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Capitulo

7

Bosonic String

7.1 Classical Theory

Let us start considering classical bosonic string theory in flat
Minkowski spacetime®. The dynamics is obtained from the
condition of minimizing the area of the sheet embedded in
Minkowski spacetime, obtained as the string evolves. The
Nambu-Goto action [5] is then simply proportional to the area
of the worldsheet,

S = —T/dadT\/— det 9; X+0; XVn,,. (7.1)

However, (7.1) is extremely nonlinear; a more convenient ac-
tion can be obtained if, in addition to X* (o, 7), a new variable
h*# which will be the metric tensor on the string worldsheet,
is introduced. Then, the physical system is described by [6],

7]

T
S=-5 / dodrvV/hh*P9,X 95X, (7.2)
The equations of motion, with respect to h%?, imply that
2 1 48

*A number of excellent books and reviews is available on the subject.
See for instance references [1] to [4].
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The parameter 7" in (7.1) has units of squared mass, and can
be identified with the string tension,

1

2ma!

T (7.4)

The action (7.2) is invariant under the reparametrizations
X" = €70, X",
§hoP = 9.hF — 9,7 RP — 9P,
§(Vh) = 0,(6Vh), (7.5)
and the Weyl scaling
§h*® = AR, (7.6)

Using the Weyl and the reparametrization invariances of (7.2),
three independent elements of h*? can be fixed, to choose the

gauge
-1 0
hagzncw:( 0 1). (7.7)
In this gauge, the Euler-Lagrange equations of motion for

(7.2) become
0xX =0. (7.8)

Defining light cone coordinates,

- = T—o0,

ot = T+ o, (7.9)

the generic solution to the wave equation (7.8) can be written
as a sum of right and left moving modes,

X* = Xb(o™) + X[ (oF). (7.10)
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In this coordinates vanishing of the energy-momentum tensor
becomes

XeX', = 0,
X2+ X% =0, (7.11)

where X = ZX and X' = ZX,
ar do

However, choosing the conformal gauge (7.7) does not com-
pletely fix the gauge freedom. There is yet a residual invari-
ance with respect to a combination of reparametrizations and

Weyl scaling, satisfying
D7EP 4+ e = AP, (7.12)

In terms of the light cone coordinates on the worldsheet de-
fined in (7.9), the residual gauge transformations (7.12) be-
come equivalent to generic reparametrizations, of the form

_>
— & (o7) (7.13)

or, equivalently,

o %:%wwr+@+&w7—@L
o = 0= %[5‘+(T—|-O')—5'_(T—O')]. (7.14)

;From (7.14), it is clear that once we fix 7, the coordinate &
is completely determined. Moreover, from the first equation
in (7.14), 7 is a solution to the free massless wave equation,

0* 0%\ .
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which is simply the equation of motion for the coordinate X*.
Thus, a possible way to fix the residual gauge is identifying
the time coordinate 7 with some of the X* coordinates. In
order to do that, let us introduce the light-cone coordinates,

Yt X0+ X!
\/5 3
Xt = X (7.16)
where 1 = 2,...,d — 1, with d the dimension of spacetime. In

this coordinate system, X7 is playing the role of a time, so

that we can impose

Xt =Ptr, (7.17)

where P71 is some constant, with the physical meaning of mo-
mentum density in the 4+ direction. This choice is known as
the light-cone gauge (see, for instance, [8], [9]) and implies,
as X7 is independent of o, that every point on the string is
at the same value of the time, X*. The constant momentum
density Pt can be conveniently defined, in string units, as

27“1/?. Then, if p* is the total momentum in the + direction,

max

/g Pt =pT, (7.18)
0

so that a condition on ¢ arises, 0™** = 2mv/a'p*. Hence, the
surface of evolution for open string processes in the light-cone
is conveniently parametrized through

T ST Ty,
0 <o< pfonva (7.19)

thus, if we have two incoming strings, with momentum p} and
p3, the o interval must be divided into two pieces of length
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pf 2mv/o' and pf 2m\/o’, as shown in Figure 7.1. In this
diagram, at a given value of time 7y, there is only a single
string, resulting from the joining of the two incoming strings.

To

Figura 7.1: Diagram of two incoming strings

In the light-cone gauge, the constraint equations from the

vanishing energy-momentum tensor, (7.11), become

- _ 1 L 1L
X' = p—;(X LX),
X = 273—+((XL)2+(X’L)2), (7.20)

which reduce the physical degrees of freedom to the transverse

fluctuations of the string.

7.2 Closed Bosonic String

We will first work out the case of the closed bosonic string; in
this case, we impose periodic boundary conditions,

X¥(r,0) = X*(r,0 + 7). (7.21)
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The solution to (7.8), compatible with these boundary condi-

tions, becomes

X = lmﬂ + l(20/)p“(7 —0o)+1 o > loz“e_Qm(T_‘j)
R 2 2 2 Son " ’
1 1 ! 1 :
Xp = a2t +-(2d)p' (T4 0) +1i < 3 —apretin(rre),
2" T2 2 24

(7.22)

Using this Fourier decomposition we get, for the hamiltonian,
1 [o.@] o0 N N
H = 5 [Z o 0, + Zoz_nozn] , (7.23)
where we have used the notation

afy = Ep“. (7.24)
In the light-cone coordinates (7.9), the constraint (7.11) be-
comes T4, =T__ =0.
Let us now introduce the Virasoro generators L, lN)n as the
Fourier modes of Ty and T__, respectively,

: 1 &=
Ln = /T__€_27mngd0' = 5 Z Om—nQp,

- . 1 0
i, = /T++62mmda:§ S Gpondn.  (7.25)

m=—00

In terms of these operators, we get

H = Ly + L. (7.26)
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Using now the constraints (7.11), relation (7.26), and p*p, =
—M?, we can get the classical mass formula
2 2 & -

M* = — Z(a_nozn + al,dy). (7.27)

!
a n=1

The constraint (7.3) also implies that the left and right contri-
butions to (7.27) are equal. Using the standard quantization

rules,
oy, ] =0,
[, ay] M 4™,
[, an] = mmynn™,
[z",p"] = ", (7.28)

we can promote L, and L, to operators on the Fock-Hilbert
space of oscillators. The only ambiguity related to normal
ordering appears in the definition of L, leading to a free ad-
ditive constant, a. The constraints Thy = T__ = 0 can be
implemented at the quantum level by imposing

L > = Ly >=0,
(Lo —a)|p > = (Lo—a)|yp >=0. (7.29)

The quantum mass formula becomes

4 4 >

M2:—— — —— 4+ =) a_,a, (7.30
e
Two things are left free in deriving (7.30), the constant a,
defining the zero point energy, and the dimension of the tar-
get space. We can fix these constants by consistency of the

quantum theory or, equivalently, imposing positivity on the
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metric for the Hilbert space of states satisfying (7.29). A dif-
ferent way to fix these constants is imposing Lorenz invariance
in the light cone gauge, where physical degrees of freedom are
reduced to transversal oscillations. The result, for the closed
bosonic string, is that a should equal one and the number of
dimensions should be 26. The origin of the critical dimension,
26, is clear in the modern covariant approach [6]. In fact, the
algebra of Virasoro generators is

1
(L, L) = (m —n)Lpyyn + ED(m3 —m), (7.31)
with D the dimension of spacetime. The integration over the
worldsheet metric, in the covariant approach, can be done
using the Faddeev-Popov trick [10], in terms of a ghost (b, ¢)

system. The Virasoro algebra for the ghost system is
1
(L2, L] =(m—n)L) .+ g(m —13m*) 8, (7.32)

The Virasoro generators for the ghost and matter system can

be defined as

Ly = Lo+ L% —ab,, (7.33)
where we have explicitly substracted the normal ordering con-
stant. The algebra for L, is now given by

[Zm,Zn] = (m—n)lN)m+n
D, 1 3
+ [=(m —m)—l—g(m—li’)m)—l—Qam

12
><5m+n7 (734)

so that for D = 26 and @ = 1 we recover the classical alge-
bra of diffeomorphisms on the circle, Diff (S'), with vanishing
central extension.
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iFrom (7.30), we can easily deduce the spectrum of string
states. First of all, we have a tachyon with no oscillator
modes, and squared mass negative (—%). The massless modes
are of the type

To discover the meaning of these modes, we can see the way
they transform under SO(24) in the light cone gauge; then,
we get three different types of particles: gravitons, as the sym-
metric and traceless part in (7.35) transforms under SO(24) as
a spin two particle; a massless scalar for the trace part, called
dilaton; and an antisymmetric second rank tensor, coming
from the antisymmetric part.

In order to define string amplitudes we need to introduce ver-
tex operators [11] for the emission or absorption of string
states. For a generic string state, |A >, the corresponding
vertex operator is given by

Va = / PoVhFy (o) X, (7.36)

where k* = —M? the mass of the string state |[A >, and
with Fj (o) restricted by imposing invariance of V} under scale
transformations on the worldsheet. This amounts to requiring
Fr(o)e™ X having conformal dimension equal two (it trans-
forms under ¢ — Ao like V. — A=2V). The vertex operators
for the tachyon, graviton and antisymmetric tensor are, re-
spectively, defined by

Ftachyon — 17
Fgraviton = 3X“8X#,
Fantisymmetric - eaﬁaaXﬂaﬁXﬂ (737)
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A string vertex, representing the splitting of a closed string in
two, will contribute to a three graviton amplitude, and should
therefore be related to the gravitational constant k. A generic
closed string amplitude, with N external lines, and arbitrary
genus ¢ will then be proportional to

kN 2972, (7.38)

The formal expression for these amplitudes is

N
< Vi oo Vaghy >= KV £272 / [DX] (DR T] Va.

=1

exp(— /E o Rhasd X197 X", (7.39)

2o

where 3, is a Riemann surface of genus g.

To conclude this short review on the closed bosonic string, let
us say a few words on the closed string propagator. We will
start with the hamiltonian (7.26). The proper time represen-
tation of the propagator will be

dp 1 .: 1
A= / W jo+lo — __ ~ (7.40)
p Lo+ Lo

;From the representation (7.40) with a normal ordering con-
stant and a projector on physical states satisfying the con-
straint Lo = Lo,
dz dz 7
A= —plogho, (7.41)

z1<1 (22)?

where z = pe'®. It is finally convenient to introduce a com-

. - 1 _ ’ .
plex variable, z = €?™*7  such that p = e 2™ ™7 which

allows us to interpret 27’ Im 7 as an imaginary time in 1+1
dimensions.
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7.3 Open Bosonic String

Repeating previous comments on closed strings for the open
case 1s straightforward. The only crucial point is deciding the
type of boundary conditions to be imposed. From (7.2), we
get boundary terms of the form

g [ox19.x,. (7.42)

with 0, the normal boundary derivative. In order to avoid
momentum flow away from the string, it is natural to impose
Neumann boundary conditions,

0,X, = 0. (7.43)

Using these boundary conditions the mode expansion (7.22)
becomes, for the open string,

1 .
Xt (o,7) = 2" +2a'p'T +1V2a' Y —ake ™ cosno, (7.44)
n#0 n

and the quantum mass formula (7.30) is

5 4 4 &
M= = = + v nZ::l OOy (7.45)
;From (7.45) it is immediate reading the spectrum of states
described by the oscillations of the string. As in the closed
string, there is again a negative squared mass tachyon, while
now the massless states are the 24 polarization states of the
massless vector boson.

Vertex operators for open string states |A > are defined as

Vy = f ds\/RFy(s)e X (7.46)
C
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with ' the boundary of the open string worldsheet. Scale

e*-X(5) is of conformal

invariance of V implies now that F(s)
dimension equal one. The vertex operator for the massless

vectors 1s

f dsX“(s)eik'X(s). (7.47)
c

For the second excited level, corresponding to massive states,
the vertex operator becomes

fc dsvVRX"(s) X" (s)ek X (o), (7.48)

In the same spirit as in the closed bosonic string, open string
vertices can be related to a gauge coupling constant, g. Thus,
for a generic open string amplitude with N external lines and
L holes, the dependence on ¢ should be

gV g2, (7.49)

In order to relate g and k we can simply consider a closed
string amplitude at tree level, with one external closed string.
According to (7.38), this amplitudes will be proportional to
x~1. However, this amplitude can also be interpreted as a tree
level amplitude for open strings with no external line, i. e., a
disc, that, from (7.49), will behave as g~2. Identifying both
coefficients, we get the desired relation,

Kk~ g°. (7.50)

It must be stressed that closed an open strings are naturally
coupled. For instance, nothing prevents us from inserting
closed string vertex operators in an open string amplitude.
The insertion of a closed string state is topologically equiva-
lent to creating a hole, and therefore increasing the power of
g, according to (7.49), by a power of two, which is equivalent
to (7.50).
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7.4 Background Fields

The simplest generalization of the worldsheet lagrangian (7.2)
in background fields should naturally include all the massless
states of the closed string. The obvious is the g"” metric of
the target spacetime,

T
Si = =5 [ EoVihasg”(X)0.X,05X,.  (751)

However, not any background g*” is allowed, since we want to
preserve Weyl invariance on the worldsheet. Scale invariance,
for the two dimensional system defined by (7.51) is equivalent,
from the quantum field theory point of view, to requiring a
vanishing [-function. At one loop, the f-function [12] for
(7.51) is given by )
P o

where R is the Ricci tensor of the target spacetime. There-

R, (7.52)

fore, the first condition we require on allowed spacetime back-
grounds is to be Ricci flat manifolds.

The antisymmetric tensor field, B, , and the dilaton field, @,
can also be added as extra backgrounds to (7.51),

S = Sl—g / dQUéaﬁaaX“@gX”BW(X)—I—i / 2o VR®(X)R®,

(7.53)
with R® in (7.53) the worldsheet curvature. o does not
appear in the last term due to dimensional reasons (the first
two terms in (7.53) contain the X* field, which has length
units). The term eaﬁaaX“aﬁX”BW can be interpreted as the
minimal coupling of the string to the B,,(X) field,with the
gauge transformations of B, defined by

§B" = 9"A” — 9" A", (7.54)
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This can be interpreted as the string being a source for the
2-form gauge field B, .

Once the background fields in (7.53) have been added, the
condition of Weyl invariance generalizes to vanishing (3 - func-
tions for g, B and ®. At one loop, they are

1
R + 7 2 H,, —2D,D,® = 0,

D\H,,, —2(D\®)H,, = 0,
1
4(D,®)* —4D,D"® + R + EHWPH“W + (D —-26) = 0,
(7.55)

where H,,, = 0,B,, + 0,B,, + 0,B,,. The set of equations
(7.55) can be interpreted as the Euler-Lagrange equations for
the action

S = —21? / Az, /Ge (R — 4D, 0 D" ® + %HWPH“””),
(7.56)
that describes the long wavelength limit of the interactions
of the massless modes of the closed bosonic string. We will
refer to this action as the one in the “string frame”. When

the factor e~2®

is absorbed in the metric through a suitable
rescaling, what we get is the string effective action in the
“Finstein frame”.

It is important to stress that the computation leading to equa-
tions (7.55) is only taking into account short distance effects
on the worldsheet, and is therefore independent of the topol-
ogy. Notice that for a constant dilaton field, the last term in
(7.53) is simply

x-P, (7.57)

with y the Euler number; in terms of the genus, g, for a generic
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Riemann surface the Euler number is simply given by
Y =2 —2g. (7.58)

Therefore, the partition function at genus g behaves like

o~ ®(2-29)
The topological Euler number possesses a nice meaning in st-
ring theory: it is equal to the number of vertices joining three
closed strings, needed to build up a Riemann surface of genus
g. In fact, any Riemann surface of genus ¢ > 2 can be ob-
tained sewing 3g — 3 tube propagators through 29— 2 vertices.
This naturally leads to a precise physical meaning of the dila-
ton background field: it is the string coupling constant,

g=e2. (7.59)

In ordinary quantum field theory, the condition on the back-
ground fields to be solutions to the equations of motion amounts
to requiring vanishing of tadpoles at zero momentum (one
point functions) for the quantum fields representing small fluc-
tuations around the background. Based on the previous rela-
tion between the vanishing beta functions and the equations
of motion for the effective lagrangian (7.56), we can use as a
criterion for defining good string backgrounds the condition
of vanishing tadpoles [1],

<V >=0, (7.60)

for vertex operators V representing the small quantum fluc-
tuations of the background fields, and where the expectation
value in (7.60) is calculated in the corresponding background.
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It is then easy to see that, at tree level, in string perturbation
theory, and for closed strings, condition (7.60) is equivalent
to the requirement of Weyl invariance on the worldsheet. In
fact, V possesses conformal dimension equal two, and at tree
level we can fix the insertion of V' at the origin of the Rie-
mann sphere. In that case, under scale transformations on
the worldsheet,

<V>a A<V o>, (7.61)

and, therefore, Weyl invariance requires < V' >= 0. How-
ever, in general condition (7.60) is stronger than simply Weyl
invariance at tree level. In fact, by < V >= 0 we mean the
sum of all string contributions, which naturally include higher
loop effects to the tadpole. If in addition we allow coupling
to open strings, then in the computation of < V' > we should
also take into account the open string contribution. However,
in the open string case, Weyl invariance does not force, at tree
level, the tadpole for closed string vertex operators to vanish.
When considering simply the closed bosonic string, we get a
contribution to the tadpole of the dilaton vertex, at one loop,
even in a flat spacetime background metric. Imposing (7.60)
at one loop gives rise to the formal relation depicted in Figure

7.4 [13].

<V> = + -

Figura 7.2: Tadpole cancellation for closed strings

The first term in Figure 7.4, corresponding to a Riemann
sphere, is given by the value of the dilaton beta function
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in (7.55), for a background with constant dilaton field and
vanishing antisymmetric tensor. Thus, from Figure 7.4, we
formally get

Figura 7.3: A vanishing tadpole implies a non vanishing cos-
mological constant

i. e., vanishing dilaton tadpole at one loop is equivalent to
working in a background metric with a non vanishing cosmo-
logical constant, given by the one loop dilaton tadpole. This
is known as the Fishler-Susskind mechanism [13].
For future convenience, we will include a brief discussion on
the dilaton tadpole for the closed bosonic string. In order to
define the one loop amplitude, we will start with the propa-
gator A defined in (7.41), and compute the trace in the string
Hilbert space,
dz dz Lo,
/ —— tr (27°2™). (7.62)
l21<1 (22)2

z has a clear geometrical interpretation, as characterizing a
genus one Riemann surface. The value of Im 7 is the longitu-
dinal length of the torus, while Re 7 is the rotation performed
before gluing the extremes of a cylinder, in order to build up
the torus. This is the standard representation of the torus
through the elliptic modulus 7. The integration in (7.62)
should be restricted, by modular invariance, to the funda-
mental region of the SI(2,Z) group, acting on the upper half
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complex plane®.
Now, the dilaton tadpole for a dilaton of zero momentum is
given by

d d :
<Vp>= R// C (P (k = 0)) d®p,  (7.63)

with Vp(k =0) = XE(Z)XL;L(E) We can now easily interpret
the dilaton tadpole (7.63) as a cosmological constant.

Let us then first recall the way to calculate the cosmological
constant in ordinary (D-dimensional) quantum field theory.
The contribution of particles of mass m comes from

A= j:/ plnp + m?), (7.64)

with the sign depending on the boson or fermion nature of
the particles. Through a proper time representation,

1 ~ 12 2
A= 2 27To/t/ = exp[—2ma’t(p” +m”)].  (7.65)

The generalization of (7.65) to string theory can be imple-
mented identifying ¢ and wlm 7, and taking into account the

*The modular group, SI(2,Z) is defined as the set of matrices

a b
( c d ) bl a’ b’ C’ d E Z’
with determinant equal one. The generators of the group are
0 1 11
=(40) m=(n)

and satisfy the relation (ST')® = I. Tori with different values of 7, related
by an element of SI(2,Z), share the same complex structure.
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mass formula. The result, once the projection on states with
Lo = Lg has been performed, is

Astring - -

/ d**p d*r o—2ma'Im r(p?4m?) (ZNEN),
(2m)26 ) Im 7

(7.66)
with N and N the operator numbers. It is now easy to
check that (7.66) is proportional to the dilaton tadpole, (7.63).
Thus, the condition < Vp >= 0, at one loop, implies that we
should work on a target spacetime with non vanishing cosmo-
logical constant, 1. e., an Anti-deSitter spacetime.
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Capitulo

8

Toroidal Compactifications

8.1 T-Duality

8.1.1 Closed Bosonic String Compactifica-
tions

A torus is a Ricci flat manifold that can be used as target
spacetime. Let us consider the simplest case, R?® x S*, where
the compact dimension, S, is taken to be of radius R. Then,
the coordinate %%, living on this S, must satisfy

x2° = 2% + 2mnR. (8.1)

If we now include the identification (8.1) in the mode expan-
sion (7.22) we get, for the right and left momenta,

m

P —= ﬁ - nRv
m
PR = 5p +nR, (8.2)

while the mass formula becomes

m  nR\* 4 m  nR\* 4 _
w=(F-) ta-0=(F+T) 150 -
(8.3)

107
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with N and N the total level of left and right moving excita-
tions, respectively. From (8.3) we get the relation

(N — N) = mn. (8.4)

The first thing to be noticed, from (8.2), is the invariance
under the transformation [14]

T:R
m

S x| e

_>
— (8.5)

A nice way to represent (8.2) is using a lattice of (1,1) type,
which will be referred to as I''. This is an even lattice, as

can be observed from (8.2):
Py — ph = 2mn. (8.6)
The transformation (8.5) acts on the lattice momenta as

PL — —PL;
PR — DPR- (8.7)

Hence, (8.5) amounts to the change [17]-[20]
XB 5 X = Xp - X (8.8)

In fact, string theory in X'?% variables, compactified on a circle
of radius R, possesses the spectrum of winding and momen-
tum of string theory defined on X?° variables, but compacti-
fied on a circle of radius %.
If II is the spacelike 1-plane where py, lives, then pg € II+. In
fact, pr, forms a 6 “ angle with the positive axis of the I''!

@ is chosen as the coordinate parametrizing the radius of the compact
dimension.
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lattice, while pg forms a negative angle, —6, and changes in R,
which are simply changes in @ (or Lorentz rotations in the I''!
hyperbolic space), are changes in the target space preserving
the 3 = 0 condition, and therefore are what can be called the
moduli of the o-model (7.51). Of course, no change arises in
the spectrum upon rotations of the IT and II+ planes. We have
now obtained a good characterization of the moduli space for
the string o-model on a simple S* torus. However, in addition
to rotations in II and ITt

the symmetry (8.5), representing rotations of the I''! lattice.

, we should also take into account

The previous discussion can be generalized to compactifica-
tions on higher dimensional tori, 7' (i. e., working in a back-
ground spacetime R?~% x T9). 1In this case, (pr,pr) will
belong to a lattice I'"?, and the moduli space will be given by
i

O(d,d; Z)\O(d,d)/O(d) x O(d), (8.9)
where the O(d, d; Z) piece generalizes the transformations (8.5)
to T From now we will call these transformations 7-duality
[16]. Notice also that the dimension of the moduli (8.9) is
d - d, which is the number of massless degrees of freedom that
have been used to define the background fields of the o-model
(7.53). The manifold (8.9) is the first example of moduli of
a o-model we find; these moduli spaces will be compared,
in next section, to moduli spaces arising upon K3 compact-
ifications. The T-duality transformation (8.5) is not only a
symmetry of the spectrum of the string, but also a symmetry
of the interactions.
However, in order for it to be a symmetry of the interactions,
we should also change the string coupling constant as [21]

gV’

_ , 8.10
g—g B (8.10)
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This change in the string coupling constant is such that the
Newton constant in the compactified space remains constant.

8.2 Discrete Light Cone: Compact-
ification of Light

A modification of the standard light-cone quantization has
been recently proposed [?]. The idea is compactifying the
light-like direction, X~

X~ ~ X" +27R (8.11)

or, equivalently,

(S~ () (e s

When this light-like compactification is performed, the mo-
mentum p* is quantized through

N
2R’

After imposing condition (8.11), the Hilbert space of the st-
ring is divided into superselection sectors, characterized by

+

p (8.13)

the value of N. The quantization condition (8.13), together
with equation (7.18), implies that the minimum length of the

g'. This minimum length string can be
used to define something like a “string parton”. In the sim-

o axis is given by

plest sector, which is the one with N = 1, the dynamics is
trivial, as there is only a single string of minimal length. The
sector with N = 2 contains processes as those represented
in Figure 7.1, describing the joining and splitting of strings,
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with pf = pf = %. Thus, the dynamics becomes more

complicated as N grows.
Strings can wind around the compact direction, X~. The

winding number v is defined, as usual, by

dX-
2 = [ — do. 14
TRy 7o o (8.14)
Using (7.20), we get
1 X' oX?
) = [ —
2 Ry F 90 Or do (8.15)
that, from (7.18), leads to
(N-N)
27TRI/ = T, (816)
which implies the condition
(N —-N)= Nv. (8.17)

This relation is the analog, for compactifications in the light-
like direction X~ of (8.4). If we also compactify some transver-
sal direction, X, when combining (8.17) and (8.4), we get

(N — N) =vN 4+ mn. (8.18)

The discrete light-cone construction immediately raises a num-
ber of questions. The simplest one is naturally whether the
theory, restricted to a particular value of IV, is consistent, and
which is then the critical dimension. It is easy realizing, when
repeating the usual no ghost theorem, that for a fixed value
of N, and p* = %, the quantum consistency of the theory
requires, as in the standard bosonic case, D iticar = 26. The
second comment, concerning compactification in a light-like
direction, is that now the value of the compactification radius,
R, is not playing the role of a moduli, as the target space-time

metric is independent of R.
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8.3 Open Bosonic String Compact-
ifications: D-Branes

By introducing the complex coordinate
z=o0%+10, (8.19)

with o = iT, the expansion in oscillator modes (7.44) can be
rewritten as

! 1
X*(o,7) = 2" —id'p"In(22) +1 al Z —ab(z7" 4 z27").
2 wgo
(8.20)

Let us now consider the open string moving in R?® x S*.
Neumann boundary conditions in the compactified direction
are

0, X* = 0. (8.21)

Now, we will work out the way these boundary conditions
modify under the R — % transformation [17]-[20]. To visu-
alize the answer, we will consider the cylinder swept out by
a time evolving closed string, both from the closed and open
string pictures (in the open string picture the cylinder can be
understood as an open string with both ends at the S! edges
of the cylinder, Figure 8.3). In fact, from the closed string
point of view, the propagation of the string is at tree level,
while the open string approach is a one loop effect.

We will now see what Neumann boundary conditions for the
open string mean, from the point of view of closed strings.
This, naturally leads to 0,X% = 0, which in terms of the

complex variable z = e reads

20, Xp 4+ 20.X7° = 0. (8.22)
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|

Figura 8.1: Open string, with its extreme points wrapping
around the 25" (compact) direction

If we now perform a T-duality transformation, in the sense of

(8.8) we get, from (8.22),
20.X15 29, X1 =, (8.23)

or, equivalently, 9, X"*® = 0. This last condition is equivalent
to imposing Dirichlet boundary conditions for the open string.
Thus, what T-duality does on the open string is exchang-
ing Neumann and Dirichlet boundary conditions. Dirichlet
boundary conditions for the open string mean that the value
of the coordinate X% is fixed, and does not change in the open
string time. To visualize this condition, we can introduce the
hypersurface in spacetime defined by X% = constant. This
is a 24 + 1 dimensional space, where the end points of the
open string are forced to move. We will call this hyperplane a
D-24brane, and the 24 + 1 dimensional space its worldvolume
(see Figure 8.3). It is important to observe that the so defined
D-brane is simply a mathematical plane of zero thickness.

Notice that open strings in the presence of this D-24brane are
enforced to end on the D-brane worldvolume; in this sense, or-
dinary open strings with Neumann boundary conditions for all
coordinates can be interpreted as open strings in the presence
of a D-25brane, whose worldvolume is the whole spacetime.
Then, the T-duality argument above can be interpreted as a
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X % = constant

= 25

i

D-24brane

Figura 8.2: An open string with end points constrained to
move in the worldvolume of a D-24brane

transformation, under T-duality, of the D-25brane into a D-
24brane. This will in general be the rule, and we will pass
from a D-pbrane to a D-(p — 1)brane, through T-duality on
some of the coordinates of the D-pbrane worldvolume. Recip-
rocally, we can also go from a D-(p — 1)brane to a D-pbrane
through T-duality on some of the coordinates transversal to
the D-pbrane worldvolume.

Massless string states can propagate on the D-brane world-
volume. In fact, we know that for open strings, states of
the form o,k > (with & a momentum in the p + 1 di-
mensional worldvolume) are massless, so that for a D-pbrane
we will have vectors moving in the worldvolume defined by
o |k >, with p = 0,...,p, and a set of scalars ol |k >,
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with I = p+1,...,26. This is, in fact, the spectrum we ex-
pect from dimensional reduction of the gauge theory defined
by the massless modes of the open string in 26 dimensions.
Thus, on a D-pbrane, we have, at least, a U(1) gauge theory
with photons the string states o” ;|0 >, where u = 0,...,p.
Now, once D-branes have entered the theory, a natural step is
considering configurations with more than one D-brane. The
simplest configurations are those with parallel D-branes, as
in Figure 8.3. Then, a new sector in the spectrum appears,
as strings are now allowed to stretch between the parallel D-
branes. The end points of this strings are characterized by
the positions 7 and C5 of the D-branes in the transversal
directions. This reminds of the old Chan-Paton factors of
open string theory: now, the extremal quantum numbers of
the Chan-Paton model are promoted to the locations of the
D-branes in transversal space.

Ci C»

DISEAN

NN\

Figura 8.3: A parallel branes configuration

Including these stretching strings increases the spectrum of
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the D-brane worldvolume. In fact, now we have o | [C1C5] |k >
string modes, with g = 0,...,p, which are vector bosons,

. CoC -
with a mass equal [27,1] In addition, we have new scalars,

ol [[C1Cy]lk >, with T = p+1,...,26. This is the usual
spectrum of a Higgs model with U(2) gauge invariance broken
down to U(1)?, and scalar Higgs fields in the adjoint represen-
tation. If we accept the previous qualitative picture, we land
into a new and very geometrical understanding of the Higgs
mechanism and enhancement of gauge invariance. In fact, the
enhancement of gauge symmetry will take place whenever the
two parallel D-branes join.

As an amusing comment on some magical numerical coin-
cidences, we will mention an interesting relation between the
critical dimension of bosonic strings, and the beta function for
N =0 Yang-Mills theories. The beta function for Yang-Mills

with scalar fields transforming in the adjoint representation is

_ 9> (@)
1672 6

8= (22 — v), (8.24)

with ¢z(G) the dual Coxeter number of the gauge group, G,
and v the number of scalar fields in the adjoint representation.
Notice that for a D-3brane in the bosonic string, we precisely
get 22 saclar fields, corresponding to the transversal direc-
tions. This implies that, at first order in o', the worldvolume
dynamics on the D-brane possesses vanishing beta function.

8.3.1 D-Brane Dynamics

Parallel D-branes interact dynamically through the exchange
of closed strings. When interpreting Figure 8.3.1 from the
point of view of the field theory on the D-brane worldvolume,
the exchange of the closed string amplitude, at tree level, or an
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open string at one loop, is nothing but a computation of the
cosmological constant, where the particles contributing to A
are now the strings extending between the parallel D-branes.

Figura 8.4: Tree level interaction through closed strings be-
tween D-branes

This one loop vacuum amplitude (in the open string channel)
is obtained when summing up all the zero point energies of
all the modes. Through Schwinger’s proper time formalism,

oo dt 2 2
A:/ at —t(R24M?) _
o 2t Z ¢

k,oscillators

oo dt dp+1k HE2 2
- —t(k*+M?)
0o 2t % / (2 )P+t ¢ ’ (8.25)

where the mass spectrum is

4o

YiY: 1 /& S
M? = Iy = (Z na', o, — 1) , (8.26)

n=1
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with Y7 measuring the background distance between the D-
branes. Performing the momentum integrals and the oscil-
lator sums, the amplitude, in terms of the string time ¢t =

2ma’t,, in a spacetime of dimension D, becomes
oo dls 2 gy —BEL XYY, o - 2n\—D+2
A=2 [7 Do (snialt) " Hredtg T 0 (1 - )R,
0o 2t —
(8.27)
where the definition ¢ = e™™ has been introduced, and the
factor 2 is taking into account the two possible orientations of

the open string extending between the D-branes. The t — 0
limit can be easily obtained from Dedekind’s eta function,

U(T) — ei7rfr/12 H(l . e?wiﬁ'n)’ (828)
n=1

which satisfies n(—1) = (—ir)"/?p(r). In critical dimension,

t—=0

limg 2 [T(1 — ™)™ = t"2[e*/" + 24 +--].  (8.29)
n=1

The dilaton (Figure 8.3.1) and graviton contribute through
the massless pole ¢ = 0 (the leading divergence is from the
tachyon), and lead to the amplitude

A=V, %(4#20/)11_7“%77_23“(23 —p)/2)|b]P7*. (8.30)
iFrom (8.30), it is clear that the eleven dimensional D-brane,
with p = 11, has no o' dependence, which is certainly the
result to be expected for the self dual brane in 26 dimensions.
A natural way to interpret (8.30) is as the graviton and dila-
ton exchange between the two D-branes. We can thus include
a coupling 7, of the D-pbrane to the graviton, and repre-
sent (8.30) as T2G/(b), with G/(b) the massless graviton Green



Toroidal Compactifications 119

Figura 8.5: Dilaton contribution

function in transversal space. Introducing the gravitational

constant &, the amplitude will behave as k™%, so that, from

(8.30),

T, ﬁ(47r20/) =n

~ 16r

which is consistent with a dilaton tadpole of order k=, Us-

: (8.31)

ing now the identification between k and the string coupling

constant, we find a D-brane tension behaving as gst:mg, which
will be the main label of D-branes.

As the D-brane is a dynamical object, we can look for its
worldvolume lagrangian in the presence of closed string back-
grounds, G, and B,,. The worldvolume lagrangian should
also contain the vector field on the worldvolume, which is an
open string photon. As was shown in [22], the open string
photon interacts with itself through a nonlinear Born-Infeld
lagrangian. Taking this fact into account, and the value for
the D-brane tension, we get, as the worldvolume lagrangian

for the D-brane,

S = Tp/dp“f\/det (G + By +27a'F,),  (8.32)

with CN?W and BW the induced metric and antisymmetric ten-
sor on the worldvolume. The coefficient o' in front of F},
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already indicates the stringy origin of the Born-Infeld string
photon interactions. In principle, the check of conformal in-
variance for the worldvolume action can be done using stan-
dard beta function techniques [23], [24]*. Invariance under
(7.54) transformations requires transforming the vector field
as

FAW == auAy_auA;m
A, = A, —A, (8.33)

8.4 Orientifolds

Worldsheet parity transformations for open strings are defined
by
o— T —o0. (8.34)

In terms of the oscillators, this transformation becomes

Q:al — (—1)"ak. (8.35)

n

For the closed string, worldsheet parity is
o— —0, (8.36)
exchanging left and right moving oscillators,
Q:al —ak. (8.37)

Invariance under worldsheet parity is equivalent to reducing
the spectrum of states to those which are even with respect

to €.

*Perturbative beta function analysis on the worldvolume lagrangian
is essentially perturbative in o'; thus, the Born-Infeld form of the la-
grangian should be induced from the first perturbative orders in o’.
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In the case of the closed string, the T-duality transformation
and worldsheet parity can be combined. The result is going
from the string coordinate X* to —X'*. Thus, for unoriented
strings the description of the T-dual must be performed using
string coordinates X*, moded now by the spacetime parity
transformation X* — —X’*_ In other words, the theory on
R*' x S'/Z,, with radius R, described in terms of X'* is
equivalent to the theory on R?*! x ST with radius % and de-
scribed in terms of the original variable, X?°. The orbifold
space S'/Z, is topologically equivalent to a segment of length
m R, with two orientifold 24 dimensional planes, at 0 and 7 R.
If we consider now open and closed strings coupled, the effect
of T-duality, as above described, will generate D-25branes, lo-
cated at some fixed value of the compactified X?° coordinate.
The difference with the oriented case is that now, for any D-
24brane, we must also consider its image with respect to the
orientifold plane. What this means is that the spectrum of
open strings, ending on the D-brane, contains as a subsector
the strings stretching between the D-brane and its orientifold
image (see Figure 8.4).

It is important to stress that open strings are not ending on
the orientifold plane; thus, we have no dynamics on the orien-
tifold worldvolume. However, this does not prevent the exis-
tence of gravitational interactions between orientifold planes
and D-branes. In fact, closed string states near the orientifold
become cross cups (Figure 8.4), leading to an orientifold—
orientifold interaction described by the Klein bottle, or an
orientifold—D-brane interaction, described by the Moébius strip.
Therefore, the gravitational properties of orientifold planes
will be given by the graviton and dilaton tadpoles for RP?,
but this is a discussion we will postpone.
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25

<
A % R

-

D-24brane Image

Orientifold
25-plane

Figura 8.6: An orientifold plane

Figura 8.7: A cross cup arising as a consequence of the pres-
ence of an orientifold

Finally, let us see the kind of gauge group that is obtained
on the D-brane worldvolumes in the presence of orientifold
planes. If, for instance, we have % D-branes to the left of an
orientifold, we should naturally have % image D-branes to the
right. If the % are joined and placed on the orientifold plane,
the spectrum of massless particles obtained will be those defin-

ing the adjoint representation of the gauge group, SO(N).
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9

0-Model Geometry

In this section we will work out the moduli spaces for the
string o-models defined on the worldsheet, with target space
K3 manifolds.

9.1 K3 Geometry. A First Look at
Quantum Cohomology

The concept of moduli space introduced in previous para-
graph, for the o-model (7.53), when the target space is a T
torus, leading to manifold (8.9), can be generalized to more
complicated spacetime geometries satisfying the constraints
derived from conformal invariance, namely Ricci flat mani-
folds. This is a physical way to approach the theory of mod-
uli spaces where, instead of working out the cohomology of
the manifold, a string is forced to move on it, which allows
to wonder about the moduli of the so defined conformal field
theory. We will work out this question for the particular case
of K3 surfaces.

Let us first recall the relation between supersymmetry and the
number of complex structures. Let us think of a o-model, with
target space M. Now, we want this o-model to be invariant

under some supersymmetry transformations. It turns out that

123
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in order to make the o-model, whose bosonic part is given by

1" gij (¢(x)) 0, By, (9.1)

with n the metric on spacetime, and ¢ the metric on the tar-
get, invariant under N =2 supersymmetry we have to require
the manifold to be Kahler and, in order to be N =4 super-
symmetry, to be hyperkahler.

Let us then begin with a description of K'3 manifolds [25, 26,
27]. To characterize topologically K3, we will first obtain its
Hodge diamond. The first property of K3 is that the canonical
class,

K= —¢(T), (9.2)
with ¢;(T) the first Chern class of the tangent bundle, T', is

Z€eTo,

K =0. (9.3)

Equation (9.3) implies that there exists a holomorphic 2-form
2, everywhere non vanishing. Using the fact that only con-
stant holomorphic functions are globally defined, we easily
derive, from (9.3), that

dim H*® = h?0 = 1. (9.4)

In fact, if there are two different 2-forms €; and €,, then
Q4 /Q, will be holomorphic and globally defined, and therefore
constant.

The second important property characterizing K3 is

so that
RO = Ot — 0, (9.6)
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as by = 'Y = h%! =0, because of (9.5).

The Euler number can be now derived using Noether-Riemann
theorem, and property (9.3), and it turns out to be 24. Using
now the decomposition of the Euler number as an alternating
sum of Betti numbers, we can complete the Hodge diamond,

24:b0—bl—|—bg—bg—|—b4:1—0—|—bz—0—|—1, (97)

which implies that
dim H* = 22, (9.8)

and therefore, from (9.4), we get

dim H"' = p"! = 20, (9.9)
leading to the Hodge diamond
1
0 0
1 20 1 (9.10)
0 0
1

Using Hirzebuch’s pairing, we can give an inner product to
the 22 dimensional space H?. In homology terms, we have

aq - Oy = #(Oél N Oég), (911)
with ay,ay € H*(X, Z), and #(ay N ay) the number of ori-
ented intersections. From the signature complex,

1 2 224
T = /X g(C% - 262) - _§/XCQ - _T - _167 (912)

we know that H*(X,7) is a lattice of signature (3,19). The
lattice turns out to be self dual, i. e., there exits a basis o
such that

oy - Od; = (Sij, (913)
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and even,

a-a€?2Z, Vac H*X,Z). (9.14)

Fortunately, lattices with these characteristics are unique up
to isometries. In fact, the (3,19) lattice can be represented as

Es LEs LU LU LU, (9.15)

with U the hyperbolic plane, with lattice (1,1), and FEs the
lattice of (0,8) signature, defined by the Cartan algebra of Fs.
The appearance of Fg in K3 will be at the very core of future
relations between K3 and string theory, mainly in connection
with the heterotic string.

Next, we should separately characterize the complex structure
and the metric of K'3. Concerning the complex structure, the
proper tool to be used is Torelli’s theorem, that establishes
that the complex structure of a K3 marked surface® is com-
pletely determined by the periods of the holomorphic 2-form,
Q. Thus, the complex structure is fixed by

i) The holomorphic form €.
ii) A marking.
To characterize Q € H*°(X, C), we can write
Q=x+y, (9.16)

with # and y in H*(X,R), that we identify with the space
R3'9. Now, we know that

/Q/\Q — 0,
X

/XQ/\Q > 0, (9.17)

“By a marked K3 surface we mean a specific map of H?(X,Z) into
the lattice (9.15), that we will denote, from now on, ['*1°.
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and we derive

r-y = 0,
rox = y-y. (9.18)

Therefore, associated with €, we define a plane of vectors
v = nz + my which, due to (9.17), is space-like, i. e.,

v-v > 0. (9.19)

The choice of (9.16) fixes an orientation of the two plane, that
changes upon complex conjugation. Thus, the moduli space
of complex structures of K3, will reduce to simply the space of
oriented space-like 2-planes in R*1%. To describe this space,
we can use a Grassmannian [26],

(03, 19)*

Gir = (0(2) x O(1,19))*

(9.20)

where ()T stands for the part of the group preserving ori-
entation. If, instead of working with the particular marking
we have been using, we change it, the result turns out to be
an isometry of the I'*'? lattice; let us refer to this group by

O(I'*'?). The moduli then becomes
M = Gr/OT(I*19), (9.21)

The group O(I'*'?) is the analog to the modular group, when
we work out the moduli space of complex structures for a
Riemann surface (S1(2,Z) for a torus).

Once a complex structure has been introduced, we have a
Hodge decomposition of H?, as

H?>=H** 3 H"' @ H*. (9.22)
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Thus, relative to a complex structure characterized by €2, the
Kahler form ./ in H"! is orthogonal to €, and such that

Vol = / JAJ >0, (9.23)
X

which means that .J is represented by a space-like vector in
R>1? and, therefore, together with €, spans the whole three
dimensional space-like subspace of R*'?. Yau’s theorem now
shows how the metric is completely determined by J and {2,
i. e., by a space-like 3-plane in R*»'®. Thus, we are in a
similar position to the characterization of the moduli space
of complex structures, and we end up with a Grassmannian
manifold of three space-like planes in R*'?,

Gr = 0(3,19)/0(3) x O(19). (9.24)

Now, we need to complete Gr with two extra ingredients. One
is the volume of the manifold, that can change by dilatations,
and the other is again the modular part, corresponding to

319

isometries of , so that finally we get

MM = O(I*)\Gr x RT. (9.25)

Hence, the moduli of the o-model (7.53), defined on a K3 sur-
face, will contain the moduli of Einstein metrics on K3 (see
equations (9.24) and (9.25)). Now, the dimension of mani-
fold (9.25) is 58. For the o-model (7.53) we must also take
into account the moduli of B-backgrounds. In the string ac-
tion, what we have is the integral, [ B, over the worldsheet,
which now becomes a 2-cycle of K3; thus, the moduli of B-
backgrounds is given by the second Betti number of the K3
manifold, which is 22. Finally, the dilaton field ® has to be

taken into account in (7.53). As mentioned, if ® is constant,
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as we will require, it counts the number of loops in the per-
turbation series, so we will not consider it as an extra moduli.
More precisely, we will probe the K3 geometry working at tree
level in string theory. Under these conditions, the ¢ moduli
space is of dimension [28]

58 4 22 = 80, (9.26)
and the natural guess is the manifold
M7 =0(4,20)/0(4) x O(20). (9.27)

Naturally, this is not the final answer, as we have not divided
yet by the equivalent to the T-duality trasnformations in the
toroidal case, which are, for K3, isometries of the H*(X;Z)
lattice, i. e.,

O(I*19), (9.28)

However, the final answer is not the quotient of (9.27) by
(9.28), as an important symmetry from the point of view of
conformal field theory is yet being missed: mirror symmetry.

9.2 Mirror Symmetry

In order to get a geometrical understanding of mirror symme-
try [29], we need first to define the Picard lattice.

Let us then consider curves inside the K3 manifold. The
Picard lattice is defined as

Pic(X) = H"(X) N H%(S,2Z), (9.29)

which means curves (i. e., 2-cycles) holomorphically embed-

ded in X. By definition (9.29), Pic(X) defines a sublattice



130 César Gomez Lopez

of H*(S;Z). This Picard lattice has signature (18,¢). Let us
consider, as an example, an elliptic fibration where the base
is a 2-cycle B, and F' is the fiber. The Picard lattice defined
by these two 2-cycles is given by

B-B = -2,
B-F = 1,
F-F =0, (9.30)

which is a lattice of (1,1) type. Self intersections are given by
the general expression

C-C=2g-1), (9.31)

where g is the genus, so that for ¢ = 0, the base space, we
get —2. and for the elliptic fiber, with g = 1, we get 0 for the
intersection. The intersection between the base and the fiber,
B - I, reflects the nature of the fibration. Notice that expres-
sion (9.31) is consistent with the even nature of the lattice
%12 Now, from (9.29), it is clear that the number of curves
we have in Pic(X) depends on the complex structure. Taking
this fact into account, we can wonder about the moduli space
of complex structures preserving a given Picard sublattice; for
instance, we can be interested in the moduli space of elliptic
fibrations preserving the structure of the fibration. As Pic(X)
are elements in H''(X), they should be orthogonal to €, so
the moduli we are looking for will be defined in terms of the

Grassmannian of space-like 2-planes in R*!%7 i, e.,
GrP = 0(2,19 — 1)/0(2) x O(19 — 1), (9.32)

where we should again quotient by the corresponding modu-
lar group. This modular group will be given by isometries of
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the lattice A, called the transcendental lattice, and is simply
defined as the orthogonal complement to the Picard lattice.
Thus, A is of ['*'?~* type, and the moduli preserving the Pi-
card group is

MP = Gr” JO(A). (9.33)
As is clear from (9.32), the dimension of the moduli space of
complex structures preserving the Picard group, reduces in an
amount given by the value of ¢ for the Picard lattice. At this
point of the discussion, a question at the core of mirror sym-
metry comes naturally to our mind, concerning the possibility
to define a manifold X* whose Picard group is the transcen-
dental lattice A of X [30]. In these terms, the answer is clearly
negative, as the Picard lattice is of signature (1,¢), and A is
of signature (2,19 —t), so that we need either passing from A
to a (1,t') lattice, or generalize the concept of Picard lattice,
admitting lattices of signature (2,¢). It turns out that both
approaches are equivalent, but the second has a more physical
flavor; in order to get from A a Picard lattice, what we can
do is to introduce an isotropic vector f in A, and define the
new lattice through

11, (9.34)
which is of (1,18 — t) type; now, the mirror manifold X* is
defined as the manifold possessing as Picard lattice the one
defined by (9.34). The moduli space of the mirror manifold is
therefore given by the equivalent to expression (9.32),

Grf = 0(2,t +1)/0(2) x O(t + 1). (9.35)

Then, we observe that the dimension of the two moduli spaces
sums up to 20, and that the dimension of the moduli space of
the mirror manifold is exactly given by the rank ¢ 4+ 1 of the
Picard of the original moduli space.
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A different approach will consist in defining the so called
quantum Picard lattice. Given a Picard lattice of signature
(1,1), we define its quantum analog as the lattice of signature
(2,t + 1), obtained after multiplying by the hyperbolic lat-
tice 'L, So, the question of mirror will be, given a manifold
X, with transcendental lattice A, finding a manifold X* such
that its quantum Picard lattice is precisely A. Now, we ob-
serve that the quantum Picard lattices of X and X™* produce a
lattice of signature (4,20). The automorphisms O(I'**%) will
result of composing the T-duality transformations and mir-
ror symmetry. Coming back to (9.27), and including mirror
symmetry, we get, as moduli space of the o-model on K3,

0(4,20; Z)\O(4,20)/0(4) x O(20). (9.36)

This concludes our analysis of o-models on K3.

9.3 Elliptic Fibrations

Let V' be an elliptic fibration,
o:V o A (9.37)

with A an algebraic curve, and ®~!(a), with a any point in
A, an elliptic curve. Let us denote {a,} the finite set of points
in A such that ®~'(a,) = C, is a singular fiber. Each singular
fiber C, can be written as

C, = 1,0, (9.38)

where ©;, are non singular rational curves, with @?p = -2,
and n;, are integer numbers. Diflerent types of singulari-
ties are characterized by (9.38) and the intersection matrix
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(0,,.0,,). All different types of Kodaira singularities satisfy
the relation

C?=0. (9.39)
Let 7(u) be the elliptic modulus of the elliptic fiber at the
point v € A. For each path o in II;(A’), with A" = A —{a,},
we can define a monodromy transformation S,, in SI(2,Z),
acting on 7(u) as follows:

anT(u) + by
cam(u) +dy
Each type of Kodaira singularity is characterized by a partic-

Sat(u) = (9.40)

ular monodromy matrix.
In order to define an elliptic fibration [33], the starting point
will be an algebraic curve A, that we will take, for simplicity,
to be of genus zero, and a meromorphic function J(u) on A.
Let us assume J(u) # 0,1,00 on A" = A — {a,}. Then,
there exists a multivalued holomorphic function 7(u), with
Im 7(u) > 0, satisfying J(u) = j(7(u)), with j the elliptic
modular j-function on the upper half plane. As above, for
each a € II;(A’) we define a monodromy matrix S,, acting
on 7(u) in the form defined by (9.40). Associated to these
data we will define an elliptic fibration, (9.37). In order to
do that, let us first define the universal covering A/, of A’,
and let us identify the covering transformations of A’ over A/,
with the elements in II;(A’). Denoting by @ a point in A,
we define, for each o € II;(A’), the covering transformation
u — at, by

T(at) = S,7(a); (9.41)
in other words, we consider 7 as a single valued holomorphic
function on A’. Using (9.40), we define

fol@t) = (cam () +do)7". (9.42)
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Next, we define the product A’ x C and, for each (o, ny, ny),
with a € II;(A’), and ny, ny integers, the automorphism

gla,ny,ng) (U, A) = (ab, fo(@)(A + ni7(@) + ng)). (9.43)

Denoting by G the group of automorphisms (9.43), we define
the quotient space

B' = (A" xC)/G. (9.44)

This is a non singular surface, since g, as defined by (9.43),
has no fixed points in A’. From (9.43) and (9.44), it is clear
that B’ is an elliptic fibration on A’, with fiber elliptic curves
of elliptic modulus 7(u). Thus, by the previous construction,
we have defined the elliptic fibration away from the singular
points a,.

Let us denote F, a local neighbourhood of the point a,, with
local coordinate ¢, and such that t(a,) = 0. Let S, be the
monodromy associated with a small circle around «a,. By U,
we will denote the universal covering of E; = E, — a,, with
coordinate p defined by

1
p=—logt. (9.45)

27

The analog of (9.41) will be
o+ 1) = S,7(0) (9.46)

If we go around the points a,, k times, we should act with Sﬁ;
hence, we parametrize each path by the winding number k.
The group of automorphisms (9.43), reduced to small closed
paths around a,, becomes

gk, n1,n2)(p, A) = (p+ K fe(p)[A + ma7(p) + nal). (9.47)
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Denoting by G, the group (9.47), we define the elliptic fibra-
tion around a, as

(U, x C)/G,. (9.48)

Next, we will extend the elliptic fibration to the singular point
a,. We can consider two different cases, depending on the
finite or infinite order of 5,.

9.3.1 Singularities of Type Ds: Z, Orbifolds

Let us assume S, is of finite order,
(S,)™ =14. (9.49)

In this case, we can extend (9.48) to the singular points, sim-
ply defining a new variable o as

o = 1. (9.50)

Let us denote D a local neighourhood in the o-plane of the
point ¢ = 0, and define the group G'p of automorphisms

g(ni,n2) : (o,A) = (0, A + ni7(0) 4 na), (9.51)

and the space

F=(DxC)/Gp. (9.52)

Obviously, F' defines an elliptic fibration over D, with fiber
F, at each point ¢ € D an elliptic curve of modulus 7(0).

From (9.49) and (9.42), it follows that
fr(lo) =1, (9.53)

with & = O(m). Thus, we can define a normal subgroup N
of G, as the set of transformations (9.47):

g(k,ni,n2)  (p,A) = (p+ E, A+ nit(p) + na). (9.54)
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Comparing now (9.51) and (9.54), we get
U, x C)/N = (D' x C)/Gp = F — F,. (9.55)
Using (9.54) and (9.47) we get
C=G/N, (9.56)
with C the cyclic group of order m, defined by
G (0, 0) = (7™ fi(a)N). (9.57)

;From (9.56) and (9.55), we get the desired extension to a,,
namely

F/C = (U, x C)/G, U Fy/C. (9.58)

Thus, the elliptic fibration extended to a,, in case S, is of finite
order, is defined by F'/C. Now, F//C can have singular points
that we can regularize. The simplest example corresponds to

S, = ( _01 _01 ) : (9.59)

1. e., a parity transformation. In this case, the order is m = 2,
and we define o by ¢ = . The cyclic group (9.57) in this

case simply becomes
(Ja )‘) — (_07 _)‘)7 (960)

since from (9.59) and (9.42) we get f; = —1. At the point
o = 0 we have four fixed points, the standard Z, orbifold
points,

(0, =7(0) + =), (9.61)
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with a,b = 0,1. The resolution of these four singular points
will produce four irreducible components, ©!,..., 0% In ad-
dition, we have the irreducible component Qg, defined by the
curve itself at ¢ = 0. Using the relation o? = ¢, we get the
Dy cycle,

C=20,+0"4+0%+06°+06" (9.62)

with (Og, 0') = (09, 0?) = (0y,0%) = (0y,0%) = 1. In gen-
eral, the four external points of D-diagrams can be associated
with the four Z, orbifold points of the torus.

9.3.2 Singularities of Type Ap

We will now consider the case

sp:((l) 711) (9.63)

which is of infinite order. A local model for this monodromy

can be defined by

(1) = ——nlog1. (9.64)

2ms
Using the variable p defined in (9.45), we get, for the group
G, of automorphisms,

g(kanlvnQ) : (pa )‘) — (P + kv)‘ +ninp + 712), (965)

and the local model for the elliptic fibration, out of the sin-
gular point,

U, x C)/g,, (9.66)

i. e., fibers of the type of elliptic curves, with elliptic modulus
np. A simple way to think about these elliptic curves is in
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terms of cyclic unramified coverings [31]. Let us recall that a
cyclic unramified covering, Il : C' — (', of order n, of a curve
C' of genus g, is a curve C of genus

g=ng+1—n. (9.67)

Thus, for g = 1, we get ¢ = 1, for arbitrary n. Denoting by 7
the elliptic modulus of ', in case g = 1, the elliptic modulus
of € is given by

T = nr. (9.68)

Moreover, the generators & and B of Hl(é; Z) are given in
terms of the homology basis «, 3 of C as

I[la = a,
13 = ng, (9.69)

with II the projection I : ¢' = C. From (9.68) and (9.65),
we can interpret the elliptic fibration (9.66) as one with el-
liptic fibers given by n-cyclic unramified coverings of a curve
C' with elliptic modulus p or, equivalently, #logt. There
exits a simple way to define a family of elliptic curves, with
elliptic modulus given by ﬁ log ¢, which is the plumbing fix-
ture construction. Let Dy be the unit disc around ¢ = 0, and
let Cy be the Riemann sphere. Define two local coordinates,
zq : U, = Do, zp : Uy — Dy, in disjoint neigborhoods U,, Uy,
of two points P, and P; of Cy. Let us then define

W =A{(p, )|t € Do,p € Co —Uy, — Uy, or p € U,,

with |z.(p)| > [t], or

p € Uy, with |zp(p)| > |t|}, (9.70)
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and let S be the surface
S ={zy =t;(x,y,t) € Do x Og x Dy}. (9.71)

We define the family of curves through the following identifi-
cations

(past) € WNU, x Dy >~ (z4(pa),

(pb,t) eWnUy x Dy ~ (

For each t we get a genus one curve, and at { = 0 we get a
nodal curve by pinching the non zero homology cycles. The
pinching region is characterized by

xy =1, (9.73)

which defines a singularity of type Ag. The elliptic modulus
of the curves is given by

1

for some constants €y and C3. We can use an appropriate
choice of coordinate ¢, such that C'; = €y = 0. The singularity
at t = 0 is a singularity of type Ag, in Kodaira’s classification,

sp:((l) }) (9.75)

Using now (9.68) and (9.74) we get, for the cyclic covering of
order n, the result (9.64), and the group (9.65). The pinching
region of the cyclic unramified covering is given by

corresponding to

zy =t", (9.76)
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instead of (9.73), i. e., for the surface defining the A,,_; sin-
gularity, C?/Z,. Now, we can proceed to the resolution of the
singularity at ¢ = 0. The resolution of the singularity (9.76)
requires n — 1 exceptional divisors, ©1,...,0,_;. In addition,
we have the rational curve Qg, defined by the complement of
the node. Thus, we get, at ¢t = 0,

C:®0+"'+®n_1, (977)
with (0¢,01) = (00,0,-1) = 1, and (0,,0,41) = 1, which

is the A,_, Dynkin diagram. The group of covering transfor-
mations of the n'* order cyclic unramified covering is Z,,, and
the action over the components (9.77) is given by

®i — ®i+17
®n—1 — @0. (978)

9.3.3 Singularities of Type D, 4

This case is a combination of the two previous examples.
Through the same reasoning as above, the group G, is given,

S, = ( _01 :’1‘ ) . (9.79)

for

by
glk,ni,me) s (p, A) = (k4 p, (=D (A 4 ninp + ng)). (9.80)

Using a new variable 02 = ¢, what we get is a set of irreducible
components Qg,...0,,, with the identifications ©; — 4, _;.
In addition, we get the four fixed Z; orbifold points described
above. The singular fiber is then given by

C=200+--+20,+0'+0*+06°+06 (9.81)
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with the intersections of the Dn+4 affine diagram. It is easy
to see that in this case we also get

(€)?*=0. (9.82)

Defining the genus of the singular fiber by C? = 29 — 2, we
conclude that g = 1, for all singularities of Kodaira type. No-
tice that for rational singularities, characterized by non affine
Dynkin diagrams of ADE type [32], we get self intersection
C? = —2, which corresponds to genus equal zero.

9.4 Kodaira’s Classification

Next, we summarize the main results of Kodaira’s classifica-
tion. According to Kodaira’s notation [33], we will define an
elliptic fibration V onto A, where A will be chosen as a com-
pact Riemann surface. In general, we take A to be of genus
equal zero. The elliptic fibration,

OV A, (9.83)

will be singular at some discrete set of points, a,. The singular
fibers, Cy,, are given by

Cap =D _ 150, (9.84)

with ©,, irreducible curves. According to Kodaira’s theorem,
all possible types of singular curves are of the following types:

[}
Liy1: Cop=004+01+---4+0,, n+12>3, (9.85)

where ©; are non singular rational curves with intersec-

tions (@0,61) = (@1,@2) == (®n7®0) = 1.
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The A, affine Dynkin diagram can be associated to [, 1.
Different cases are

i) Ip, with C', = ©g and Oy elliptic and non singular.

ii) I, with C, = ©¢ and O a rational curve, with
one ordinary double point.

iii) Iz, with C, = ©¢g+0; and O and O non singular
rational points, with intersection (09, 01) = p; +
P2, 1. e., two points.

Notice that [y and [; correspond to diagrams Ag and
Ay, respectively.

Singularities of type I*_, are characterized by

I’y C,=004+0:+0;4+034+20,+4+205+---420,,

(9.86)
with intersections (0p,04) = (01,04) = (02,04) =
(03,04) = (04,05) = (05,06) = --- = 1, these singu-

larities correspond to the D, Dynkin diagram.

Singularities of type I1*, II11* and I'V* correspond to
types Fg, E7 and Fg.

In addition to these singularities, we have also the types

o [I: C, =0, with O a rational curve with a cusp.

o [/l : (C, = 0O¢+ 0, with O and ©; non singular

rational curves, with intersection (0g, ©) = 2p.

o [V : (C, =00+ 0; + 03, with Oy, ©; and ©; non
singular rational curves, with intersections (©¢,0;) =

(@1,@2) = (62760) =P
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The monodromies at the singularities are given at the table

below.

Matrix Type of singularity

01 h

NI

(v )]

L I

_01 (1) 111

()

9.5 Elliptically Fibered K3

We are now going to consider singularities in the K3 mani-
fold. Let C be a rational curve in the K3 manifold; then, by
equation (9.31), C' - C = —=2. If the curve C is holomorphi-
cally embedded it will be an element of the Picard lattice. Its
volume is defined as

Vol(C) = J - C, (9.87)

with J the Kahler class. A singularity will appear whenever
the volume of C' goes zero, 1. e., whenever the Kahler class .J
is orthogonal to C'. Notice that this implies that C' should be
orthogonal to the whole 3-plane defined by € and .J, as C' is
in fact (1,1), and therefore orthogonal to €.
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Now, we can define the process of blowing up or down a curve
C in X. In fact, a way to blow up is simply changing the
moduli space of metrics J, until .J - C' becomes different from
zero. The opposite process is the blow down of the curve. The
other way to get rid off the singularity is simply changing the
complex structure in such a way that the curve is not in H'!,
i. e., the curve does not exist anymore.

We can have different types of singularities, according to how
many rational curves (; are orthogonal to J. The type of
singularity will be given by the lattice generated by these
C; curves. Again, these lattices would be characterized by
Dynkin diagrams.

Let us now consider an elliptically fibered K3 manifold,

E— X = B. (9.88)

Elliptic singularities of Kodaira type are characterized by the
set of irreducible components X; of the corresponding singu-
larities. The Picard lattice for these elliptic fibrations contains
the I'! lattice generated by the fiber and the base, and the
contribution of each singularity as given by the Shioda-Tate
formula [30]. Defining the Picard number p(X) as 1 + ¢ for a
Picard lattice of type (1,%) we get

p(X) =2+ Y a(R), (9.59)

where the sum is over the set of singularities, and where o
is given by o(A,—1) = n—1, 0(Dyppa) = n+ 4, o(Fs) = 6,
o(Br) =17, 0(Fs) =8, c(IV) =2, 0(lll)=1,0(1)=0
(equation (9.89) is true provided the Mordell-Weyl group of
sections is trivial).

As described in the previous section, the mirror map goes
from a manifold X, with Picard lattice of type (1,%), to X™,
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with Picard lattice (1,18 — ) or, equivalently,
p(X) + p(X™) = 20. (9.90)

Through mirror, we can then pass from an elliptically fibered
K3 surface, with Picard number p(X) = 2, which should for
instance have all its singularities of type Ag, to a K3 surface of
Picard number p(X*) = 18, which should have 16 singularities
of A; type, or some other combination of singularities.
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Capitulo

10

Superstring Theories

10.1 Worldsheet Supersymmetry

Superstrings correspond to the supersymmetric generalization
of the o-model (7.2). This is performed adding the fermionic
term

Sy = /d%i;/?“p“@a%, (10.1)

where * are spinors, relative to the worldsheet, and vectors
with respect to the spacetime Lorentz group, SO(1,D — 1).
Spinors in (10.1) are real Majorana spinors, and the Dirac
matrices p®, a = 0,1, are defined by

)= (? 8) (10.2)

{0%, 07} = =2p°". (10.3)

The supersymmetry transformations are defined by

satisfying

szt = e,
ot = —ip®0yxte, (10.4)

147
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with € a constant anticonmuting spinor. Defining the compo-

o = ( Zﬁ ) , (10.5)

the fermionic lagrangian (10.1) can be rewritten as

nents

Sr= [ Ea(ro s + Lo k), (10.6)

with 0y = %(87 + 0,). As was the case for the bosonic st-
ring, we need now to specify the boundary conditions for the
fermion fields, both in the open and closed string case. For
open strings, there are two possibilities [34], [35]:

Ramond : o (m,7) = (m, 1),
Neveu-Schwarz : i (m,7)=—¢L(7,7), (10.7)

which produce the mode expansions

1 .
Ramond : oL = — Z dtemTF)
V2t

1 .
Neveu-Schwarz : L = 7 > breminmFo) - (10.8)

1
z+3

In the case of closed strings, we can impose either periodic or
antiperiodic boundary conditions for the fermions, obtaining
Ramond (R) or Neveu-Schwarz (NS) for both ¢4 fields.
After quantization we get, following similar steps to those in
the bosonic case, that the critical dimension is 10, and that
the mass formulas and normal orderings are given by

1

1
2_ - — = — —
M? = —(Np. = 1) = —(Nr — bp), (10.9)
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with § = % in the NS sector, and § = 0 in the R sector.
Using this formula, and the GSO projection, we easily get the
massless spectrum. For the closed string, the spectrum is

NS-NS sector : b, ,b%, 5[0 >,
NS-R sector : b, |5 >,
R-R sector : [§ > ®[5 > . (10.10)
The state |.S > corresponds to the Ramond vacua (recall § = 0

in the Ramond sector).

The dg oscillators in (10.8) define a Clifford algebra,
[y = . (0.11)

Introducing new operators,

1

d¥ = —(d¥+ >, i=1,...,4
7 \/5 0 0 ’ s P
5 1
i = ldF ), (10.12)
we get
{dF,d7} = 6. (10.13)

Using the cht, we can define the 32 Ramond vacua as
Go={E/2 212} — gk JE (10.14)

which transform as SO(10) spinors, with the weight of the
representation given by a = {£1/2,...,+1/2}. The repre-
sentation 32 of SO(10) can be decomposed into 16 and 16,
corresponding to weights with even and odd number of —%, re-
spectively. Notice that the conformal weight of 5S¢ is g. Phys-
ical states, as can be easily seen in the light cone gauge, are
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representations of SO(8), which again decomposes into differ-
ent representations, 85 and 8/, depending on the even or odd
character of the number of —1/2’s. In this case, 1 = 0,...,3,
and the spinors have conformal weight equal % = %.

Depending on what is the spinorial representation chosen we
get, from (10.10), two different superstring theories. In the
chiral case, we choose the same chirality for the two fermionic
states in the NS-R and R-NS sectors. This will lead to two
gravitinos of equal chirality. Moreover, in the R-R sector we

get, for equal chirality,
85285 =13 28 ¢ 355, (10.15)

corresponding to a scalar field being identified with the axion,
an antisymmetric field, and a 4-form field. We will call this
superstring theory, with N = 2 supersymmetry, type [1B. In
case we choose different chiralities for the spinor representa-
tions associated to the Ramond vacua, what we get is type
ITA superstring theory, which is also an N = 2 theory, but
with two gravitinos of different chirality; now, the R-R sector
contains

85 ® 8sr = 8y & 56y, (1016)

i. e., a vector field and a 3-form. These are the first two types
of superstring theories that we will consider.

In the open case, the massless modes in the NS-sector are
given by the states b |k >, defining a vector representation
85 of SO(8). In the Ramond sector, the massless states are
given by |S > transforming in the spinorial representation of
SO(8). This set of massless states defines the supermultiplet
of N =1 supersymmetric ten dimensional Yang-Mills theory.

The open superstring theory possesses one supersymmetry in
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spacetime, and is known as type I theory. The two differ-
ent theories associated to the two chiralities, 85 and 8g/, of
the Ramond vacua are equivalent, differing only in spacetime
parity.

The definition of vertex operators in the superstring requires
the use of picture changing representations. Introducing a
worldsheet superfield,

XH(2,7,0,0) = 2(2) + 2(2) + 004(2) + 094(2),  (10.17)
and superderivatives

D = 89-|-0@Z,

D = 0;+00:, (10.18)
we can define the bosonic vertices as
V= / d22d9dODX" DXV X, (10.19)

where we should employ Berezin’s integration rules, [ df = 0,
and [df#f = 1. Fermion emission vertices are defined using
the fermion spinor fields S, defined by (10.14), and the spinor
ghost e~#/2, with ¢ the field obtained after bosonization of the
ghost current [36],

Vi = /e—¢/2e—5/25a§5eikX, (10.20)

where S,, 5‘5 are in the SO(10) spinor representation, and
will be of different or equal chirality, depending on the string
theory (type IIA or type IIB) under consideration. The vertex
(10.20) is in the (—1/2,1/2) picture, where the labels of the
picture refer to the ghost number of the spinor fields, e?/?
and e %/2. In type IIA (IIB) string theory, the product of
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spinors in (10.20) will contain n-forms, with n even (odd),
corresponding to the odd (even) SO(8) tensors. Notice that
as we are not working in the light cone gauge, the spinors
in (10.20) are in SO(10) representations, and therefore the
vertices are related to the corresponding R-R field strength
tensors. The condition of physical states implies the equations
of motion and Bianchi identity for these R-R field strengths.

10.2 Green-Schwarz Superstring: St-
ring Scan

A manifestly spacetime supersymmetric action for the string
can be obtained by generalization of the Nambu-Goto action,
involving supersymmetric invariant line elements. Introduc-
ing spacetime fermionic variables, 8, we define

H;L = &»x“—éy“@ﬂ,
ny = 9.6 (10.21)

Introducing coordinates in superspace,
M= (2t 0%), (10.22)

where M = (i, a), and the supervielbein £y, (10.21) can be
written, in terms of the pull back, as

14 =02 By). (10.23)

The simplest generalization of the Nambu-Goto action in terms
of the line elements (10.21) would be

S = T/dad’r\/det H?H?nab. (10.24)
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However, the action (10.24) is problematic since, for instance,
in ten dimensions we have as bosonic degrees of freedom 10 —
2 = 8, and as fermionic degrees of freedom, 16, which is the
number of independent components of spinors in ten dimen-
sions. This seems to indicate that we need some extra in-
variance reducing by one half the number of spinor degrees of
freedom. This invariance is known as kappa symmetry [37],
and appears once we add to (10.24) the extra Wess-Zumino
term,

S = T/dadn/det H?H?nab + eijaizMaijBMN, (10.25)

with By a 2-form superfield. The action (10.25) is invariant
under kappa-transformations,

&MES, = 0,
§zMEy = EP(1+7)3, (10.26)

with x? a spacetime spinor, and with
a 1 114217 a a a
")/ﬁ = 56 172 3E,L'11 E’i22 Ei337a1a2a37 (1027)

where v are Dirac matrices, and Vi apa; = V[ayasas]- Lhe
kappa-transformation (10.26) allows us to gauge away half of
the fermionic degrees of freedom, which leads to the correct
matching

10 -2 = 12—6 (10.28)
Classically, the matching (10.28) works in three, four six and
ten dimensions, that can be denoted as the real, complex,
quaternionic and octonionic classical strings.
In chapter 6 this construction will be generalized to more
general extended objects.
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10.3 The SO(32) Type I Superstring

In open string theory, the standard way to introduce a gauge
group, is by adding Chan-Paton [38] factors at the end points
of the string. These factors can be visualized as a quark-
antiquark, transforming in the fundamental representations
R, R of some gauge group (. Thus, the open string states
will be defined as |A(ij) >, with the labels 7 and j in the
basis of R and R, respectively. Allowed gauge groups are
restricted by the consistency of string theory. First of all, the
massless modes b | |k > are required to transform as gluons in
the adjoint representation. This is automatically obtained for
oriented strings, when working with the gauge group U(N),
as in this case R x R is exactly the adjoint representation. For
other gauge groups, R x R will contain more than the adjoint
representation, so that extra constraints must be imposed.
This can be done for unoriented strings, and for orthogonal
and simplectic groups. In this cases, R and R are equivalent,
and invariance can be imposed with respect to the reflection
c—T—o0.

As is well known, the oriented case with U(N) gauge group is
ruled out by simple supersymmetry arguments. In fact, as has
already been discussed, open and closed strings are coupled,
at one loop level. In the oriented case, closed superstrings
produce N = 2 supergravity, so that in order to have consis-
tently defined oriented open strings, with gauge group U(N),
we should be able to couple N = 1 supersymmetric Yang-Mills
to N = 2 supergravity, which is in fact impossible. Thus, the
only possible candidate will be unoriented strings, with or-
thogonal or simplectic gauge group. To check the consistency
of these theories, the computation of tadpoles must be worked
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out. In the unoriented case we should consider, at one loop,
the contribution of two different topologies: the anulus and
the Moébius strip (this second topology can be interpreted
as a cylinder with a cross cup). As we are interested in tad-
poles, we should expect two contributions; one associated to
the disc, and the other to the cross cup, RP?. These tad-
poles will generically be denoted by I';. Let us now introduce
boundary states, |B > and |C >, for the disc and the cross
cup. These boundary states are simply closed string states,
defined through the corresponding boundary conditions. We
will describe these states more precisely in a moment, but
before this we will work out the argument at a formal level.

Figura 10.1: Dilaton contribution in the presence of a D-brane

Introducing a complete tadpole state in the NS sector, |T' >ns,
Figure 10.3 should be interpreted as follows:

T >ns= Z1|B > 4+75|C >, (10.29)
with the tadpoles related to
[< Tlns(|B > +|C >))? = (71 + Zy)*. (10.30)

Using (10.29), we can decompose the amplitude,

A= /Oo dpns < 0T|e"H|T > s, (10.31)
0
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where H is the closed string hamiltonian, p represents an eu-
clidean time on the worldsheet, and 6 is the CPT worldsheet
transformation of the sum of three different amplitudes with
the topologies of the cylinder, the Moébius strip and Klein
bottle, respectively. The result is depicted in Figure 10.3.

- 2 2

Figura 10.2: Dilaton contribution in the presence of a D-brane

The tadpoles can be approximated as the p — oo limit is
taken in (10.31). Then, (10.31) can be approximated through

2
A= —_— 10.32
;<k2+m?)k207 (03)

with I'; the different tadpoles at zero momentum. The ampli-
tude A can be computed independently as a one loop string
amplitude. For the cylinder and the Moébius strip, this is an
open string at one loop. The case of the Klein bottle is a
closed string one loop effect. Thus, the total amplitude will
be given by

A= / %tr (e‘t(p2+m2)(—1)2JPGSO%(1 +Q), (10.33)
where the trace is taken over both closed and open string
states, with the GSO projector (1 +(—1)") for open strings,
and i(l + (—1)F)(1 + (—1)F) for closed strings. The orien-
tation operator (2 is the worldsheet parity, and (—1)?7 is the
spacetime fermion number. As is clear from the definition, the
amplitude A contains the contributions of the three different
topologies, cylinder, Moébius strip and Klein bottle.
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The amplitude (10.33), interpreted as a one loop open string
process, includes the two open string sectors, R and NS. In
addition, we can include boundary conditions in the time di-
rection, corresponding to R-R and NS-NS sectors of the tree
level closed string amplitude. Thus, depending on this bound-
ary condition, we define two different amplitudes, A*, one to
one related to the NS-NS and R-R sectors of the closed string,
satisfying

AT = — A~ (10.34)
as a consequence of supersymmetry.
In order to compare Figure 10.3 and (10.33), we should specify
the boundary states |B > and |C >. Instead of a detailed
treatment, we will simply concentrate on the bosonic part of
the |B > states. Given a cylinder of length [, the boundary
conditions on the bosonic field are

8,X"(0,7) = 8,X"(I,7) = 0. (10.35)

Hence, the state |B >, in its bosonic part, is determined by
the conserved charge condition

P¥|B >=0. (10.36)

The complete solution for |B > requires taking into account
boundary conditions for fermionic fields, as well as for ghost
fields. Using this boundary states, it was shown in [17] that

Zy = N.27%(2m)75/2,

Zy = —32.27%(2m)7%2 (10.37)
for SO(N) gauge group. Using (10.32) and (10.37) we get,
for the dilaton tadpole,

(N —32)?
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that only vanishes for SO(32). For N # 32, we get a non
vanishing dilaton tadpole, so that we may wonder about the
existence of some sort of Fishler-Susskind mechanism in order
to consistently kill the dilaton tadpole through a change of
background. The situation is different in the bosonic and
fermionic cases. By supersymmetry, equation (10.34), we get
a vanishing one loop amplitude; hence, if there exists a non
vanishing tadpole in the NS-NS sector, some tadpole for a
massless field must exist in the R-R sector, of equal value
and different sign. The problem with the Fishler-Susskind
mechanism is cancelling, through a change of background, this
tadpole of the R-R sector.

In fact, if we assume the existence of a R-R tadpole equal and
of opposite sign to the NS-NS dilaton tadpole, we will get

dH = d"H =T, (10.39)

with H a R-R field strength form. From (10.39), we observe
that H should be a 1-form, or its dual a 11-form. This field
strength corresponds to a field potential being a 10 or a 2-
form. We can now try to imagine a source for the 10-form. It
should be a 9 dimensional object. After our discussion on D-
branes, it is natural to interpret ten dimensional spacetime as
the worldvolume of a D-9brane, so that it is natural to inter-
pret the R-R tadpole as a way to associate to the D-9brane, in
the supersymmetric case, a R-R charge. Moreover, as we are
introducing the R-R tadpole in order to cancel the NS-NS dila-
ton tadpole, we can interpret the D-9brane as a BPS object,
since charge and mass are, by construction, equal. In fact,
the structure of the dilaton tadpole, as coming from the disc
and the cross cup, allows us to associate the disc part with D-
9branes, and the cross cup contribution to 9-orientifolds. Due
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to the orientifold geometry, the N in (10.38) can be associ-
ated to % D-9branes, so that we can normalize the R-R charge
of the D-9brane to two. However, the orientifold contributes
with —32, i. e., 16 times the R-R charge of the D-9brane.

Thus, we get

oo = —2'upg (10.40)
for the relation between the R-R charge of the 9orientifold
and the R-R charge of the D-9brane. This is a particular case

of a more general relation,
Mmoo = =2 upzy. (10.41)
If N # 32 we get, from (10.39), a coupling of the form

(N — 32)/ Ao, (10.42)

D—9brane

and the equations of motion imply that N should equal N =
32 or, equivalently, that the Fishler-Susskind mechanism can
not be extended to cancel the tadpoles in the R-R sector,
concluding that only the unoriented SO(32) open string is
consistent.

In summary, the previous discussion already provides some
glimpses on the dynamical relevance of D-branes in the su-
persymmetric case. In fact, by identifying spacetime with the
D-9brane worldvolume, we have learn that the R-R tadpoles
have the interpretation of R-R charges on the D-9branes. The
natural extension, that we will soon work out, is consider-
ing D-branes of smaller dimension, and computing the corre-
sponding tadpoles for the disc with boundary on the D-brane.
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10.4 Toroidal Compactification of Type
ITA and Type 1IB Theories. U-
duality

Before considering different compactifications of superstring
theories, we will first review some general results on the max-
imum number of allowed supersymmetry, depending on the
spacetime dimension.

Spinors should be considered as representations of SO(1,d —
1). Irreducible representations have dimension

pal (10.43)

where [] stands for the integer part. Depending on the dimen-
sion, the larger spinor can be real, complex or quaternionic,

R, ifd = 1,2,3 modS§8,
C, if d = 0 modd4,
H, if d = 5,6,7 modS8. (10.44)

3

?

Using (10.43) and (10.44), we get the number of supersym-
metries listed in the table below®.

*This table is constrained by the physical requirement that particles
with spin > 2 do not appear.
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Dimension | N | Irreducible Representation
11 1 R*
10 2 R!¢
9 2 RS
8 2 Cs®
7 2 H?®
6 4 H*
5 4 H*
4 8 C?
3 16 R?

The maximum number of supersymmetries in three dimen-
sions is then 16. From the table it is also clear that through
standard Kaluza-Klein compactification, starting with six di-
mensional N = 1 supersymmetry leads to four dimensional
N = 2, and three dimensional N = 4 supersymmetry. We
can also notice that ten dimensional N =1 leads to N =4
supersymmetry in four dimensions.

It must be stressed that the counting of supersymmetries after
dimensional reduction is slightly more subtle if we compactify
on manifolds with non trivial topology. Here, the adequate
concept is the holonomy of the internal manifold; let us there-
fore recall some facts on the concept of holonomy. Given a
Riemannian manifold M, the holonomy group Hs is defined
as the set of transformations M., associated with paths v in
M, defined by parallel transport of vectors in the tangent
bundle. The connection used in this definition is the Levi-
Civita connection. In general, for a vector bundle £ — M,
the holonomy group Has is defined by the parallel transport
of v in the fiber, with respect to the connection on K. The
Ambrose-Singer theorem shows how the holonomy is gener-
ated by the curvature.
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Manifolds can be classified according to its holonomy group.
Therefore, we get [?]

e Hx = O(d), for real manifolds of dimension d.
o Hy = U(%), for Kahler manifolds.
o Hy = SU(%), for Ricci flat Kahler manifolds.

o Hy = Sp(%), for hyperkahler manifolds®.

The answer to the question of what the role of holonomy is
in the counting of the number of supersymmetries surviving
after compactification is quite simple: let us suppose we are in
dimension d, so that the spinors are in SO(1,d—1). Now, the
theory is compactified on a manifold of dimension d;, down
to dy = d — dy. Supersymmetries in dy are associated with
representations of SO(1,dy — 1), so we need to decompose an
irreducible representation of SO(1,d—1), into SO(1,dy —1) x
SO(dy). Now, the holonomy group of the internal manifold
Hm,, will be part of SO(d;). Good spinors in d, dimensions
would be associated with singlets of the holonomy group of
the internal manifold. Let us consider the simplest case, with
dy = 4; then,

SO4) = SU((2)® SU(2) (10.45)
and, if our manifold is Ricci flat and Kahler, the holonomy
will be one of these SU(2) factors. Therefore, we will need
a singlet with respect to this SU(2). As an example, let us
consider the spinor in ten dimensions, with N =1; as we can
see from the above table, it is a 16, that we can decompose

with respect to SO(1,5) x SU(2) x SU(2) as
16 = (4,2,1) @ (4,1,2). (10.46)

“Notice that any hyperkahler manifold is always Ricci flat.



Superstring Theories 163

Therefore, we only get one surviving supersymmetry in six di-
mensions. This is a general result: if we compactify a ten di-
mensional theory on a manifold of dimension four, with SU(2)
holonomy, we will get a six dimensional theory with only one
supersymmetry. However, if the compactification is on a torus
with trivial holonomy, two supersymmetries are obtained (the
maximum number of allowed supersymmetries).

As the first contact with type ITA string theory we will then
consider its compactification on a d-dimensional torus, 7¢. To
start with, let us work in the particular case d = 4. From the
above table, we learn that the number of supersymmetries in
six dimensions is 4, as the holonomy of 7% is trivial. If we do
not take into account the R-R fields, the moduli of the string
o-model is

0(4,4; Z)\O(4,4)/0(4) x O(4), (10.47)

with the T-duality O(4,4;Z) corresponding to changes of the
type R; — %—:, for the four S' cycles composing the torus.
The situation becomes different if we allow R-R background
fields. In such a case, we should take into account the pos-
sibility of including Wilson lines for the A, field (the 8y in
(10.16)), and also a background for the 3-form A,,, (the 56y
of (10.16)). The number of Wilson lines is certainly 4, one
for each non contractible loop in 79, so we need to add 4
dimensions to the 16-dimensional space (10.47). Concerning
an A,,, background, the corresponding moduli is determined
by Hs(T?), which implies 4 extra parameters. Finally, the
dimension equals

16 +4 44 =24. (10.48)

Now, a new extra dimension coming form the dilaton field
must be added. It is important here to stress this fact: in
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the approach in previous section to o-model moduli space the
dilaton moduli has not been considered. This corresponds
to interpreting the dilaton as a string coupling constant, and
allowing changes only in the string. Anyway, this differenti-
ation is rather cumbersome. Including the dilaton moduli in
(10.48), we get a moduli space of dimension (8.2), that can
be written as

0(5,5;Z)\0(5,5)/0(5) x O(5). (10.49)

The proposal of moduli (10.49) for type ITA on T* already
contains a lot of novelties. First of all, the modular group
O(5,5;Z) now acts on the dilaton and the resting Ramond
fields. In fact, relative to the O(4,4;Z) T-duality of toroidal
compactifications, we have now an extra symmetry which is
known as S-duality [39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49,
50, 51], '

RZ

V9

with g the string coupling constant. Transformations (10.50),
together with T-duality transformations (8.5) and (8.10) com-
bine into a new modular symmetry, which is called in the

1 :
g——, R — (10.50)
g

physics literature U-duality [43]. The phenomena found here
resembles very much what arises from mirror symmetry in
the analysis of K'3. There, the “classical” modular group was
O(I'*'%;Z), and quantum mirror symmetry creates the en-
hancement to O(I'**%; Z) where, in addition to T-duality, we
have mirror transformations. In the case of type ITA on 7",
it is because we include the R-R backgrounds and the dila-
ton that the modular symmetry O(4,4;Z) is enhanced to the
U-duality symmetry. However, in spite of the analogies, the
physical meaning is different. To appreciate this, let us now
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consider type ITA on K3. The dilaton moduli can be added,
but the R-R fields are not producing any new moduli. In fact,
recall that II;(K3) = 0, and Hs = 0, so that the moduli of
type ITA on K3 is simply

0(4,20; Z)\0(4,20)/0(4) x O(20) x R, (10.51)

with R parametrizing the dilaton, and the modular group not
acting on it.

The way to interpret the moduli (10.49) goes under the name
of M-theory. Before entering a more precise definition of M-
theory, the basic idea is thinking of (10.49) simply as the
moduli of a toroidal compactification on 7°; however, in or-
der to obtain a six dimensional N = 4 theory, we need to
start with some theory living in 11 dimensions. The theory
satisfying this is M-theory, a theory whose low energy super-
gravity description is well understood: it should be such that
through standard Kaluza-Klein compactification it gives the
field theory limit of type ITA strings; but this a theory known
as eleven dimensional type ITA supergravity.

Once we have followed the construction of the type ITA st-
ring theory moduli on 7%, let us consider the general case of
compactification on 7'%. The dimension of the moduli is

d(d—1)(d—2)

3 :
where d? is the NS-NS contribution, the 1 summand comes
form the dilaton, d from the Wilson lines, and ﬂﬂgﬁl from
the 3-form A,,,. The formula (10.52) has to be completed,
for d > 5, by including dual scalars. For d = 5, the dual to
the 3-form A,,, is a scalar. The result is

d(d_l)(d_Z)(d_S)(d_4) duals to A

5 wvps

dim =d> +1+d+ (10.52)
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d(d—1)...(d—6)
7

duals to A,. (10.53)

The moduli spaces, according to the value of the dimension
of the compactification torus, are listed in the table below.

Dimension Moduli
d=4 O(5,5,Z)\O(5,5)/0(5) x O(5)
d= e (6)(Z)\ Fe (6)/ Sp(4)
d= Er () (Z)\Er 1)/ SU(8)
d= SU(5,Z)\SI(5)/S0(5)
d=2 SIU(3,Z) x SI(2,Z)\SI(3)/SO(3) SI(2)/SO(2)

For supergravity practitioners, the appearance of Fg and F;
in this table should not be a surprise.

Let us now see what happens in the type I1B case. The moduli
on, for instance, 7%, is again the 16 dimensional piece coming
from the NS-NS sector; now, the R-R sector is determined by
the cohomology groups H®, H* and H* (see equation (10.15)).
From the Hodge diamond for 7,

1
2 2
1 4 1 (10.54)
2 2
1

we get 8 extra modulis, exactly the same number as in the
type IIA case. This is a general result for any 7'? compact-
ification. The reason for this is that type IIA and type 11B
string theories are, after toroidal compactification, related by
T-duality. However, on a manifold as K3, with II; = 0, the
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moduli for ITA and IIB are drastically different, as can be de-
rived from direct inspection of the K3 Hodge diamond (see
equation (9.10)). Therefore, for type 1IB we get, from the
R-R sector, 1 coming from H°, 22 from H?, and 1 from H*,
which sums up a total of 24 extra modulis to be added to the
58 + 22 of the NS-NS sector. Then, including the dilaton,

dim IIB(K3) =22 + 58 + 24 + 1 = 105. (10.55)
Therefore, the natural guess for the moduli is
O(5,21; Z)\O(5,21)/0(5) x O(21). (10.56)

Here, something quite surprising is taking place. As we can
see from (10.51), when type ITA is compactified on K3, we
do not find any appearance of U-duality or, in other words,
S-duality. By contrast, in the type I1B case we find a modular
group O(5,2;7Z), that contains the dilaton and, therefore, the
S-duality transformation. This is what can be called the S-
duality of type IIB string theory [?], which can already be
observed from equation (10.15). In fact, the R-R and NS-
NS sectors both contain scalar fields and the antisymmetric
tensor.

10.5 Heterotic String and K3 Sur-
faces

The idea of “heterosis”, one of the most beautiful and pro-
ductive ideas in the recent history of string theory [52] was
motivated by two basic facts. First of all, the need to find
a natural way to define non abelian gauge theories in string
theory, without entering the use of Chan-Paton factors, and,
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secondly, the sharpness of the gap in string theory between
left and right moving degrees of freedom. Here, we will con-
centrate on some of the ideas leading to the construction of
heterosis. In the toroidal compactification of the bosonic st-
ring on T, we have found that the momenta live in a I'*?
lattice. This is also true for the NS sector of the superstring.
The lattice I'*?, where the momenta live, is even and self
dual. Taking into account the independence between left and
right sectors, we can think on the possibility to compactify
the left and right components on different tori, 7% and T?%,
and consider as the corresponding moduli the manifold

O(dL,dR,Z)\O(dL,dR)/O(dL) X O(dR) (1057)

Before trying to find out the consistency of this picture, let
us try to get a simple interpretation of moduli (10.57). The
dimension of this moduli is dj, X dg, and we can separate it
into dr, x d, + dr, X (dr — dr,). Let us interpret the first part,
dy, x dy,, as the standard moduli for compactifications on a
torus T%: then, the second piece can be interpreted as the
moduli of Wilson lines for a gauge group

U(1)tr=dr, (10.58)

With this simple interpretation, we already notice the inter-
play in heterosis when working with a gauge group that can be
potentially non abelian, the gauge group (10.58), and differen-
tiating left and right parts. When we were working with type
IT string theory, and considered toroidal compactifications, we
were also adding, to the moduli space, the contribution of the
Wilson lines for the RR gauge field, A, (in case we are in
type ITA). However, in the case of type ITA on T, taking
into account the Wilson lines did not introduce any heterosis
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asymmetry in the moduli of the kind (10.57). However, T is
not the only Ricci flat four dimensional manifold; we can also
consider K3 surfaces. It looks like if 7%, K3, and its orbifold
surface in between, T*/Z,, saturate all compactification man-
ifolds that can be thought in four dimensions. In the case of
K3, the moduli of type IIA string (see equation (10.51)) re-
ally looks like the heterotic moduli, of the kind (10.57), we are
looking for. Moreover, in this case, and based on the knowl-
edge of the lattice of the second cohomology group of K3 (see
equation (9.15)),

FEs LEs LU LU LU, (10.59)

we can interpret the 16 = dr — dj units as corresponding
precisely to Wilson lines of the Ky x Eg gauge group appear-
ing in (10.59). In other words, and following a very distant
path form the historical one, what we are suggesting is in-
terpreting moduli (10.51), of type ITA on K3, as some sort
of heterosis, with d;, = 4 and dp = 20. The magic of num-
bers is in fact playing in our team, as the numbers we get for
dy, and dg strongly suggest a left part, of critical dimension
10, and a right part, of precisely the critical dimension of the
bosonic string, 26. This was, in fact, the original idea hidden
under heterosis: working out a string theory looking, in its
left components, as the standard superstring, and in its right
components as the 26 dimensional bosonic string. However,
we are still missing something in the “heterotic” interpreta-
tion of (10.51), which is the visualization, from K3 geometry,
of the gauge group. In order to see this, some of the geomet-
rical material introduced in subsection 9.1 will be needed; in
terms of the concepts there introduced, we would claim that
the (pr, pr) momentum is living in the lattice I'**°. We can
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then think that py, is in the space-like 4-plane where the holo-
morphic top form 2, and the Kahler class .J, are included.
Recall that they define a space-like 3-plane. Now, momentum
vectors, orthogonal to this 4-plane, can be considered; they
are of the type

(0, pr). (10.60)

Now, whenever p% = —2, this vector will define a rational
curve inside K3, with vanishing volume (in fact, the volume
is given by pr-.J = 0). The points p, = —2 will be at
the root lattice of Fg x Fg. Now, from the mass formulas
(8.3) we easily observe that p;, = —2 is the condition for
massless vector particles. In fact, if we separate, in the spirit
of heterosis, the pr of a 26 dimensional bosonic string into

(PQG)aPSO))a we get, from (8.3),

M? = 4(phY? +8(N — 1), (10.61)
so that M? =0, for N=0, if (pg%m))2 = 2. The sign difference

appears here because (recall subsection 9.1) in the K3 con-
struction used for the second cohomology lattice, the Fy lat-
tice was defined by minus the Cartan algebra of Eg. Therefore,
we observe that massless vector bosons in heterotic string are
related to rational curves in K3 of vanishing volume, which
allows to consider enhancement of symmetries when moving
in moduli space [46, 53, 54]. Some of these rational curves can
be blown up, which would be the geometrical analog of the
Higgs mechanism, or either blown down, getting extra mass-
less stuff. Moreover, for elliptically fibered K3 surfaces, the
different Kodaira singularities reflect, in its Dynkin diagram,
the kind of gauge symmetry to be found.

The above discussion summarizes what can be called the first
quasi-theorem on string equivalence [43, 46],
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Quasi-Theorem 1 Type IIA string on K3 is equivalent
to Fg x Fg heterotic string on 7',

The meaning of the duality relation between type IIA string
theory on K3, and heterotic string on T'* established in the
previous theorem can be clarified when working at the level
of effective lagrangians. For the heterotic string compactified
on T to six dimensions, a lagrangian of the form

L:/de\/ge‘2¢[R+|qu|2—|—|dB|2—|—|dA|2] (10.62)

is expected (numerical factors, of no relevance for the general
argument, have been omitted). As is clear form (10.62), all
terms scale like e72?. The field A stands for any gauge field
appearing upon the toroidal compactification.

Let us now consider the case of type IIA string theory. The
field content is the same, with the important difference that
now the gauge fields A are part of the RR sector. Naming ¢/,
@', B and A’ the fields in the type ITA theory, the lagrangian
one expects to find would be

L= [ e [ge (R + [V +dB 4 AT, (1063)

The expected duality between the two theories should cor-
respond, at the level of the effective lagrangians (10.62) and
(10.63), to a precise change of variables. In fact, the change
we need [46] is ¢’ = ¢"e?%:
L= [ oyl (R+ Vo) + e [aB | + e |dAP)
(10.64)
To recover (10.62), the relations

Qb/ = _957
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dB = e 4B,
A = A (10.65)

The first equation contains the core of the S-duality relation
between the two theories: to go from the heterotic to type ITA
string theory, the string coupling must transform as g — 517.

Previous arguments were so general that we can probably ob-
tain extra equivalences by direct inspection of the different K3
moduli spaces that have been discussed in subsection 9.1. In
particular, let us consider the moduli space of complex struc-
tures for an elliptically fibered K3 surface, a fact represented,
in terms of the Picard lattice, clamming that it is of I'! type,
generated by a section, and with the fiber satisfying relations

(8.6). This moduli is
0(2,18;Z)\0(2,18)/0(2) x O(18), (10.66)

where we have used equation (9.32), and the fact that the
transcendental lattice is of type (2,18). From the heterosis
point of view, it would be reasonable to interpret (10.66) as
heterotic By x Fg string, compactified on a 2-torus, 72%. In
fact, we will have 4 real moduli, corresponding to the Kahler
class and complex structure of 7%, and 16 extra complex mod-
uli associated to the Wilson lines. However, now the type Il
interpretation of (10.66) is far from being clear, as (10.66) is
just the part of the moduli space that is preserving the elliptic
fibration. Now, in order to answer how (10.66) can be under-
stood as a type Il compactification a similar problem appears
as we try to work out an heterotic interpretation of the type
IIB moduli on K3, given in (10.56). A simple way to try to
interpret (10.66), as some kind of type Il compactification,
is of course thinking of an elliptically fibered K3, where the



Superstring Theories 173

volume of the fiber is fixed to be equal zero; generically,
J-F=0, (10.67)

where [’ indicates the class of the fiber. Now, we can think
that we are compactifying a type Il string on the base space
of the bundle. However, this does not lead to (10.66) for the
type ITIA case, as the RR fields are in H! and H?, which will
vanish. But what about type IIB? In this case, we have the
NS field ¢, and the R field x, and we should fix the moduli of
possible configurations of these fields on the base space of the
elliptic fibration. Here, type I[IB S-duality, already implicit in
moduli (10.56), can help enormously, mainly because we are
dealing with an elliptically fibered K3 manifold [?, 68, 58]. To

proceed, let us organize the fields ¢ and x into the complex
T=x+ie?, (10.68)

and identify this 7 with the moduli of the elliptic fiber. Then,
the 18 complex moduli dimension of (10.66) parametrizes the
moduli of complex structures of the elliptic fibration, and
therefore the moduli of 7 field configurations on the base space
(provided 7 and % are equivalent from the type IIB point of
view). These moduli parametrize then the type IIB compact-
ification on the base space B (it is IP'; recall that in deriving
(10.66) we have used a base space B such that B- B = —2).
There is still one moduli missing: the size of the base space
B, that we can identify with the heterotic string coupling
constant. Thus, we arrive to the following quasi-theorem,

Quasi-Theorem 2 Heterotic string on 7 is equivalent
to type IIB string theory on the base space of an ellip-
tically fibered K3.
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The previous discussion is known, in the physics literature,
under the generic name of F-theory [55, 56, 57].

We have been considering, until now, type II strings on K3,
and compared them to heterotic string on a torus. To find
out what is the expected moduli for the heterotic string on
K3, we can use the following trick: if heterotic string on T2
is type I1B on the base space of an elliptically fibered K3, by
quasi-theorem 2 heterotic string on an elliptically fibered K3
should correspond to type IIB on the base space of an ellip-
tically fibered Calabi-Yau manifold. More precisely, type 11B
string should be compactified on the basis of an elliptic fibra-
tion, which is now four dimensional, and that can be repre-
sented as a fibration of a IP* space over another IP'. This type
of fibrations are known in the literature as Hirzebruch spaces,
F,.. Hirzebruch spaces can simply be determined through het-
erotic data, given by the Fg x Fg bundle on the K3 manifold.
The moduli of these bundles on K3 will put us in contact with
yet another interesting topic: small instantons.

10.6 Heterotic Compactifications to
Four Dimensions

Before considering some definite examples, let us simply sum-
marize the different supersymmetries we can get when com-
pactifying to four dimensions, depending on the holonomy of
the target manifold. In order to do that, we will need the
results in subsection 10.4, on the maximum number of super-

symmetries allowed for a given spacetime dimension.
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Type of Target
String | Manifold | Holonomy | Supersymmetry

11 K3 x 1T SU(2) N=4
Heterotic T° Trivial
11 Calabi-Yau SU(3)
Heterotic | K3 x T? SU(2)
11 Bsyay SU(4)
SU(3)

= =z2==2=
HHtlxl')[\D»-b

Heterotic | Calabi-Yau 3

In the table above we have not differentiated between type
ITA and type IIB®. The first two lines, corresponding to cases
with N =4 and N = 2 supersymmetry in four dimensional
spacetime, will be the basic examples we will use to introduce
the concept of dual pairs of string compactifications down to
four dimensions.

Before entering a discussion on the ingredients of this table,
we yet need to consider the holonomy of the moduli space.
This holonomy will of course depend on the number of su-
persymmetries and the type (real, complex or quaternionic)
of the representation. Hence, from subsection 10.4, we can

complete the table below.

Spacetime

Dimension | Supersymmetries | Type | Holonomy
d="56 N=2 H* | Sp(1) @ Sp(1)
d=14 N=4 Cc? U(4)
d=+4 N=2 Cc? U(2)

*This will be relevant when discussing the third line where, by Bsyr(4),
we are thinking in the spirit of the discussion in the last part of previ-
ous section, where a Calabi-Yau fourfold of SU(4) holonomy, elliptically
fibered, and with a zero volume fiber, is used for compactification.
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Using this results, we can now decompose the tangent vectors
to the moduli according to its transformation rules with re-
spect to the holonomy group. Let us concentrate in the d = 4
case. For U(4), we get

U(4) ~ U(1) & SO(6). (10.69)

The matter multiplets will contain 6 (real) scalars each, i. e.,
the number of dimensions we compactify. Then, if we have m
of these matter multiplets, the part of the moduli on which
the SO(6) part of the holonomy group is acting should be

0(6,m)/0(6) x O(m). (10.70)

The U(1) part of (10.69) will act on the supergravity multiplet
so we expect, just from holonomy arguments, a moduli of type

0(6,m)/0(6) x O(m) x SI(2)/U(1). (10.71)

Now, we need to compute m. For heterotic string, the answer
is clear: m = 22, and the total dimension of (10.71) will be
134. Let us now consider the case of type I[TA. From the table,
we see that we should consider K3 x T'% as compactification
manifold. Let us then first compute the dimension of the
moduli space:

Moduli of metrics and B fields on K3 = 80
Moduli of metrics and B fields on T? = 4
b(K3xT? =
bs(K3 xT? = 44
Axion-Dilaton = 2
Duals in R* to 2 — forms = 2 (10.72)
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which sums up to 134. Notice that the 44 in b3(K3 x T?)
is coming from the 3-cycles obtained from one S! of 7%, and
the 22 elements in H*(K3;Z). The 3-form of ITA can be
compactified on the S! cycles of T? to give 2-forms in four
dimensions. Now, the dual of a 2-form in R* is scalar, so we
get the last two extra moduli.

Now, we need to compare the two moduli spaces. If we expect
S-duality in N = 4 for the heterotic compactification, the
moduli, once we have taken into account the O(6,22;Z) T-
duality, will look like

0(6,22;Z)\0(6,22)/0(6) x O(22) SI(2,Z)\SI(2)/U(1).
(10.73)
Now, we have a piece in IIA looking naturally as the second
term in (10.73), namely the moduli of the g-model on T2
where S1(2,7Z) will simply be part of the T-duality. Thus, it
is natural to relate the moduli of ITA on the torus with the
part of the moduli in (10.71) coming form the supergravity
multiplet.
Let us now consider dual pairs in the second line of our table.
There is a simple way to visualize under what general condi-
tions on the Calabi-Yau manifold with SU(3) holonomy such
dual pairs can exist. In fact, imagine that K3 is elliptically
fibered in K3 x T?; then, what we get is a fibration on IP' of
the T tori. Now, heterotic on T is equivalent to type ITA on
K3, so we expect that the Calabi-Yau manifold should be a
K3 fibration on IP', and that duality works fiberwise. There-
fore, from general arguments, we expect to get heterotic-type
IT dual pairs with N = 2 if we use Calabi-Yau manifolds which
are K3 fibrations [59, 58]. In order to get a more precise pic-
ture, we need again to work out the holonomy, which is U(2)
in this case. In N = 2 we have two types of multiplets, vec-
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tor and hypermultiplets. The vector multiplet contains two
real scalars, and the hypermultiplet four real scalars. Then,
we decompose U(2) into U(1) & Sp(1), and the moduli into
vector and hypermultiplet part.

Let us first consider type ITA string on the Calabi-Yau man-
ifold. The moduli will contain h'! deformations of B and .J,
h*! complex deformations and > RR deformations (b' does
not contribute, as we are working with a Calabi-Yau mani-
fold). The total number, in real dimension, is

2hM 4+ 4(RPT + 1), (10.74)

where we have used that b* = 2(h*! 4 1), in real dimension.
;From (10.74) we conclude that we have A" vector multiplets,
and A*'+1 hypermultiplets. Notice that 4(h*'+1) is counting
the 2 coming from the dilaton and the axion so, for type II
we have combined dilaton and axion into an hypermutiplet.

Now, let us consider heterotic string on K3 x T?. The moduli
we must now consider, of Kg x Eg bundles on K3, is much
more elaborated than that of 7, or T, that we have worked
out. Part of the difficulty comes from anomaly conditions.
However, we know, according to Mukai’s theorem, that the
moduli of holomorphic bundles on K3 is quaternionic, 1. e.,
hyperkahler, and that the moduli of the o-model on K3 is of
dimension 80. We have yet the moduli on 7%, that will be a
manifold of O(2,m)/0(2) x O(m) type, and therefore a good

candidate for representing the vector multiplet. Thus, we get

Type ITA hypermultiplets < K3 Heterotic,
Vector multiplets < T2 (10.75)

. From our previous discussion we know that vector multiplets,
in type IIA are related to 2"'. Working fiberwise on a K3
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fibered Calabi-Yau manifold we get, for h'!,
RYt =1+ p, (10.76)

with p the Picard number of the K3 manifold. Then, in order
to get a dual pair in the sense of (10.75) we need m in the

heterotic to satisfy
m = p. (10.77)

In order to control the value of m, from the heterotic point of
view, we need to watch out for possible Wilson lines that can
be defined on T? after the gauge group has been fixed from
the K3 piece. From (10.76) (and this was the logic for the
identification (10.77)), the heterotic dilaton-axion is related
to the 1 term contributing in (10.76), i. e., the 2-cycle defined
by the base space of the K3-fibration.

As can be observed from (10.77), if we do not freeze either
the Kahler class or the complex structure of 72, the minimum
value for p is 2. This is the contribution to the Picard lattice
of a Dynkin diagram of type A,, i. e., SU(3). A possible
line of work opens here, in order to identify the moduli spaces
of vector multiplets for type ITA theories with the quantum
moduli, defined according to Seiberg and Witten, for gauge
theories, with

rank G' = p. (10.78)

10.7 Heterotic—Type I Duality

Another example of a relation through S-duality between two
different string theories that can be easily obtained just work-
ing at the level of effective lagrangians is that between het-

erotic SO(32) and type I string theory [46], [60], [61]. For the
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heterotic string we have the lagrangian
L= /dl%\/ge—w[ﬁz VO + F2+|dBY,  (10.79)

while for the SO(32) open string the effective low energy la-
grangian is given by

L:/dlox\/g?[e—2¢'(3’+|v¢’|2)+e—¢’F2+|dB|2], (10.80)

where the different dilaton factor multiplying F? reflects the
fact that gauge vector bosons are in the open string sector of
the spectrum, and the factor in |dB|? reflects the fact that in
type I string theory B is a RR field. The relation between
both lagrangians is obtained through

= =4,

J = e%g, (10.81)

where again the first relation is the manifestation of S-duality.

10.8 The Quantum Fate of Moduli
Singularities

In this section we will consider two types of moduli singular-
ities in the context of heterotic and type II string theories,
namely small instanton singularities for compactifications of
heterotic string on K3 surfaces, and conifold singularities for
type I theories compactified on Calabi-Yau threefolds. Both
types of singularities will lead to unexpected non perturbative
quantum effects.
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10.8.1 Small Instantons for Heterotic St-
ring on K3

Let us start considering the effective lagrangian for the het-
erotic string in the string frame,

!

zp:gg/dm%ﬂk4ﬁ3+qv¢ﬁ—%ﬂ2—%?rFﬂ+0@ﬁy

(10.82)
We will consider an “instanton” solution to (10.82), related to
the solitonic fivebrane. Let us then label with indices (0...5)
the coordinates on which the fivebrane worldvolume lies, so
that the four transversal coordinates will be (6...9). A solu-
tion to (10.82) is obtained from the standard instanton solu-
tion on the four dimensional transversal space,

AM:-é?f%y §=6,....9, (10.83)
where
x? + 2p°
e = e 4 80/7(1;2 T pg)Q’
H = _6ZDAVP¢7
Jab = MNap, a,b=0,....5,
G = €8, (10.84)

Notice that up to the dilaton factor, the metric in the transver-
sal four dimensional space is flat and euclidean,

(10.85)

An interesting phenomena takes place as the p — 0 limit
for the instanton size is taken. In fact, as can be seen from
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(10.85), the distance of any point to the origin = 0 becomes
infinite, that geometrically means that a long tube, on which
the origin lies, arises, so that the origin is infinitely far away.
Notice from (10.84) that the dilaton grows as we go further
down the tube and, in this same way, also the effective cou-
pling constant.

Once we have this geometrical picture in mind, we can work
out as an example the compactification of the SO(32) het-
erotic string on K'3. Through this compactification a theory
with N = 1 supersymmetry in six dimensions is obtained.
From the Bianchi identity,

dH =1tr (RAR) —tr (F A F), (10.86)

and the fact that [tr (R A R) = 24 for K3 surfaces, we con-
clude that 24 SO(32) Yang-Mills instantons are needed on K3.
What we will work out now is the singularity appearing when
we send the size of one of this instantons to zero. A natural
way to address this question is considering the p — 0 limit of
the heterotic solitonic fivebrane given in (10.84). Using string
weak coupling duality between heterotic SO(32) and type 1
we can transform this question into a weak coupling problem
in type | string theory. The effective lagrangian for type I
strings is given by

| |
I = /dl%\/g[e—w(ﬁz +4|VoP) = SH? = et 1Y,
(10.87)

which means that the instanton action behaves like e=¢ ~

L This is the behavior for a Dirichlet brane. This Dirich-

Jstrin
let brane is a good candidate to what we are looking for be-

cause Dirichlet branes have, classically, zero thickness, and p
is the magnitude for the thickness of the solitonic fivebrane.
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Hence, we can expect that what is taking place at the singu-
larity defined by a small instanton can be translated into the
worldvolume dynamics on the D-fivebrane.

At singular points in moduli space we expect new massless
particles; thus, our candidate in the case of small instantons
is the massless spectrum of the D-5brane. Here, there are two
candidates to massless spectrum: open strings with Dirichlet
conditions on both ends, and open strings with Dirichlet and
Neuman conditions on each end. The spectrum of strings with
Dirichlet conditions on both ends should in principle provide
six dimensional massless vectors. However, as we are working
in type I string theory, we should project out states which are
not invariant under the orientation preserving operator, ().
The vertex operator for vectors A,0,z" is odd under change
of orientation; therefore, this piece of the spectrum is not
symmetric under 2. The way out from this is including Chan-
Paton factors. As Chan-Paton factors for unoriented strings
are only allowed for SO(N) or Sp(N) groups, if some massless
spectrum appears at the small instanton singularity, it should
correspond to one of these gauge symmetry groups. We will
call this gauge group G.

The open string sector with boundary conditions of mixed
type, Dirichlet and Neuman, will enjoy Chan-Paton factors of
type G for the Dirichlet end, and the fundamental of SO(32)
for the Neuman end. From the point of view of the six di-
mensional worldvolume, these states will be associated to six
dimensional hypermultiplets.

The next step in the characterization of the small instanton
singularity will be discovering the gauge group G, and the
number of massless hypermultiplets in six dimensions. In or-
der to do that, the procedure will be comparing the moduli of
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hypermultiplets to the one instanton moduli. As the hyper-
multiplets transform under (G, the moduli will have dimension

dim ./MH = 4(1{? - dg), (1088)

with k& the number of hypermultiplets, and ds the dimen-
sion of the gauge group, G. It must be recalled that for six
dimensional N = 1 supersymmetry wehave, besides the grav-
itational multiplet containing 12 bosonic degrees of freedom,
the tensor, the vector and the hypermultiplet, all of them with
4 bosonic degrees of freedom.

What we need to do now is comparing the moduli My to the
moduli of the small instanton. If the size p of the instanton is
small compared to the size of the K3 surface, we can certainly
work in R*. We can embed the instanton configuration in
SO(N), which corresponds to the breaking of SO(32) down
to SO(32— N). The dimension of the moduli of the instanton
is

dim M, = 4N — 8. (10.89)

Showing apart the 4 translations,

Min, = M, x R, (10.90)

ns
and hence

dim M/, = 4N — 12 = 4(N — 3). (10.91)
Comparing now (10.91) and (10.88), we get dg = 3 and k =
N, i. e., gauge group SU(2) and N-hypermultiplets. We
conclude then that each instanton produces, as the size goes

to zero, an extra SU(2) gauge symmetry.
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10.8.2 Conifold Singularities for Type II St-
rings

We will now consider conifold singularities in Calabi-Yau three-
folds. Let X be a Calabi-Yau threefold, with third Betti num-
ber bs, and A7, B’ a homology basis,

Arn B’ =467 (10.92)

The complex structure of the manifold is described by the
periods of the holomorphic top form, €,

QEF],

Ag
Q= 7. (10.93)
BJ
Thus, on the moduli space of complex structures we are defin-
ing a bundle of dimension bs, with SI(bs; Z) group of modular
transformations. Singularities of complex codimension one
in the moduli space are characterized by their monodromy
in Sl(bs;Z), while conifold singularities correspond to some
vanishing 3-cycle. For the simplest Calabi-Yau threefold, the
quintic, the monodromy at the conifold singularity is given by
the transformation 7" in SI(2;Z),

(g)%(é 1)(?):(1?}2) (10.94)

which implies a dependence

1
F(z)~ 5 =27, (10.95)

i
with the conifold singularity located at z = 0. Our task will
now consist in understanding the quantum origin of the coni-
fold singularity (10.95). In order to do this, let us compactify



186 César Gomez Lopez

type IIB string theory on the Calabi-Yau threefold. What is
left is a four dimensional N = 2 theory, with by ; vector mul-
tiplets. The Z! defined in (10.93) correspond to the scalar
components. Using the well known Seiberg-Witten model for
SU(2) pure gauge theories, we should have a singularity at
the point where the monopole becomes massless. In terms of
Seiberg-Witten notation, this situation is characterized by a
point ug in the moduli space of vacua such that a(ug), to be
identified with the monopole mass, is zero. In the neighour-
hood of this point, we can describe the infrared physics in
terms of N = 2 magnetic QED, with one massless monopole
hypermultiplet. The one loop effect of this hypermultiplet
produces a correction to the magnetic gauge coupling con-
stant, of the type

g% ~ In(a) (10.96)

or, in terms of the dual variable ap, a dependence
ap(a) ~ aln(a) (10.97)

of the same type as (10.95), with ap and a replaced by F' and
7, respectively. In order to use a similar argument to under-
stand relation (10.95), we should first discover the analog of
the monopole in the type IIB case. It was conjectured by Stro-
minger [62] that the appropriated object becoming massless
at the conifold point is a black hole, that can be interpreted
as a 3-brane wrapping the vanishing 3-cycle.

Let us consider the extremal Reissner-Nordstrom black hole,

4\ 1/2 dr?
ds* = — (1 + T—Z) di* + —T 4 r2d0?
r

(1-%)
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r4

4 1/2 '
+ (1 — —+) dx;dx*, (10.98)

with © = 0,1,2,3. The black hole (10.98) is charged with
respect to the RR 4-form,

F® =Q, (10.99)
s
and with constant dilaton. The charge ) is related to the
radius ry through

Q=2rt. (10.100)

A peculiarity of the Reissner-Nordstrom metric (10.98) is the
existence of a long tube in the sense that along a static spatial
slice the radial distance to the horizon at ry is infinity. The
mass of this black hole is given by

M = @.Volume. (10.101)

Since it is BPS, 1. e., extremal, and with RR charge, we get,

in string units,
m

g
with g, as usual, the string coupling constant, and Z as defined
in (10.93). Thus, the relevant diagram associated to (10.95)
will be that in Figure 10.3.

In order to understand Figure 10.3, where the double line in

M ~ 7|

(10.102)

the loop represents a black hole, as the proper description of
the conifold singularity (10.95), we need to fix the scale used
in the computation of the loop diagram. Here comes an im-
portant issue we have not yet stressed: if we use as scale the
string scale, m,, then, from (10.102), we will get In(|z|e=?),
which implies a coupling of the dilaton to RR fields. This
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RR RR

J

Black hole

Figura 10.3: The black hole becoming massless generates the
singularity at the conifold

coupling is ruled out by supersymmetry, and therefore we are
forced to fix a different scale, m,e~?. The importance of this
scale is that it becomes substringy at low string coupling con-
stant. The conifold singularity is classical, in the sense that
it is an effect of the classical moduli space of the Calabi-Yau
threefold, which therefore survives even at g, = 0 or, to put
it more precisely, it should be independent of g,. A possible
way to see how the blackhole physics involved in Figure 10.3
can be a good description to the limit g; = 0 is through a
double scaling limit, 2 — 0 and g; — 0, at the conifold point,
and preserving constant the ratio = that, from (10.102), is
the black hole mass in string units.

Both the small instanton singularity and the conifold singular-
ity are difficult to understand from the point of view of con-
formal field theory, where there is no available RR charged
particle. A possible way to understand what is happening
was suggested by Witten in reference [63], where it is argued
that from the point of view of the conformal field theory, i.
e., in the string frame at the conifold singularity, the target
spacetime becomes effectively uncompactified, as a long tube
as the one found in the solitonic fivebrane at p = 0 appears.
Along this tube, the dilaton grows and perturbation theory

becomes of no validity as we descend the tube. The process
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of descending along the tube might involve very complicated
physics. What has been observed in the previous examples
is a short cut to describe, through quantum mechanics, this
conformal field theory physics, in terms of a finite number of
degrees of freedom.

10.9 Point Particle Limit

A different approach to (??) and (??) is that based on geo-
metric engineering [64]. In this case, the procedure is based
on the following set of steps:

1. String theory is compactified on a Calabi-Yau threefold
X, with the apropiate number of vector multiplets in
four dimensions.

2. A point corresponding to classical enhancement of gauge
symmetry in the moduli space of the Calabi-Yau three-
fold must be localized.

3. A rigid Calabi-Yau threefold is defined by performing a

point particle limit.

4. The rigid Calabi-Yau manifold is used to define the
Seiberg-Witten surface X.

5. Going form type IIB to type IIA string theory repre-
sents a brane configuration corresponding to an ALE
space with singularity of some Dynkin type into a set
of fivebranes that can be interpreted as a fivebrane with
worldvolume ¥ x R*.
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6. The BPS states are defined through the meromorphic
one-form A, derived from the Calabi-Yau holomorphic
top form, in the rigid point particle limit.

As we can see from the previous set of steps, that we will
explicitly show at work in one definite example, the main dif-
ference between both approaches is at the level of the mero-
morphic form in Seiberg-Witten theory. There is also an im-
portant difference in the underlying philosophy, related to the
implicit use in the string approach, described in the above
steps, of the heterotic-type II dual pairs, driving us to the
choice of a particular Calabi-Yau manifold. The most elabo-
rated geometric engineering approach uses, instead of a cer-
tain heterotic-type Il dual pair, a set of local geometrical data,
determined by the type of gauge symmetry we are interested
on, and generalizes mirror maps to this set of local data. In all
these cases, the four dimensional field theory we are going to
obtain will not depend on extra parameters, as the string cou-
pling constant. On the other hand, the M-theory approach,
where field theories are obtained depending explicitly on the
string coupling constant, might be dynamically rich enough as
to provide a direct explanation of phenomena that can not be
easily understood in the more restricted context of the point
particle limit of string theory.

Next, we will follow steps 1 to 6 through an explicit example
[65]. In order to obtain a field theory with gauge group SU(n)
we should start with a Calabi-Yau manifold with hy; = n,
and admitting the structure of a K3-fibered threefold. We

will use the language of weighted projective spaces. The
d+1

Ko by 1 with homogeneous co-

weighted projective space IP
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ordinates [z, ..., zq41] is defined by the equivalence relation
[Xo,. .., Xap1] ~ [N Xo, .. A1 X 4] (10.103)

A Calabi-Yau manifold of complex dimension d can be defined
as the vanishing locus of a homogeneous polynomial W, of
degree Y, k; = 0,

W =i, an,, X& .. X5 (10.104)
for which the defined manifold is

not smooth define the discriminant locus of the Calabi-Yau

The values of a;,, ..., a;,,,

manifold.
Let us the begin with an example with h; ; = 2, defined by

.1 1 Lo, 1o 1,
e TR I AR
1
—77[){1/’1.1?2.1?3.11?41?5 — gqb(l’ll’g)(a. (10105)

The moduli space of complex deformations of W* is parame-
terized by (v, @), subject to the global symmetry

A, 8) = (Bo,—¢),  B=1.  (10.106)

This symmetry forces to introduce invariant quantities; we
will use b = 1/¢* and ¢ = —¢/¢)®. The K3-fibration struc-
ture of (10.105) becomes manifest by the change of variables
xy /2y = 2V 22 = 2026 [65]:

1 b 1 1 1 1/6
12(zr—l- +2)xd + 6$3—|- 6:1:4—|- 2:1:5—|-c TOT3T4Ts,
(10.107)

with the variable z acting as coordinate on the IP! base space.

W*

It is convenient to define

1 b
d(z;b) = §(z + ~ +2), ¢(z;b,¢) = cd(z;b). (10.108)
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Substituting this into (10.107) and rescaling o, W* acquires
the explicit form of a K 3-surface

1 1 1 1
W* = 6$g+6$g+6$2+§$§+é(23 b,c)"*zozszas. (10.109)

As we move in IP', the K3-fiber can become singular. From
(10.109) it is easy to deduce that this occurs for the K3 mod-

ulus values é(z;b,¢) = 0,1. These values of ¢ are acquired at
+

é=0 = ef=—1+£V1-b,
1 —c+t4/(1 —c¢)? — be?

[

the following IP* points, z = ¢

=1 — €

(10.110)

>

The discriminant of (10.109) is therefore given by A(z;b,¢) =
[TI_o(z — ef(b,c))(z — e (b,c)). There is an additional sin-
gularity at ¢(z;b,¢) = oo, which is originated in the quotient
by discrete reparameterizations of (10.109) inherited from the
orbifold construction of W*. It corresponds to the points

c=00 — z=0,00 (b # o0). (10.111)

The Calabi-Yau manifold becomes singular when some of the
points (10.110)-(10.111) coalesce. We will now analyze the
regions in moduli space where this situation happens [66, 67]
(we will follow notation in [66]). The loci

Cl = {b = 1},
Cc = {(1—c)?—bc® =0}, (10.112)
are respectively obtained from the identifications el = e;

and e} = e]. C¢ is the conifold locus, where 3-cycles of the
threefold degenerate to points, while C; corresponds to the



Superstring Theories 193

appearance of a genus two curve of A; singularities. We can
also consider

CO = {C:OO},
Co = {b=01, (10.113)

which are defined, respectively, by the identifications ef = e

and el = e = 0. Cy is an orbifold locus, given by the fixed
points under A?. C,, corresponds to the weak coupling limit
locus, once we identify the heterotic dilaton with the size of
the base space [68].

Other examples of K3 fibered Calabi-Yau manifolds, with
higp = 2, are A : IPA{ILLZM}[S], B 113?17172727272}[4,6] and
C: 113?1717272727272}[4, 4,4] (B and C are defined as intersections).
The K3 fibration structure is given by

B: 2:3/4—|—:1:§/4—|—a:j/4—|—a:§/4—|—é_1/4$0$3$4$5:O,
C:  xl)2+42224 2224 ¢ VPrsag =0
:xg’/?) + :r:g/?) + & YVPpozary = 0 ,
D:  z2d/24 2224+ ¢ Vorm5 =0
22/2 4+ 22)2 + &V oxgar =0
22/2 4+ 222+ &V oxpzs = 0, (10.114)
with ¢é(z;b, ¢) defined in (10.108).

We will now consider an SU(3) case, corresponding to a Calabi-

Yau manifold whose mirror is the weighted projective space
24
Py 58125

1 1
syt T est) + S £ 5
1
_¢0$1$2$3$4$5 - 6($1$2$3)6 — ﬁ(.fl:EQ)lZ = 0.

(10.115)
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In order to clearly visualize (10.115) as a K 3-fibration we will
perform the change of variables

Ty [y = ST g2 = g 2112 (10.116)
so that (10.115) can be rewritten in the form

1. . b 1 1 1
1 a \ /6
—|—6—\/E(£U0LL'3)6 + (%) ToT3T4aly — 0(710117)
which represents a K3 surface, fibered over a IP' space pa-
rametrized by the coordinate z. Parameters in (10.117) are

related to those in (10.115) through

a=—vo/vn, b=yt c=va/Yr. (10.118)

The parameter b can be interpreted as the volume of IP':
—logb = Vol (IPh). (10.119)

Next, we should look for the points 2 in IP' over which the
K3 surface is singular. The discriminant can be written as

2

Ags = [](2 — €f(a,b.¢))(2 — €] (a,b,c)), (10.120)

=0

where

ef = —1+£V1-b,
1 —c+ /(1 —c¢)? — be?

o (1—a)?—ct/(1—a)?—c) - b@(mnl)

Cc
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The Calabi-Yau manifold will be singular whenever two roots

e; coalesce, as
ACalabi-Yau = [I(ei —€)*. (10.122)
i<y

We will consider the singular point in the moduli space cor-
responding to SU(3) symmetry. Around this point we will
introduce new coordinates, through

a = —2(0/u)3/2,
b = a'AS,
c = 1—a"?(=2u%? 4+ 3V3v). (10.123)

Going now to the o' — 0 limit in (10.122), we get a set of

A

roots ¢;(u,v; A%) on a z-plane, with z defined in o/*/%2 = 2:

€ = 07 Coo — OO,
eic = 3?2 1 3V30 + \/(2u3/2 + 3\/51))2 — A8,
ef = —2u? 4 3vBu + \/(2u2 — 3v/30)2 — £$0.124)

Now, we can use (10.124) as the definition of a Riemann sur-
face ¥, defined by the Calabi-Yau data at the singular SU(3)
point, and in the point particle limit. There exits a natural
geometrical picture for understanding the parameters u and
v in (10.123), which is the definition of the blow up, in the
moduli space of complex structures of IP%?L?,SJ?’ of the SU(3)
singular point. From this point of view, the parameters v and
v in (10.123) will be related to the volume of the set of van-
ishing two-cycles associated with a rational singularity, 1. e.,
an orbifold singularity of type A,_; (in the case we are con-
sidering, n = 3). These vanishing cycles, as is the case with
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rational singularities, are associated with Dynkin diagrams of
non affine type. The branch points (10.124) on the z-plane
define the curve

y? = [[(z — e;(u,v; A%)), (10.125)

7

which can also be represented as the vanishing locus of a poly-

nomial F(x,z) =0, with F given by [69, 70]

6

F(z,z2) :Z—I-A?—I-B({L'), (10.126)

where B(z) is a polynomial in z of degree three; in the general
case of SU(n) theories, the polynomial will be of degree n.

This has exactly the same look as what we have obtained
using brane configurations, with the space Q replaced by the
(z,z) space. The difference is that now we are not considering
the (z, z) space as a part of spacetime, and ¥ as embedded in
it, but we use ¥ as defined in (10.126) to define a Calabi-Yau

space in a rigid limit by the equation
F(z,z)+y*+w* =0, (10.127)

which defines a threefold in the (z,y,z,w) space. And, in
addition, we think of (10.127) as a Calabi-Yau representation
of the point particle limit. In order to get the meromorphic
one-form A, and the BPS states, we need to define a map
from the third homology group, H3(CY'), of the Calabi-Yau
manifold, into H{(X). This can be done as follows. The three-
cycles in H3(CY) of the general type S? x S', with S? a
vanishing cycle of K3, correspond to S circles in the z-plane.
The three-cycles with the topology of S? can be interpreted
as a path from the north to the south pole of S?, starting
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with a vanishing two-cycle, and ending at another vanishing
two-cycle of K3. This corresponds, in the z-plane, to paths
going from e} to ;. Once we have defined this map,

fiH(OY) — Hy(D), (10.128)

we define

MF(C)) = Q(0), (10.129)

with © the holomorphic top form.
A similar analysis can be done for computing the mass of
BPS states, and the meromorphic one-form A in the brane
framework. In fact, we can consider a two-cycle C' in Q such
that

aC C X, (10.130)

or, in other words, C' € H3(Q/¥;Z). The holomorphic top
form on @ is given by

(%:R%Adm (10.131)

and thus the BPS mass will be given by

gfv(t), (10.132)

MNR/ﬂAmzR
c t ac t

with v(t) given by
F(t,v) =0, (10.133)

for the corresponding Seiberg-Witten curve, ¥. Notice that
the same analysis, using (10.129) and the holomorphic top
form for (10.127) will give, by contrast to the brane case, a
BPS mass formula independent of R.

Next, we will compare the brane construction and geometric
engineering in the more complicated case of N =1 [71, 72].
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Capitulo

11

Dirichlet-Branes

11.1 Supersymmetric D-Branes

In chapter 2 we have introduced the concept of D-branes as
a necessary ingredient to understand T-duality in the frame-
work of open bosonic strings. The same argument can be
extended without changes to the case of type I unoriented
superstrings. The main novelty in this case is that super-
symmetric D-branes appear as natural sources of R-R fields
[19]. This is an extremely important result, as if we simply
consider fundamental strings it is not possible to define, at
the worldsheet level, any coupling to Ramond-Ramond back-
grounds. The importance of non trivial R-R backgrounds was
clear in the discussion of U-dualities and, therefore, appears
as a necessary ingredient in the proof of duality theorems re-
lating string theories on different backgrounds.

Repeating the analysis of chapter 2, we can consider the in-
teraction of D-branes in the supersymmetric case, now arising
from the exchange of closed superstrings. The computation is
identical to the bosonic case, except for the fact that both the
contributions of the NS-NS and R-R sectors should be taken
into account; these contributions correspond to the two types
of closed string boundary conditions. The relevant amplitude
for the interaction of two D-branes through the exchange of a

199
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closed string is the cylinder amplitude,
dt 2 2
A:i/iﬁrk%@+m)ﬂxd, (11.1)

where Pgso = %(1 + (=1)F). The other two topologies ob-
tained when we include the orientation projector correspond
to the orientifold D-brane interaction for the Moébius strip,
and orientifold-orientifold interaction for the Klein bottle (re-
call that orientifolds induce crosscups). In (11.1) we have,
from the open string point of view, four contributions, coming
from the NS sectors with § and (—1)", and the R with { and
%(—1)F. From the tree level closed string point of view, these
four contributions come from the NS-NS closed string sector,
and the R-R sector, differing by the insertion of a factor (—1)F
[17]. In order to see this more clearly, let us introduce explic-
itly the boundary conditions. Representing the cylinder as in
Figure (((((, there are two labels characterizing the boundary
conditions on fermions, namely 7 and 7, with values £1. The
value 7 = +1 corresponds to the open string R sector, and
n = —1 to the NS sector. The boundary condition n = 41 is
from the closed string R-R sector, while n = —1 is from the
NS-NS sector. From the open string point of view, n = 41 is
equivalent to insertion in the trace of the factor (—1)F, and
n = —1 to taking the trace without performing the insertion.

In summary, supersymmetry implies

A=Ans_ns+ Ar_r =0, (11.2)
with
dit —t(p2+m?)
,Mﬁmzfgukp ! (11.3)

Taking into account a factor of 2 for the exchange of the two
ends of the open string stretching along the D-branes we get,
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in the t — 0 limit, for D-pbranes (including a volume factor,
as so far only a density amplitude has been calculated),

A =ns_ns= Vo1 2m(4m2a/ )P0 (7T — p)/2) 161777, (11.4)
which leads to a tension for the D-pbrane

T, = g\/ﬁ(zlm’)(?’—p)/?. (11.5)
Using (11.2), we can get an equivalent result for the R-R sec-
tor. The interpretation of this contribution is as coming from
a R-R tadpole, with external line a R-R fermionic vertex op-
erator. The non vanishing tadpole for the R-R fermionic ver-
tex at zero momentum is the proof that the D-brane is the
desired R-R source. In order to interpret the non vanishing
Agrr piece in (11.2), as reflecting the nature as R-R source
of the D-brane, we must find the R-R vertex as associated
to a p 4+ I-form. This looks slightly difficult, as already dis-

cussed in chapter 2, because the fermion vertex operators in
the (—1/2,1/2) picture,

Vi = =922 52 5o ik (11.6)

decompose into strength field forms. The solution to this
puzzle [73] comes from the picture changing formalism. In
fact, we are working an amplitude with the topology of a
disc, so that the net ghost charge is —2; thus, if we want a
non vanishing one point amplitude, we must employ either the
(=1/2,-3/2) or the (—3/2,—1/2) pictures. It is this change
of picture the one reducing the field strength into a field form
showing the consistency of the claim on the R-R source nature

of D-branes.
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If we are interested in orientifolds, we can compute the con-
tribution to the amplitude with the Klein bottle topology..
The relation between the orientifold on D-brane charges and
masses 1s

Orientifold, = F2”~°D-brane. (11.7)

To end up this brief introduction to generalities on super-
symmetric D-branes, let us now discuss supersymmetry. Re-
lation (11.2) has become the identity relation between mass
and charge of D-branes, a relation characterizing BPS solitons
(solitons saturating the Bogomolny bound).

Typically, BPS states are characterized by being anhilated by
one or more supersymmetry transformations,

Q|BPS >=0. (11.8)

If the supersymmetry algebra contains central extensions, then
condition (11.8) implies the bound

M > |7, (11.9)

with Z the central charge per unit volume. Thus, in order to
check the BPS nature of D-branes, we should analyze equa-
tion (11.8) for the D-brane. In superstring theory, the super-
symmetric charge is defined in terms of the fermionic vertex
operator in the —1/2 picture,

Qa = V—Fi/Qv

@ = fn. (11.10)

with V = e 9/28%¢** and V = e=#/23o¢ike The open string
sector is only invariant under the total supersymmetry Q% +
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Q°: thus, in the presence of D-branes, i. e., for a D-brane
background, only one supersymmetry is preserved. At this
point, we can summarize the spectrum of different D-branes
for type ITA and type IIB string theories. The field content
of these theories in the Ramond-Ramond sector is

A — A', A°
B — A° A% A% (11.11)
and the corresponding spectrum of D-branes is the one pre-

sented in Figure 11.1, where the arrows represent the relation
through Hodge duality.

/\

1A DO D2 =——= D4 D6
1B D1 D3 D5

Figura 11.1: Dirichlet-brane spectrum in ten dimensional st-
ring theory

The whole set of connections between D-branes under T-

duality is given in Figure 11.2.

11.2 D-Brane Scattering

11.2.1 Field Theory Effective Potentials

The effective potential arising in the scattering of Dirichlet

pbranes is described in terms of the dimensional reduction,
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1A

A\VAVAV]

1B

Figura 11.2: T-duality relates type IIA and type IIB D-branes

down to p+ 1 dimensions, of ten dimensional Yang-Mills with
sixteen supercharges.

A system of N D-zerobranes is described through a set of
9 N x N dimensional matrices, X!, (: = 1,...,9; a,b =
1,...
in transverse space, and a set of 16 fermionic superpartners,
Y (o =1,...,16), transforming as spinors under the SO(9)
group of transverse rotations. In order to perform field the-

, N) locating the position of the zerobrane worldvolumes

oretic calculations with the dimensional reduction of ten di-
mensional Yang-Mills, and describe the zerobrane dynamics,
the background field method is quite convenient, as it avoids
the loss of gauge invariance when quantum effects are taken
into account. In what follows, the effective potential govern-
ing the interaction between zerobranes will be shown to agree
with the eleven dimensional result for graviton scattering in
supergravity. The first approach will be the explicit evalua-
tion of the determinants arising from a one loop calculation,
through Riemann’s zeta function techniques.

In units where 2ra’ = 1, ten dimensional N = 1 supersym-
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metric Yang-Mills, including a gauge fixing term, is

S = /dt (itr Fo ™ — itr D, T4 + ~tr (D“Aﬂ)Z)—I—) S ot
g

29
(11.12)
where the background field gauge fixing condition being used
is

DFA, = 0"A, +[B* A, (11.13)

with B* the background field. Dimensional reduction down
to 0 + 1 dimensions simply implies

Foo = 0:X;+ A, X},

Fyo = [Xi, Xjl,
Dt77b = 87f77b+[A777Z)]7
Dip = [Xi,¢], (11.14)

with 72,7 = 1,...,9 labelling the transverse directions. The
background field can introduced through X; = B; + ,/9Y;,
(with Y; the quantum fluctuations) which amounts, as the
effective action is expanded in powers of g, to an expansion
in the number of loops.
If the U(2) ~ U(1) x SU(2), a center of mass—relative motion
decomposition is used,
i

X' = 2(X31+X;'aa),

A = —(Al+ A0,

2
o= ST o), (11.15)

the background field, which can be chosen as corresponding
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to motion on a straight line,

t{ vt 0 t (b 0

simply becomes

Bl =ut, BZ=h. (11.17)

Dropping the piece of the action describing the free motion of
the center of mass, the action becomes

§ = i [dr[S¥i(@: Y+ Yi: - )Y
n lyz(aQ)Yz \/—6a3x cszzY]YZY] _ 4 cobe udzyzyjYZY]]
n /dT A (92— r2)A, + A2(82 ) A, + Ag(aZ)
2¢" 0, B4 ALY 4 \/g cabca YIAY!
_ \/§a3IbCIB2AAbY’L Qabg:cdzAYbAYd]

+ i [ ATl — vrn = by + §¢§ Drs
b0 Ty L5 + ey e

— VYA - + i /gAsp L]
i/dT[Cf(—@f r2)0) 4 Ci(—02 4 1) 0y — C102C,

+ /e 0, CrCh A, — /g e BLCr Oy Y, (11.18)

where the euclidean rotation ¢ — 7, A — —1A has been
performed, the obvious distance between branes r? = b? +
(vT)? is being used, and the decomposition of gamma matrices
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given in [1],

0 3
I = o¢°® Lisxis,

I = o' @+, (11.19)

has been employed in order to simplify the action, and intro-
duce the fermionic fields

1

V2

1
75

The effective action will include contributions from the gaus-

77Z)+ = (¢1 + i¢2)7

Yo = (1 — 11ha). (11.20)

sian integration of the bosonic fields, and contributions from
the integration over the Grassman variables describing the
fermionic fields, which leads to a determinant product that
can be evaluated through Riemann’s zeta function techniques.
Diagonalizing the bosonic mass matrix in the action (11.18),

2 =92 v,

= r2 4+ 2v, 16 bosons of mass m? = r?

we obtain 10 massless bosons, 2 bosons of mass m
2 bosons of mass m?
and 10 massless bosons, all of them real while, from the ghost
piece in (11.18) there are two complex bosons of mass r, and
one massless complex boson; the fermionic action contains
8 fermions of mass m? = r? — v, and 8 fermions of mass
m? = r? + v. Hence, the global determinant becomes the

product
det_G(—af + TQ)det_l(—af +ri4 2v)det_1(—@3 +r?— 20)

det4(—@3 +ri4 v)det4(—@3 +r?— v). (11.21)

This determinant for the operators A = —@3 +p? + 0?72, with
p? = b*,b* £ 2v, b* £ v, can evaluated through Riemann’s zeta
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function,

Cals) = r(ls) /OOO daas_I/d”:fG(i‘,i:;T), (11.22)

where (i(z,y; o) is the propagator, solution to the heat equa-
tion A;G(z,y;7) = —0,G, and n is the spacetime dimension
or, in brane terms, the dimension of the worldvolume of the
scattering branes. Hence, for zerobranes,

F(ls) /OOO dO‘O‘s_l/dTG(T,T;O') =
1 o0 2 1

d s—1 _—u“o )
2I°(s) /0 oo ¢ sinh(ov)

However, the integration over the “proper time” variable o

Ca(s) =

(11.23)

is only defined for small values of b%, as the semiclassical in-
teraction between zerobranes can only be computed for large
impact parameter. Finally, after power series expansions, the
global product determinant becomes

U3

(11.24)

As from the eikonal approximation 1) ~ e is the wavefunc-
tion in a semiclassical analysis for the scattering of two zero-
branes, with § the solution to the stationary Hamilton-Jacobi

V6| = \/2u(E — V(r)), (11.25)

the phase shift (11.24) can be employed to obtain the poten-
tial between the scattering zerobranes. Imposing the wave-

equation,

function to become the free one as 7 — —o0,

§=pvr+ [ {0 — U@V - podde,  (11.26)

T=—00
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where p is the zerobrane mass. In the p?v? >> U(r) limit,

1 T
0 ~ porT — . U(Vb? + v2r2)dr’, (11.27)

HU J—co

so that the wave function, after scattering, reads

BB + pir) ~ d(b + pir). exp lQ_—Z / " U E)dr |

pv
(11.28)
Up to constants, choosing V(r) = 1‘757;—?, with r? = b? 4 v?7?
one gets § = Z—Z or, equivalently, § = Z—Z implies
15 v*

which is the potential governing the scattering of two zero-
branes.

11.2.2 Brane-Antibrane Scattering
11.3 Elliptic Fibrations and D-7branes

Let us consider an elliptically fibered K3 manifold X. Recall
from chapter 3 the relations

24 = > e(F—1),
p(X) = 2+ o(F), (11.30)
where F; represents the singular fibers, and where e(F}) are
the Euler characteristics of the singularities. An interesting

example is that of a model with four D, singularities. In this

case, e(Dy) = 6 and o(Dy) = 4, so that we get p(X) = 18.
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The interest on Dy singularities comes from the monodromy
matrices

Mp, = ( _01 _01 ) (11.31)

Thus, in this case the elliptic modulus of the fiber 7(z) is
constant. Let us consider a Calabi-Yau fourfold, which is K3
fibered, and with the K3 surface elliptically fibered in the way
above described. A D-brane model of this spacetime can be
obtained locating D-7branes and 7-orientifolds at the points
in the base space of the elliptically fibered K3, where the el-
liptic fiber is singular. The question we want to address is
how to represent different singularities in terms of D-branes
and orientifold planes. The way to proceed is interpreting the
Calabi-Yau fourfold as an F-theory compactification. As dis-
cussed in chapter 4, this is equivalent to considering type I1B
string compactifications, with the elliptic modulus of the el-
liptic fiberbeing identified with the S1(2,Z) multiplet defined
by the dilaton and axion fields of type IIB string theory,

T=x+ie?, (11.32)

with x the axion field. Using this identification, we can asso-
ciate with the D-7brane R-R charge a monodromy transfor-
mation of the form

x—=x+1, (11.33)

i. e., a T-transformation, 7 — 7 4+ 1. In fact, a 7brane is
associated to an 8-form field, or a 9-form field strength. Its
Hodge dual is a —1 form, namely dy. Thus, for a 7-brane of
topological charge equal one we get

dy =1 11.34
§dx=1, (11.34)
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with the loop C in IP! around the point where the D-7brane
is inserted. This is the typical monodromy of A; singularities.
But, what about orientifolds? The charge of the orientifold,
for a Torientifold is

—2775% = 4, (11.35)

corresponding to a monodromy transformation
X — x — 4. (11.36)

Therefore, in order to get a D4 singularity, with monodromy
matrix given by (11.31), we can take a 7orientifold and 4 D-
7branes.

An interesting implication of these elliptic fibrations, as shown
in [?], allows to get a D-brane model of Seiberg-Witten soltions
for N = 2 supersymmetric Yang-Mills theories. The idea
comes under D-brane probes. We can consider a D-3brane
probe, parallel to the D-7branes and orientifolds. The super-
symmetry on the D-brane is N = 2, as the D-7branes break
half of the supersymmetries. We can now interpret the ellip-
tically fibered K3 as a model of the Seiberg-Witten quantum
moduli for the gauge theory defined on the worldvolume of
the D-3branes. Under this interpretation, the elliptic modu-
lus 7 is identified with the complexified coupling constant for
this four dimensional gauge theory. The example with singu-
larities of type D4 corresponds to constant 7, and therefore
vanishing beta function, which is the case of N = 2 SU(2)
gauge theory, with four hypermultiplets.

A geometrical interpretation of the Seiberg-Witten phenom-
ena of splitting the classical singularity of enhancement of
gauge symmetry into a monopole and dyon singularities in
the quantum moduli is now available. In fact, if we move
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away from the orientifold the D-7branes, we will get

4
T(z) =10+ L,(Eln(z—zj) —4Inz), (11.37)
2ms et

where z; are the positions of the D-7branes, and —41n z is the
orientifold contribution. The value 7y is the asymptotic value
of the elliptic modulus. It is obvious, from (11.8), that this so-
lution is not defining a good elliptic fibration, as Im 7 is not al-
ways positive. The solution to this puzzle is breaking, through
quantum effects, the orientifold into two pieces, corresponding
to the monopole and dyon singularities in the Seiberg-Witten
solution. From a mathematical point of view, what is going
on is that the orientifold is not representing a good elliptic
Kodaira singularity. If we split it into good singularities, we
should do it consistently with the Euler number constraint,
(11.30). A possible suggestion is relating the Seiberg-Witten
solution with some K3 manifold, as it is clear from the Sioda-
Tate formula (11.30), the solution with the splitted orientifold
is having a completely different Picard number.

11.4 D-Brane Classical Supergrav-
ity Solutions

As we have discussed in chapter 4, the NS-NS sector of type
ITA and type IIB strings is the same. Setting all R-R back-
grounds equal to zero, the low energy effective action for the
NS-NS sector of type II strings is given by

1 1
Lys=—5 / A2 /ge 2 (R = AD, O D" + < H,,,, H"").
(11.38)
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The gravitational coupling, k, can be absorbed in a shift of
the dilaton field. The lagrangian (11.38) is given by the so
called string frame. We can easily pass to the Einstein frame
through a redefinition of the metric,

Guv — 6‘25/29#1/‘ (1139)

We are interested in classical solutions to (11.38) that are
sources of the 2-form field, B, 1. e., solutions which are ex-
tended objects of dimension equal one. The magnetic duals
should be sources of a 6-form field, and will therefore be five
dimensional. We will call these solutions NS-pbranes, with
p=1and p = 5. In the string frame (11.38), these solutions
are given by [74]

2 _ pg-1g.2 g2
ds* = H d.2:||(2) d;z;l(g),

e?(b — ]{—17
Ho; = O/H™, (11.40)
for the NS-1brane, where ) = (2o, 1) are the worldvolume

coordinates, and z; the 8 transversal coordinates.
In order to check supersymmetry, we should consider vari-

ations on the metric (11.40) for the gravitino and dilatino

fields,

| 1 ,
S = [augb’y“FH + EHIWP’VM /)]77 = 0,

1 a a
S, = [0, + Z(%b + HT11)ly)n =0, (11.41)

with the gamma matrices I' in flat space satisfying {I',, v} =

204, and ¥* = €T for a and s target space indices. For
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n = e+ €1, we get

ernr, = H ',
'rted, = €%,
I'r‘e) = —e, (11.42)

with € a constant spinor. Introducing the ansatz (11.40) in
the equations of motion for (11.38), we get

o= <1+ri6), (11.43)

for some arbitrary constant, ¢. This charge should be re-
lated to the B-charge of the fundamental string. The way to
discover this charge will be using the BPS property of this re-
lation, which is due to the fact that the solution preserves half
supersymmetries. As it is BPS, we can identify this charge
with the mass. The mass can be determined from (11.40) by
the usual ADM procedure wjen going to the Einstein frame.

The Hodge dual NS-5brane solution is [75]

ds? = dl’?G) — Hda:%4),
e’ = H,
*Hor.51 = OrH™'. (11.44)

The function H is the harmonic function

c

@+t o)

H=1+ (11.45)
where the constant should be determined imposing Dirac’s
duality condition on the electric magnetic pair defined by the
solitonic fivebrane and onebrane described in (11.40). As de-
rived in [75], the constant for the solitonic fivebrane is .



Dirichlet-Branes 215

Once we have obtained these solitonic solutions for the string
effective action (11.38), we can try to repeat the same argu-
ment for branes with R-R charge, i. e., for D-branes. The first
thing we need is to complete (11.38) with the contributions
from the R-R sectors for type ITA and type IIB. For type ITA,

1 1
L= Lys+ [y [Z(F@))2 + o (FO 4 An H)Q]

—|—/F4/\F4/\B, (11.46)

while for type 1IB string theory

L= £N5+/d10;z:\/§ [%(VX)Q + %(XH — (F(B))Q] , (11.47)
where F') = dA®) & = dAM in type IIA strings, and
F® = dA® in type IIB. The field x is the R-R axion of
type 1IB string theory. In (11.47), extra terms containing
F®) = dA® should be added, but unfortunately can not be
written in covariant form, due to the fact that F(5) is self
dual in ten dimensions. For lagrangians (11.46) and (11.47),
we can try to get solutions sources of R-R fields. For generic
D-pbranes, the solution is given by

ds* = H_I/Qdmﬁ—Hl/Qd;L’i,
e = Hm3)

Ho.pr = O/H, (11.48)

from which is clear that the self dual case, with p = 3, is not
dilatonic. The harmonic function H in (11.48) is given by

H= (1+L), (11.49)

r(7—p)
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where the constant will be an integer times the minimum
charge of the D-brane. For our future analysis of the D-brane
representation of black holes it would be important to con-
sider also D-brane solutions carrying momentum a parallel
direction to the D-brane [76]. Macroscopically, we can in-
terpret these oscillating solutions as resulting from a coherent
superposition of open string excitations on the D-brane world-
volume. The recipe to get these oscillating pbrane solutions
with momentum in one particular direction 1'is to replace in
(11.44) or (11.48) dt*+dz? by —dtQ—I—da:?—l—k(dt—d:I:g)Q, where
k 1s a harmonic function,

constant .V

with N measured again in momentum measured units, defined
by the minimum momenta that will fix the constant in (11.50).

11.5 D-Branes and Black Holes

As an illustrative example, we will simply review the main as-
pects of the D-brane microscopic description of the Bekenstein-
Hawking [77] entropy for a five dimensional black hole in type
IIB supergravity, compactified on a five torus, 7'°. The brane
metric we will start with corresponds to wrapping on 7° Q5 D-
Sbranes, and (); D-1branes, along one particular direction of
the torus. We will also include some Kaluza-Klein momenta,
N along that direction, i. e., we will consider oscillating D-
strings. This solution will be characterized by three harmonic
functions, that we will call Hs, H; and K, describing, re-
spectively, the D-5brane, the D-1brane and the Kaluza-Klein
momentum. The supergravity solution for this configuration
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of branes is given by [78], [79], [80]

ds* = Hy'PHYA(=de? + daf + k(dt - day)?)
FHPH P (dd 4 )
FHPHT Y (d2? + -+ dad). (11.51)

The coordinates for the uncompactified directions are
(t,$1, e ,{L’4).

(11.51) is a solution where we have already imposed to branes
being completely wrapped on the five dimensional internal
spacetime. The harmonic functions in (11.51), at large dis-
tances, will describe, in the uncompactified five dimensional
space, point like sources with different charges, so that all of
them will depend on the radial distance as T%, which is the
spherically symmetric solution to the Laplace equation in R*.

Thus, notice that all the harmonic functions in (11.51) depend
ca1@1 Qs cnN

2 0 2 9 g2 v

in the same way on r,
In order to see the type fo metric associated to (11.51) in five
dimensions, we will perform the usual Kaluza-Klein dimen-
sional reduction [81], [82]. In order to compare later on with
the Bekenstein-Hawking formula for the entropy, we should
work in the Einstein frame; the metric thus obtained is

1
8 = s (1)) P+,
14£5
(11.52)

In order to fix constants in the different harmonic functions,

we should proceed as follows (see [83], for a complete refer-
ence). First, we will compute the mass of the different D-
branes wrapped on the internal torus, in the Einstein frame.
Next, we compare these masses with the ADM mass formula
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for the dimensionally reduced metric, (11.52). These ADM
masses will depend on the coefficients of the harmonic func-
tions. Identifying both quantities, we get the coefficients of
the harmonic functions appearing in (11.52). These coeffi-
cients, and Newton’s constant are given by

4G R , 4G
g =—""—, CG=ga, c,= , 11.53
! Ta'g 59 P R ( )
where G4 = % (GY = 87%g*a’). Using these constants

we get, for the entropy of the extremal black hole (11.52),

S: 27T\/NQ1Q5, (1154)

which is a surprisingly simple result, completely independent
of the size of the internal five dimensional torus. Our task will
now be getting a microscopic description of (11.54) (we will
however proceed very schematically, just to give the reader
the flavor of the procedure). We will then choose the D-string
wrapped in the xg-direction; it carries RR charge for the RR
B" 2-form. On the worldvolume of the D-5brane, we have a

Chern-Simpons coupling of the type [84]
/d5+1xB/\F/\F. (11.55)

As we have a superposition of ()5 D-5branes, the effective
gauge theory on the D-5brane worldvolume is U(Qs). Thus,
from (11.55), we can interpret, for each value of zg, that the
D-string is represented by a gauge field in U(Qs), defining a
four dimensional instanton living in the four dimensional sec-
tion R*, and with topological charge [d*zF A F equal one.
The number of instantons we have is equal to the number
of D-strings, (J;. Now, we can consider the moduli space of
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these instantons. We have four translational zero modes, no
dilatations, and the orientations in U(Q)s); thus, there are
4¢)1Q)s moduli. Next, we will put some momentum N along
the ninth direction, corresponding to the oscillation of one
string. This will correspond to small fluctuations of the in-
stantons. The gas of instantons can be described in terms
of a two dimensional conformal field theory defined on the
(2?,1) spacetime, and with target the moduli space of instan-
tons. Most of the work is already done. The supersymme-
try preserved on the D-5brane worldvolume will give rise to
a fermionic partner for each of the 4(Q); ()5 bosonic collective
coordinates. Hence, the conformal field theory will have, as
cantral extension, 6Q)1()s. To compute the entropy, we only
need the multiplicity of states for given values of the momen-

tum, N = LO — ZO (LO = 0)
A(N) ~ VN el6 (11.56)

with ¢ the central extension. The entropy is

S = h’ld(N) = 27T\/NQ1Q5, (1157)

in agreement with the Bekenstein-Hawking formula, (11.54).
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