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Abstract

A non-abelian coupling between antisymmetric fields and Yang-Mills fields
proposed by Freedman and Townsend several years ago is derived using the
self-interaction mechanism.

1 INTRODUCTION

Abelian second-rank antisymmetric fields [1] play an essential role in strings
and supergravity theories and have been extensively studied in the last
decades [2] [B] [4] [B]. In free theories they describe massless and spinless
particles and appear in many contexts, for instance, arising as mediators of
the interaction between open strings with charged particles [2] and in ten
dimensions, coupling with the Chern-Simons 3-form to achieve an elegant
unification of Yang-Mills and supergravity [§]. In particular the Cremmer-
Sherk theory [8] has received considerable attention [ [§] due to the fact
that the coupling between the abelian antisymmetric field and a Maxwellian
field through a topological BF' term leads to massive propagations which are
compatible with gauge invariances. Moreover, Allen, et. al. [if] have shown
unitarity and renormalizability of the Cremmer-Sherk theory. This fact mo-
tivates the non-abelian generalization of the model and several attempts have
been proposed [H]. Simultaneously, other alternatives for non-abelian mas-
sive vector bosons without the presence of Higgs field have been proposed in
the last year [10].

The non-abelian extension of antisymmetric theories was achieved by
Freedman and Townsend [4] starting from a first-order formulation where
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the antisymmetric field B, =~ and an auxiliary vector potential are indepen-
dent variables. It is worth recalling that the non-abelian generalization of
the abelian S-duality theory [11] is a Freedman- Townsend theory [12]. In
their work, Freedman and Townsend proposed the non-abelian generaliza-
tion of the Cremmer-Sherk theory. In this letter, starting from an appropi-
ate first-order formulation for the Cremmer-Sherk theory, we will derive the
non-abelian generalization using the self-interaction mechanism [13], which
has been succesfully applied to formulate Yang-Mills, gravity [13], super-
gravity [14]. topologically massive Yang-Mills [15] and Chapline-Manton [16]
theories.

2 THE ABELIAN MODEL

Our starting point will be a first-order formulation for the Cremmer-Sherk
theory. This is realized introducing an auxiliary vector field (v,,) ala Freedman-
Townsend. The action is written down as [17]

1 1 1
I = < _Z:uemnqumn [8pvq - 8q?)p] o §M2Umvm - iluemnqumnﬁpAq (1)
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where <> denotes integration in four dimensions. All the fields involved have
mass dimensions and p is a mass parameter. There are two sets of abelian
gauge invariances:

A = OpA, OxFym =0 2)
6Can = 8an - 8nCm> 6Cvm = 0. (3)

Independent variations in v,,, By, Finn and A, lead to the following
equations of motion

m 1 mn
v = —a‘f qunpq> (4)
e""P19y[vg + Ayl =0, (5)
m 1 mn
Op P = GHe P Hpg (7)



where Hyppp = O Brp + 05 By + 0p By, is the field strength associated with
the antisymmetric field. The Cremmer-Sherk action is obtained after substi-
tuing equations (4) and (6) in (1):

1

Lorse = =3 Pt FUA]" — 15 Hmnpim Higy” — 706" Buun Fpgra). - (8)

On the other hand, equation (5) can be solved(locally) for the v field,
1

where ¢ is a scalar field. Substituting this solution in the action I, the
Stuckelberg formulation for massive abelian vector bosons is obtained

1

Tt = =P Y = 52+ ~0,0][A™ +0m3l. (10
As it is well known, both formulations(Stuckelberg and Cremmer-Sherk)
are equivalent descriptions of massive abelian gauge invariant vectorial theo-
ries and propagate three degrees of freedom. This equivalence is reflected by
the fact that they are connected by duality [18]. Indeed, since the scalar field
appears in equation (10) only through its derivative, we can apply the dual-
ization method due to Nicolai and Townsend [19], which consist in replacing

Om® by %lm and adding a new term to equation (10): eBJl, i.e.
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At this stage, B, is a Lagrange multiplier forcing the constraint d,,l,, —
Onl,n = 0 whose local solution is [,,, = 20,,¢. Now, if we eliminate [,,, via its

equation of motion
1
"= gem”qunpq —2pA™ (12)

and go back to equation (11), the Cremmer-Sherk action is recovered.
Finally, let us recall that the second-order field equations can be written
as
O FP™" = Jm,  0,HP™™ = J™", (13)
where 1 .
J" = Euem”qunpq and J"" = iuemnMqu (14)

are "topological” currents in the sense that they are conserved without using
the equations of motion.



3 THE SELF-INTERACTION PROCESS

Now, we extend the first-order action, equation (1), by introducing a triplet
of free abelian antisymmetric fields B, coupled with a triplet of free abelian
vector fields A%, (a = 1,2, 3)

m?

1 mn,; a a a 1 am,.a 1 mn,; a
I, = < —7He PR 008 — Ogui] — —pPv vl — SHe P B, 0pAf15)
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Besides the local gauge transformations
WAL, = O\, O0Fy, =0 (16)
8Bl = Ol — OnClsr Oty = 0, (17)

our action has two global invariances: one is a global SU(2) rotation and
the other is a a global symmetry associated with the Freedman-Townsend
theory:

(1) 6,X* = gre™Xtw* (18)
where X = (A%, F¢, . v%. B% ) and
(I1) 8,B% = gue™lut + AL —m e, (19

St = §,A% =§,F° =0,

w and p being global parameters. In principle the coupling constants g; and g
are different. We note that under type II transformations the action changes
by a total derivative. The Noether currents associated to these invariances
are given by

- ~am aoc mn C 1 mn aoc C C
L = AL e (A o) (20)

and .
g;lK‘”’m = i,uem”pqeabc[Az + vg] [AZ + v(j]. (21)

These are conserved on-shell. In order to couple these currents to the
action I, we must add the corresponding self-interaction terms: I; and I

defined by:

51 I
=L, KoM= _9 oL
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(22)



These functional differential equations can easily be integrated. In fact,
we find that

1 1
I = =gy < GeEMFAL AL & e e By, AL A (23)

mn*ipYq
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and

1 1
Iy = =g < 3" B g T B, AV AL (24)
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However, these two terms have overlapping parts. This situation is akin
to what happens in the derivation of supergravity from self-interaction [i14].
In order to overcome this obstacle we must require equality of the coupling
constants: ¢ = g1 = g» and write down the self-interaction action as

1 1
Isr —g < GEFTAL AL 4 2Bl vy (25)

1 1
+ 1 e P abe pa nAZA; + 3 pemPdette pa RAZU; >
Actually, we have that

(5[5] 5[5‘1
= d K™ =-2 .
bag, 0Bg,,

~am

(26)

The self-interaction mechanism stops here since no other derivative terms
appear in Ig;. Finally, the full non-abelian theory is

I = I,+1Ig; (27)
1 mnpq Ra a a abc Ab,.c 1 2,.a ,.a 1 a amn
= < e B [Fy + fog + 26" AVvr] — SH UpVtm = ZanF >,
where
Fo =0, A% — 0, A% + ge™™ AP A¢ (28)



and

@ = 0 — O + gl ot (29)
which is just that proposed by Freedman and Townsend (equation (2.15)
in their paper). As usual, the self-interaction process combines the abelian
gauge transformations with the global ones giving rise to non-abelian local
gauge transformations. In our case, we have

60l = Opa® + ge™ AL af (30)
6aB%, = geB af (31)
5% = geub af
and
6Bl = 0"+ g™ AL+l )¢ —m e (32)

(5514?” = O:(Sg?}fn.

The action of Freedman-Townsend, equation (27), is equivalent to massive
Yang-Mills (locally) as can be shown after elimination of By, through its
equation of motion, which said us that A,, + v, is a pure gauge.

4 CONCLUSION

In this letter, by starting with a nice abelian first-order formulation, and
through the application of the self-interaction mechanism we have obtained
the Freedman-Townsend theory and its corresponding gauge tranformation
rules through self-interaction. The first order abelian formulation allowed us
to find Cremmer-Sherk and Stuckelberg formulations for massive spin-1 theo-
ries, these later formultations are connected by duality. The BRST quantiza-
tion of the massive Freedman-Townsend has been performed by Thierry-Meig
[2U]. Since massive Freedman-Townsend theory is equivalent (in topologically
trivial manifols) to massive Yang Mills it should be interesting to attempt
to connect Friedman-Townsend with others approaches dealing with massive

gauge bosons without the presence of Higgs field [i1U].
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