Class, Quantum Grav, }1 (1994) L125-L.128, Printed in the UK
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Abstract. A recent result by Hagpag and Hajj-Boutros is reviewed within the framewark of
self-similar spacetimes, extending, in some sense, their results and presenting a family of metrics
consisting of all the static spherically symmetric perfect fluid solutions admitting a homothety.

PACS numbers: 0420J, 0240, 9380D

In a recent paper, Haggag and Hajj-Boutros 1] presented a static, spherically symmetric
perfect fluid solution with a stiff-matter-type equation of state (i.e. p = u). By means of
a few clever changes of coordinates, the authors reduce the problem to that of solving a
non-linear, second-order differential equation, whose polynomic solutions they investigate
showing that only three such solutions exist, two of them being vacuum (flat Minkowski
spacetime and Schwarzschild solution) and the third one leading to the new metric referred
to above, henceforth called the HHB solution.

The purpose of this letter is to give all the static, spherically symmetric perfect fluid
solutions admitting a homothety, This family can be completely characterized by means of
a real parameter ¥ (arising quite naturally from the equation of state for these fluids, see
below), which must be in the interval [1, 2] in order to satisfy energy conditions. The two
limiting values of ¥, namely y = 1 and y = 2 correspond to Minkowski flat spacetime and
to the HHB solution, respectively.

A few remarks concerning the similarity group and its action are in order here, It is a
well known fact that an r-parameter group of homotheties H, (in which at least one proper
homothety exists) always admits an {r — 1)-parameter subgroup of isometries G,_;. Now,
the maximal dimension of the group of homothetics that a perfect fluid spacetime may
admit is » = 7, in which case it is one of the special Robertson-Walker spacetimes [2], and
therefore they are all known, The case r = 6 is not compatible with an energy-momentum
tensor of the perfect-fluid type; thus, apart from the special Robertson-Walker solutions
mentioned above, the highest dimension of the group of homotheties that a perfect fluid
spacetime may admit is r = 5. In such case, the associated isometry subgroup G4 has
necessarily three-dimensional non-null orbits [2]. Notice that this is precisely the case we
are interested in. We shall not treat here the case in full generality, namely; studying all
perfect fluid spacetimes admitting an Hs of homotheties, since this would be beyond the
puzpose of this letter, but we shall restrict ourselves to the case when the subgroup G4 has
time-like orbits 73 and the subgroup G that it necessarily contains (3] has two-dimensional
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orbits, Everything else follows from these assumptions and the field equations, For further
information on groups of homothetics and related issues, we refer the reader to [4-6].

We start with a spacetime that contains 2 non-nuil 2-space of constant curvanire (ie.
there exists a three-parameter isometry group G acting on this 2-space). In this case the
orbits V; admit orthogonal surfaces in M [7]. By performing a coordinate transformation in
the 2-spaces orthogonal to the Killing orbits the spacetime metric can be put into diagonal
form:

ds? = A%, )( ~ di® + &%) + BP(r, 1)(d6% + £2(8, k) dg?) (1)

- sind k=+I

fo.ky=1 8 k=0 (2}
sithf k= -1

where we have restricted ourselves to the case of space-like Killing orbits, since perfect
fluid and dust solutions cannot admit a group G5 on two-dimensional time-like orbits [3].

Using the Jacobi identities and the fact that the Lie bracket of a proper homothetic
vector field (HVF) and a Killing vector (KV) is a KV it can be easily shown that the HVF X
must be of either one of the following forms:

) X=X(nN&+X(no k=-1,0,1 3)

() X=X'(r 00+ X (r,1)3 — 68 k=0. 4)
Now by using isotropic coordinates, one finds that static metrics ¢can be expressed as [3)

ds? = —A%(r)de* + Bz(;)[drz + r2(dd® + FH8, k) dp?)] (5

where 3, is the hypersurface orthogonal time-like Xv.
In this coordinate chart, the HVF in (3) and (4) takes the following forms:
() X =ntd, + R(r)o, k=-1,0,1 (6)
(i) X =ntd; + R(r)3, - 69 k=0 €))]
where n is a constant.

The homothetic equation Lxg.p = 2g. Specified to the components rr and 86 of the
metric (3), gives

R, =2 =% =0 ®
and integrating, one gets

) X =nd +qré k=-101 {9

) X=md+(—rinr+cr)d, —63 k=0 (1

where ¢ and ¢ (3 0) are constants.

Case (i). By means of the coordinate transformation 7 = r'/4, the HVF and the metric can
be written as :

X =ntd + 79 | (11)
ds? = —A%(F) di® + B2(F)[q7 a7 + 72(d0% + £3(8, k) dg?)]. (12)
The metric functions can be determined via the homothetic equations, which gives

-

B = constant A i, (13)
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Defining a new radial coordinate r as r = 7 B, one can come to the following simple forms
for X and the metric

X =ntd, + rd, (i4)
ds? = —r20="ds? + g%dr 4 (6% + FU0, k) dg?). (15)

Case (if). Imposition of the homothetic equations specified to the metric (5) and to the
HVF (10), leads directly to

2

2=_.__1 Z(n—!)dz e
ds (~lnr+c) e ri(—Inr +c)*

[dr® + r2(d6” + 6% dp?)] (16)
where b and ¢ are constants,

From the expressions (15) and (16) of the metric, it is immediate to see that the
components #¢ of their respective Einstein tensors are negative for k = —1 and 0 (ie.
hyperbolic and flat 2-spaces) and therefore cannot verify energy conditions. Thus, it only
remains to study the spherically symmetric case.

In this latter case, the field equations for a perfect fluid matter content lead to the metric

2L Ay —
ds? = —r*47 d* + (——" +y2y 4) dr? +r3(d6? +sin’ 0 d¢?).  (17)

These metrics have already been found, following a completely different approach, by
Ibafiez and Sanz [9] and particular cases of them can also be found in Misner and Zapolsky
[10] (which are particular cases of Tolman class VI solutions). Some particular cases (when
the HVF is orthogonal to the fluid flow) were also studied by Herrera et al [11]. The matter
variables are :

_1{_ -4
=7 (y2+4r -4) as
p=—-Du (19)

as one would have expected from p and p being functions of r alone (and therefore, by the
implicit function theorem, the fluid has a barotropic equation of state) and the spacetime
being self-similar [8]. The HVF takes then the form

5 _
X = —;-’-’-:a, +r3,. (20)

These are all the static, spherically-symmetric self-similar perfect fluid solutions. They are
. shear-free and have null volume expansion since the 4-velocity u of the fluid is parallel to
the time-like XV, the vorticity is also zero (since u is orthogonal to the orbits §; of the G4
they contain); and the fluid has non-geodesic flow.

The particular case, ¥ = 2, is the HHB solution [1] and in this case the HVF X becomes
orthogonal to the fluid 4-velocity, and for y = 1 the spacetime is obvicusly flat.

It is interesting to notice that static and seif-similar solutions admitting a 2-space of
constant curvature can only be spherically symmetric (irrespectively of the matter content)
and that an Hj static spacetime with a G acting on space-like orbits, necessarily contains
an Hy.
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