, = 0 

e e~ Rpa =' Rpa t {4( 1 - n ) e " ( 6 ~ 6 ~ )  - e (e ) ; A } $  @6 

where all indices are raised and lowered using the metric of the spacetime g .  

4. Isometry groups of warped product spacetimes 

The purpose of this section is to carry out systematic research on the possible isometry 
groups that each class of warped product spacetimes may admit, giving to the furthest 
possible extent the expression for the Killing vectors in it. In order to do this, it will 
be useful to have the expressions for the covariant derivatives of vector fields and 
1-forms defined on ( M , g )  in terms of the covariant derivatives in (Ml, h,)  and 
(M,, h,) of their projections on these submanifolds. Following the same conventions 
as at the end of the last section, we shall have for the connection in (M, g )  

where h f B  satisfies i i fBh Bc = 6g; Le. is the inverse metric in ( J I ~ ~ ,  h l ) ,  and 

should not be confused with h f B  g A c g B d t c d ,  namely the contravariant form of 
h, (considered as a tensor field on (M, 9 ) )  with indices raised with the full metric 
g .  Although for h,, hfB coincides with h f B ,  this is not so for h,; in fact one has 

1 

Let X be a vector field on M. Define its vertical and horizontal componens, X 
and X I  as follows. 

v 

h 

$ a  E gabhbdXd 1 = h i X d  1 (28) 

X "  X a  - X*. (29) h U 

One readily sees that X A  = X A ,  X "  =Oand X n  = X * ,  X A  = 0. 
v " h h 
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With these definitions, and taking into account (27), one has 

X;AB=T$ 

x.$ = ~ $ - e ~ ~ h ; ' ~ e ~ , t , f r  

xg? = x ps t e,,?. 
h 

X$ = 0 , , p ;  t $2. 
For 1-forms w on M; we also define vertical and horizontal componenB by first 
taking w" = gobwb, defining then w a and w ' as before, and tinally lowering indices 
with gab. We get 

h 

Now let X be a Killing vector (KV) of (M, 9); the Killing equations Xaib t Xb,= = 0 
will now read 

X A ; B + T B A  = O  (32) 

x A,@ t e''? @ , A  = o 

3 + ? p p  + 2 0 , ~ x  D h  = 0 (34) 

(33) 

U 2  

or, equivalently, denoting by 1 and I the covariant derivatives induced in M ,  and MI 
by their respective metria h, and h,, 

1 2 

X A I B  + ~ B I A  = O  (35) 

x A , p  + e''$ p , A  = o 
U 1  

(36) 

In what is to follow we shall denote the Lie algebra of KVS on (M, g) as K (  M, g), 
and K(M,,  h,) and If( M,, h,) will denote, respectively, the Lie algebras of Kvs on 
(M,,h,)  and (M,,h,). 
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We can now extract the following consequences from these equations. 
(i) If X E K (  M ,  g) with X = 0, then X is a smooth vector field of (M, )  and 

h " x E K ( M l ,  h l ) .  Moreover XDB,D = 0. " U 

(ii) If x E K (  MI, h,) and x 
(E) If X E K(  M ,  g), then X is a conformal Killing vector (CKV) of (M,, h,). 

Furthermore, if X = 0, then X is a smooth vector field of ( M , )  and X E 

= 0, then X E IC( M ,  9). 
U " v 

h 

h 

Now fix p ,  E M, and consider the manifold MI x { p , }  N 111,. Now (35) 
is a statement about KVS in (M, ,h, ) ;  suppose that dim K ( M , , h , )  = p < 
nl(nl t 1)/2 (n, s dim Ml), and let (4,  ...,%) be a basis of K ( M , , h , ) ;  
then there exist constants a"(p,), I = 1.. . p ,  such that X = E",=, a"(p,)VI; Le. " 

D 

where a" = al(xu) are functions depending on the variables xm of M,. 
In the particular case p = 0, one has IC( M, 9) U K (  M,, h,) and it readily 

follows that dim IC( M, 9) < 6 for class A,, dim K (  M ,  g) = 1 for class 4 and dim 
K (  M, g) < 3 for class B. 

Dke now p l  E Ml and consider the manifold { p l }  x M ,  U M2. (37) is then a 
statement that X is a CKV of (M,,h,) ( X  E C(M,,h,)). Proceeding as before, 
let us denote by m the dimension of this Lie algebra, m 2 dim C(M,,h,) < jp, + l ) (n2  + 2) and by (q  . . . Y,) a basis of it. Now, there exist constanB 
X (pl), I = 1.. . m, such that X = 

h h 

1 

X " ( p l ) Y I ;  i.e. 
h 

m 

x = CX'Y" 
I=1 

(39) 

where A' are now functions of the coordinates in M,; A" = X'(xD). Dking into 
account (38) and (39), it follows that X E IC( M, 9) must be of the form 

with a" = a"(x7) and A" = X"(xD) .  

product structure, namely 
Notice that (40) is invariant under coordinate changes that preserve the warped 

xA' = F A ( z D )  and 27' = fT(X7). (41) 
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4.1. Warped spacetimes of class A, 

Let (M, g) be a class A, warped product spacetime and assume its metric is given 
in the canonical form (9); namely 
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ds2 = e dUZ+e2B(~)(-ee~A(~,5~Y)d~Z$eZB(U,5.Y) d12+ezc(wt"*Y) d g )  

and assume that X E K (  M ,  g) is a KV. From (40) it follows that 

m 

X" = € a ( v , I , y ) V a +  CA'(u)Y; 
I=1 

where V is the vector spanning I<( M,,  h,); in this case V = 8, obviously; and YI 
constitute a basis for C(M,,  hZ)  and therefore satisfies 

(GI$ ),p = 2+1(? I? Y)$ -0 (43) 

Yr = bI(v,+,y)a,  t (44) 

The 1-form associated with X, given by (42), will be 

where Fra denote the 1-forms in ( M , ,  h,) associated with the vector fields (44), ie. 
with the indices lowered with h : 

2 

PI = -ceZAb, du f eZBcI dx 3. eZc d, dy.  (46) 

The Killing equations (32)-(34) (or alternatively (35)-(37)) specialized to X ,  given 
by (45) now read 

a,= = 0 (47) 

a,p+ez8CJLrFlp = O  p = u , x , y  (48) 
I 

where a dot indicates differentiation with respect to U, as usual. Notice that (47) is 
trivially satisfied. 

Differentiating now (48) with respect to U, and specifying the result for each 
index p = u ,  x,  y; we obtain three equations; raising indices with 6 a@, multiplying 
the equation corresponding to the (super)index a by 8, and adding the three of 
them up we obtain 

2 

I 
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Since this is a h e a r  combination of linearly independent vectors (remember that 
(YI)y=l form a basis of C(M,,h,))  that equals zero, the coefficients must be all 
zero; i.e. 

2ei' + X' = 0. (51) 

Integration with respect to U yields 

A' = ~ ' F ( u )  + q' 

Substituting these results in (49) we get 

P ( u )  =e-'' 

p' and q' being real constanis. 

Now, since IC(M,,h,)  c C(M,,h,) we can take the (YI)I=l,, .m (vectors of the 
basis of C(M,, h,))  in such a way that the first p amongst them, ie. (YL)L=l , , , ,  p < 
m, form a basis of K( M,,  h,) and the remaining m - p q complete it to a basis 
of C( M,, h2), thus being proper conformals (except, maybe, one homothety). This 
means that 

Equation (53) now reads 

Differentiating with respect to U and taking into account (52), it is easy to see that a 
necessary condition for (5.5) to hold is 

$e2' = f k Z  (56) 
1 

- - X p ' Q ,  = &IC2. 
I 

a (57) 

From (56) one can see that there are two possibilities: 

p' = q' = 0 for I = p +  l...m; and therefore 
(a) For all k E R, 6 ( u )  is not a solution of (56). In this case, it follows that 

a = 0. (58) 

A straightfolward calculation shows that pL = 0 for L = 1 . . . p also, and hence 

P 

x = q'Y' $7' E R 
L = l  

(59) 
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or equivalently K( M, g) Z K( M,,  h,) and therefore dimh'( M ,  g) < 6. 

of (56) can be given as 
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(b) There exists IC E R such that 8 is a solution of (56). In this case, the solutions 

8 = Incosh(ICu) if the + sign holds 

f3 = lnsinh(ku) if the - sign holds (60) 

B = a u + b  i f k = O .  

Plugging this back into (55). it follows that 

q I = o  I = p + l  ... m. (61) 

p L Y L  + k ' ( f k Z Y I  t 2,) = O  (62) 

The compatibility conditions (48) may now be written as 

K L < P  p+lSISm 

where p r  = f k 2 k r  and 

z I -  - ce-2A+I,V a, - e-ZB+r,, a, - e-ZC +I,y ay. (63) 

Equation (62) sets restrictions on the maximum number of independent constants 
p J ,  J = 1 . .  . m; thus restricting dim X ( M ,  9). Consider E, the real vector 
subspace spanned by Yl . . . Yp (dim E = p), F the one spanned by f k z Y , + ,  + 
ZP+,, . . . , f k z Y m  + 2, (dim F = q < m - p) and G = F n E (dim G = T < 
mm(p, q));  one can then come to the conclusion that 

dim X ( M ,  g) = m - q + T < m (64) 

where m = dim C( M,,  h,) is at most 10 (and if m = 10, h, is conformally flat); 
q = dim F < m - p with p = dim K(M, ,  h,) < 6; and r < min(p,q). Recall that 
in this case S(u) must take one of the expressions given by (60). 

It is interesting to notice that the maximal dimension of a Lie algebra of Killing 
vectors, Le. 10, can indeed be achieved in this case when m = 10 (h, conformally 
flat) and T = q. The spacetime ( M , g )  admitting 10 KVs, it must be of constant 
curvature and therefore one of the de8itter spacetimes; as it can be easily verified 
by direct computation in this framework (see next section). 

4.2. Warped spacetimes of class A, 

We proceed as in the previous case by recalling the canonical form of the metric for 
this class of warped spacetimes 

ds2 = &(*,z ,Y)  du2--eZA(V,",Y)dU2+e2B(u,s,Y) dl2+e2C(W,"!V)dy2. 

Notice that these spacetimes always admit the Killing vector 5 = a,. Expression (40) 
of a generic KV reads, in this case, as 

m 

x = ~ a ' ( u , v ;  t X(v,+,y)Y= 
I=1 
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where ( Vr)r=l,,,m form a basis of h'( MI, h l )  (m 4 6 )  and Y E C( M2,  h2) is a CKV 
of (M,, h,) (notice that in this case, and since dim M ,  = 1, the conformal algebra 
of ( M 2 , h 2 )  is infinite dimensional; therefore we cannot speak about one single 
vector spanning C ( M 2 ,  h2); nevertheless (65) is still valid with Y E C(M2,h2)  to 
be determined by the Killing equations) 

VI = bI(v,z,~)a, t c r ( v , + t ~ ) a ~  + d d v , x , ~ ) a ,  (66) 

Y = €f(U)8,. (67) 

The 1-form associated with X, given by (65), will be 

m 

X ,  = C ~ ' ( U ) V ~ ,  + e Z B ( " I S , y ) ~ ( v , ~ , y ) p ~  
r=i  

where 

V,, =gab\'' = ltabV) and pa = habYb 
2 

i.e. I' = f(u) du. Now, the Killing equations (32)-(34) (or (35)-(37)) take the form: 

lflAIB+VrB~A=O I = l  ... m (69) 

CtrrvrA + j (u )e28x ,A  = o (70) 

(71) 

1 I 

I 

x ( I ' m [ @  t I'flpIm) = - 2 C a r ( I < D / p , D ) h m @ .  2 
r 2 

Differentiating (70) with respect to U, it is easy to see that 

a' = ~'F(u)+ 4' F(u) = f(U) I = l . . .m (72) 

where p r ,  4' are real constants. "king into account this information, and since. 
Fa!@ + = 2fh op;  it turns out that (70) and (71) can be re-written as 

I 2 

Equation (73) can then be viewed as a compatibdity condition, while (74) yields 
information on f(u), since differentiating it with respect to U we get 

xf = - fCpwpe,D 
I 
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which trivially implies 
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E /  f = k k = constant 

Zp’(V?B,,)  = -kX.  
I 

Equation (75) can now be integrated for the different values of the constant k giving 

f=cosh (u )  or sinh(u) for k = l  (774 

f = cos(u) or sin(u) for k = -1  (776) 

f = k p +  k2 for k = O  (77c) 

where we have rescaled the coordinate U in order to get these values for IC .  

account (76) it follows that 
Subsitituting back in (74) the different values o f f  given by (77) and taking into 

~ p I V p 0 , ,  = 0 and ~ q ’ V ~ B , n  = -k,X for k = 0. (7%) 
I I 

Equation ( 7 8 ~ )  implies that q E Cr qIV, E I C ( M , ,  h,), leaves 0 invariant and is 
therefore a Killing vector of ( M , g ) ,  i.e. q E K ( M , g ) .  Similar remarks apply to 
E‘ 

Now, the set of KVS (of ( M , ,  h,)) that leave a given function invariant, in our 
case the warping function 0, form a Lie subalgebra of K ( M , , h , )  which we shall 
denote as K,. It is a classical result (see for instance [19]) that given an r-parameter 
group of isometries G, acting on s-dimensional orbits in an n-dimensional manifold 
V,(s < n) ;  there are n - 6 functions on V ,  which are left invariant by G,. In the 
present case and according to this result, we shall have dim IC, = p < 3 ( p  < m); and 
if p = 3 then the three KVS spanning ICo must act on two-dimensional orbits. The 
general case, though, will be that of h‘, = 0. It will also be useful (when studying the 
case k = 0) to consider the subset of IC(M,, h,) formed by those KVS (of (MI, h , ) )  
qz, s = 1.. . q satisfying LVs0 = constant. It is easy to see that this set also forms 
a Lie algebra, namely H, 2 K,, such that given any two vectors in H, there always 
exists a linear combination of them that belongs to IC,; therefore dim H, = q < p+ 1. 
Thus, dim H, < 4; and if it is 4 then H, contains a three-dimensional subalgebra 
IC, of K v s  that leave B invariant and that act on two-dimensional orbits. 

Notice that X = constant implies, from (73), that p I  = 0 I = 1,.  . . , m; which 
in turn implies X = 0 in the case k # 0 (from (76)) and Er q’VIDB,, L,,B = 
constant, in the case k = 0. The converse also holds, i.e. p’ = 0, I = 1,. . . , m  
implies X = 0 for k # 0, and X = constant and hence CI qr VI q E Ho for k = 0. 

Given a warped spacetime of this class, it is easy to see that there is only one 
value of k possible; i.e. one cannot have KVS corresponding to different values of k 
in the same spacetime since otherwise they would not form a Lie algebra. We shall 
therefore analyse the problem for each value of k separately. 

6 p’V, in the case k = 0. 
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(a) Assume now k I 0 and E = 1 for the sake of simplicity, and consider two 
generic KVS of (M, 9); according to our previous developments they will read as 

c<,0 = 0 i = 1,2. (82) 

Define Xi  [ < , X i ]  and X j  [E ,XJ,  which must also belong to K ( M , g ) ,  
and consider now [ X i , X , ] ;  [Xj,Xj];[Xi,Xj];[Xii,X,) and [ 8 , , X j ]  for i , j  = 
1,2. Next demand the value of each one of these Lie brackets to be a KV of 
( M , g ) .  The results can then be summarized as follows (we do not reproduce the 
calculations involved here since they are rather lengthy, but on the other hand quite 
straightfotward). 

There are 
two possibilities: either H, = 0 or dim H, = 1. In the first case X = 0 and 
dim K( M, g )  = 1 and it is spanned by = a,,. In the second case X = A, # 0 and 
dim K( M ,  g )  = 2 and it is spanned by E = a, and X = f X,a, + 7 with 11 E HB 
such that L,,0 = -k,X,. 

(5) K, # 0. If the KV t ,  ( E ,  E K,) appearing in (79) is null, hypersurface 
orthogonal (because of (81)) and such that [E , ,  17,] = a t l  (a = constant or zero); then 
X ,  E K( M, g )  and X,, also given by (79), is necessarily of the form X ,  = bX, + Z 
where b = constant and Z E I C ( M , g )  is such that 

(i) K, = 0 + A;= constant and X ,  = cX,,  c = constant. 

z = f x,a, + 17 (83) 

with A, = constant and 17 E H ,  satisfies L,B = -k,X,. Needless to say, if 
H, - IC, = 0 then Z = 0 and therefore IC( M ,  g )  is spanned by = a,, X I ,  8, 
and K,; thus dim K ( M , g )  = p + 3 (p  dim h'@). If H, - K, f. 0 then every 
X E K ( M , g )  is equal to cE ( E  = a,, c = constant), bX, + Z or else d X ,  (d 
= constant) (or a linear combination of them). Given now X' = b'X, + Z' it is 
easy to see that Z' = sZ + C with s = constant and C E IC,; thus in this case 
dim K( M, g )  = p + 4. 

Notice that if no null, hypersurface orthogonal KV 5 in Ke satisfying [e,  71 = a[ 
for some 11 E K ( M , , h l )  exists, then K ( M , g )  is spanned by E = a,, X = 
fA,a, + 7 (17 E He such that Cc,O = k,X,) and K,; its dimension being p + 2 
if H, - K ,  # 0 or p + 1 if H ,  - K, = 0. In particular, if ( M I ,  h,) is Riemannian 
( E  = -1) it cannot contain a null vector, and then the latter holds. 
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(b) Assume k = 1 and e = 1 as in the previous case for the sake of simplicity. 
l2ke also two generic KVS of (M, 9): 

where 

L7,e = o i = 1,z. (87) 

Since 7; E I<( M, g) it follows that X i  - 7; E I<(M, g) and therefore we can drop 
q1 and v2 from the expressions (84) of X, and X,. Defining as before xi [ E ,  Xi] 
(now X j  E [<,xi] = Xi), considering [Xi ,Xj ] ; [Xi ,x j ]  and [ q , X i ]  for q E KO, 
and demanding the results of these Lie brackets to be KVS of (M, g) it follows that 

(i) K ,  = 0; then I<( M ,  g) is spanned by XI = A, cosh( u)aY + sinh(u)f,, XI 
and c = a,,, where cl E I<( M I ,  h,) and satisfies the two equations (86) (for i = 1) 
plus the condition 

A: - cc,A, = constant. (88) 

The dimension of K (  M, g) is therefore 3 if such a vector El exists or 1 if does not 
exist; in which case E = 8, is the only KV that (M, g) admits. 

(ii) KO # 0. The are now two different situations to be taken into account; 
namely 

There exists some q E K ,  satisfying [U, cl] = cc1 (c = constant); then IC( M, g) 
is spanned by X, defined as in (i), XI , E = a, and all those q E I<,, satisfyiig the 
condition above; dim K( M ,  g) < p f 3 or even dim K( M, g) < p + 1 if it does not 
exist any such c1 E I<( MI, hl).  

There does not exist any q E KO satisfying [q,cl] = ct1. Then, 
dim K(  A f ,  g) = p + 1 and I<( M ,  g) is then spanned by 5 = 8, and Ii , .  

The remaining case, namely k = -1, can be treated in exactly the same way as 
the present one, arriving at conclusions similar to those just outlined. 

4.3. Warped spacelimes of class B 

In this case we cannot use the same technique as in the two previous cases, since 
C ( M 2 ,  h2)  is now infinite-dimensional, and we cannot write an easy-to-handle, 
generic form for the CKVS in it, as we did for the class 4 warped spacetimes. 
We must therefore tackle the problem directly; to this end recall the canonical form 
of the metric for spacetimes of class B (Ilb) 

ds2 = e2A(u,s)(edu2 + d l z )  f e2e(u~s)e2~(w~Y)(-edu~ f dy 2 ) 
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and let X be a KV of ( M ,  g )  

x = ea., +pa, + ?a, + 68, 
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(89) 

where CY, 0,. . . are functions of the four coordinates U, +, v ,  y. Killing's equations 
now read 

Notice that (89)-(92) imply that for every pair of fixed values of 2) and y, say 

(~,,,Y,,o),+ ~(~,+,~u)o'Yu)au +p(.,s,vu,y,)a, 

is a KV of (Ml,hl);  i.e. X E K ( M , , h , ) ;  thus , if (VI) I = 1,. . . ,m 6 3 is a 
basis of IC(M,, h,) it follows from the general considerations at the beginning of 
this section that it must be 

" 

.." 
x = C a ' ( v , y ) V r .  

I=1 

On the other hand, (97)-(99) imply that for every pair of fixed values of U and z, 
(TA,,+,) thevectorx E y ( ~ , , , + , , , ~ , y ) ~ , + 6 ( u , , s , , v , y ) a ,  is a c ~ v o f ( M ~ , h ~ ) ;  
although as we have already pointed out we cannot now write an expression for x 
equivalent to (loo), since C ( M 2 ,  h,) is infinite-dimensional and its members cannot 
be expressed in a concise form which could be useful for our purposes. 
TJ proceed further, let us consider the Ricci tensor of ( M , g ) ;  then if X E 

K(  M, g) we must have 

h 

h 

L.,Ricci = 0. (101) 
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Recall now the structure of Ricci (equations (25)): 

RE,  =' R,, - 

RE, = O  

R@6 =' R @ 6 + X $ g 6  

where 

I -{4ezB(eEe,) + e  E (e B A  ):A}.  

On the other hand, since x E C(M,, h,) we must have (see for instance 1201): 
h 

where + = - (aB ,e  + pa,@) as follows from (97) and (99). 
considerations and after a long and tedious calculation, one can conclude that 

From all these 

(a) a r ( v ,  y) = constant, I = 1,. . . , m; 
(b) X = -ya, + 6a, is a homothetic vector field of (A4,,h2) with homothetic 

factor - X I  d M I  where M I  I &,e, I = 1,. . . , m. 
There are now two subcases to he considered. 
(i) (A4,, h,) has no proper homotheties. One must then have XI ar M I  = 0 and 

therefore 

h 

dim IC( M, g) = 1 + dim If ( M,, h2)  

1 being the number of independent or'; which can be seen to be 0 < 1 < 
m - p + p - 1, where p e dim F, F being the vector space spanned by 
2, I (a ,M,)a ,  + E ( ~ ~ M ~ ) C + = ,  p ( m < 3 and q = dim K ( M l , h l )  n F; since 
dim IC(M,, h,) = m < 3 it must he q ( min(p,m); thus having 0 < q < p ,  
O( p ( m and O (  m < 3. 

(U) ( M , ,  h,) admits a proper homothetic vector field. In this case one has 

dim K (  M, g) = 1 + dim If ( M , ,  h2)  

where 1 (the number of independent d') now satisfies 0 < 1 < m - p + q, p and q 
defined as hefora 

Since dim IC(M2, h 2 )  < 3 and 1 < 3 in both cases (i) and (U), it follows that the 
maximal dimension of the Lie algebra of isometries for a warped spacetime of class 
B is six. 
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5. Examples and concluding remarks 

As we have already pointed out in section 2, all spacetimes admitting a three- 
dimensional group of isometries acting transitively on non-null two-dimensional orbits 
(in particular all spherically symmetric solutions) are warped spacetimes of the class B; 
as follows from the theorem, due to Schmidt [17], that we quoted there. This theorem 
also allows us to conclude that all spacetimes which admit a six-parameter group of 
isometries acting on three-dimensional orbits are also warped spacetimes, belonging 
to the class A, in this case. These spacetimes include all Friedmann-Robertson- 
Walker cosmological models and many others (for a good survey see [14]). It is trivial 
to see that the converse does not hold. 

It is also easy to see, as we mentioned in section 4.1, that the deSitter spacetimes 
are warped spacetimes of class A,. Furthermore, they can be explicitly constructed 
by making use of the results derived in 4.1. 

On the other hand, important families of spacetimes such as the stationaly 
axisymmetric solutions of the Einstein field equations are clearly non-warped, since 
the metric of a warped product spacetime can always be diagonalized. Thus, for 
instance, the Kcrr solution and the TomimatsuSato class of solutions are non-warped. 

The problem of finding physically significant solutions belonging to the various 
classes of warped spacetimes is currently being studied by the authors, and the results 
will be presented elsewhere. Just to mention some results in this direction, one can 
show that the only perfect fluid solutions of class A, with (MI, h,) Lorenaian, are 
the Fnedmann-Robertson-Walker cosmologies. One can also prove that this class 
(A,, with (M, ,h , )  Lorentzian) is emply for Einstein-Maxwell fields, both non-null 
and null. 

The possible Lie algebra structures of K( M, g) are also being investigated for 
the various classes presented here. A study of the conformal lie algebra of warped 
spacetimes is being carried out as an extension of the study of the Lie algebra of the 
isomeuies presented in section 4. 
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