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Abstract

An expressive number of scientific application executed
on cluster architectures need some form of permanent stor-
age with high capacity. As a consequence, the performance
of the storage system becomes crucial to such applications.
Besides granting data I/O performance, it’s important to
provide efficient and scalable access to file’s meta-data, al-
lowing the system to scale and, yet, offer a good level of
consistency in the shared file system. Also the file transfer
between nodes of the cluster architectures is an important
factor that affects the I/O performance. And this is impor-
tant to know the behavior and influence in the shared file
system. In this paper we present a low-overhead meta-data
synchronization algorithm used in dNFSp, a distributed file
system based on NFS that proposes changes exclusively on
the server side, keeping compatibility with traditional NFS
clients. With this synchronization schema, dNFSp can offer
the same level of coherence of traditional NFS servers. We
also evaluate the communication characteristics of the en-
vironment where the tests were executed in order to analyze
possibilities of scalability of the system.

1 Introduction

With the popularization of Beowulf-class parallel ma-
chines and the constant improvements in technologies for
computer components, it is becoming more and more com-
mon the deployment of clusters with hundreds or thousands
of nodes. For such large-scale systems, concurrent access

to shared I/O services becomes a critical bottleneck. Tradi-
tional distributed systems such as NFS [1] are not suitable
for such scenarios due to its centralized nature. On the other
hand, such systems are convenient to use due to their matu-
rity and wide availability of implementations and tools. The
challenge is then to provide file systems with the high per-
formance and scalability levels needed in a cluster and the
compatibility with widely accepted standards like NFS.

dNFSp [2, 3] is one such attempt. Based in the NFSp
filesystem, dNFSp extends the traditional NFS implemen-
tation in order to support high performance I/O with the
particular interest of not touching the client side NFS proto-
col, remaining compatible with traditional implementations
such as the one found in the Linux kernel, commonly used
in Beowulf clusters.

dNFSp, in contrast with NFSp, distributes the meta-data
management onto several servers (called meta-servers) and
delegates a subset of the clients to each of these servers.
This way, dNFSp, is able to scale better in write operations
then NFSp [4]. This distribution requires the implementa-
tion of synchronization mechanisms to keep meta-data con-
sistent among the clients, allowing them to share files in a
consistent manner.

The first version of dNFSp used a relaxed consistency
schema that allowed meta-data to remain unsynchronized
and relied on the client to make accesses to the file indepen-
dently from it’s meta-data.

In order to improve the level of consistency among the
clients of different meta-servers, we developed a new syn-
chronization mechanism for dNFSp2 using hashing for lo-
cating meta-data. While the hash-based schema is com-
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monly used in other filesystems by the client, our imple-
mentation operates solely on the meta-server level, main-
taining compatibility with the standard NFS protocol. This
paper describes this synchronization mechanism it’s perfor-
mance evaluation.

On another hand, the file transfer process is critical dur-
ing the execution of parallel applications in clusters. As it is
known, it exists a direct relation between the performance of
the massive/intensive communications and the file system,
like the are with the transfer protocol, architecture of the
system, the model of communication and another, that also,
your performance is related with the file system. Different
strategies are implemented in the file system, for example,
to guarantee the a synchronous behavior, the coherence of
the data, a minimum delay in the communication. This pa-
per present an evaluation experimental of performance in
the highbandwidth data transfer, in order to show the im-
pact of the transfer process in the system behavior.

The remainder of the paper brings some background in-
formation dNFSp in Section 2, a description of our pro-
posed method and obtained results in Sections 3 and 4, a
description about the file transfer process is presented in
Section 5, a discussion on related work in Section 6 and
our final conclusions in Section 7.

2 An Overview of dNFSp

dNFSp — distributed NFS parallel — is an extension
of the traditional NFS implementation that distributes the
functionality of the NFS daemon over several processes on
the cluster. The idea behind dNFSp is to improve the perfor-
mance and scalability and, at the same time, keep the system
simple and fully compatible with standard NFS clients.

Similarly to PVFS, dNFSp makes use of I/O daemons
– IODs – to access data on the disks. The role of the
NFS server is played by the meta-data servers –meta-
servers. These daemon are seen by the clients as regular
nfsd servers; when a request for a given piece of data is
received, the meta-server forwards the request to the corre-
sponding IOD to perform the operation and answer to the
client.

dNFSp distributes themeta-serverfunction onto several
computing nodes. The I/O daemons are shared by all meta-
servers. However, each meta-server is associated to only a
subset of the clients. When using dNFSp, if all the clients
access the file system at the same time, the load will be dis-
tributed among the meta-servers. This is specially important
in write operations, once clients send whole data blocks to
the meta-servers.

Figure 1 illustrates a typical read operation in dNFSp.
The client sends a normal NFS read request to its associated
meta-server. The meta-server then forwards the request to
the IOD storing that piece of the file. After processing the

Figure 1. Example of a read operation on
dNFSp

request, the IOD answers directly to the client.
The distribution of the meta-server brings a new prob-

lem: keeping the meta-servers synchronized in order to al-
low consistent access to the same file from clients in differ-
ent meta-servers. In the first version of dNFSp (dNFSp1),
this synchronization was made with an LRC1 based algo-
rithm, in which data is updated in one node only when it
needs access to it. The employment of LRC allows nodes
to have outdated information, leaving the system partially
unsynchronized.

In dNFSp1’s LRC-based synchronization method, the
meta-data of a file created in one meta-server is propagated
only when a client in another meta-server tries to access the
same file for the first time. In this case, the outdated meta-
server will search on the other meta-servers for the corre-
sponding meta-data and then make a local copy of it. No
further synchronization is made afterwards, allowing some
file attributes to remain incoherent. For a large number of
applications this level of synchronization is enough to keep
the system working correctly. This scheme also has the ad-
vantage of requiring a small number of messages among the
meta-servers.

3 Hash-Based Synchronization Schema

The presence of outdated meta-data can lead to incon-
sistencies when clients in different meta-servers access the
same file. This inconsistency appears when data written by
a client depends on some meta-data information like the file
size. When two clients associated to different meta-server
coordinately append content to the same file, inconsistency
on the file size can result in overlapped writes, resulting in
data loss.

To avoid such inconsistencies, the algorithm employed
in the second version of dNFSp (dNFSp2) ensures that the
meta-data viewed by one meta-server is the most recent in
the system. This synchronization schema is based on a hash
mechanism, as used by other file systems like Vesta [5, 6],

1Lazy Release Consistency
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Expand [7] and Archipelago. In dNFSp, however, the hash-
ing technique is used only in the meta-server level.

Each file is associated to a Hash meta-server, which is
responsible for the file’s meta-data. This association is done
using a hash function based on the name of the file. When a
meta-data server other then the given Hash tries to access a
file, it needs first to contact the Hash to obtain the meta-data.

File creation follows the same hashing scheme. When a
file is created, the meta-server receiving the request com-
putes the id of the Hash server based on the file name, and
contacts it, notifying that a file will be created. The Hash
will then create a local copy of the meta-data for future ac-
cess.

To avoid unnecessary communication between nodes,
we have adopted a caching mechanism based on tokens.
The token indicates which server has the most recent ver-
sion of the meta-data. This information is kept in the file’s
meta-data in the corresponding Hash server.

The token represents the meta-server with the most re-
cent version of the meta-data. It can by owned by any of
the meta-servers; if a meta-server owns the token, it doesn’t
needs to contact the Hash server before accessing the meta-
data as the cached meta-data is up to date. The token trans-
mission from a meta-data server to the other is always man-
aged by the Hash server.

The algorithm used to manage the token is represented
on Figure 2. The simplest case is when the meta-data is
found locally and server treating the request owns the to-
ken – there is no need to contact the Hash before answering
to the client (1). If the meta-data is not found locally, or
the meta-server does not owns the token, the meta-server
communicates with the Hash (Meta B) before treating the
request (2). When the Hash owns the token, it can imme-
diately answer with the most recent meta-data. Otherwise,
the Hash answers with the address of the meta-server own-
ing the token (Meta C). The meta-data server then contacts
owner of the token (5) requesting the meta-data. After re-
ceiving the meta-data, it can continue treating the client’s
request.

4 Results and Discussion

The tests presented on this section were executed on
the I-Cluster2 [8] installed in Montbonnot Saint Martin,
France, in the INRIA Rhône-Alpes facility.

The I-Cluster2 is part of the Grid 5000 infrastructure2,
the french grid for research in high performance comput-
ing and e-Science. The cluster is composed by 100 nodes.
Each node is equipped with a dual Itanium2 900 MHz with
3 gigabytes of memory and a disk storage with 72 giga-
bytes, 10000 rpm, SCSI. All the nodes are interconnected

2http://www.grid5000.fr

Figure 2. Token management fluxogram

using a 1 Gigabit Ethernet network, Fast Ethernet network
and Myrinet Network. The experiments were performed us-
ing the 1 Gigabit Ethernet network. The software installed
on I-Cluster2 is based on Debian stable distribution, with
a Linux kernel version 2.6.15. In the tests we compared
dNFSp1, dNFSp2 and PVFS2. The version of PVFS2 used
on our tests was 1.5.

4.1 Raw data transfer tests

This test aims to evaluate the low level performance of
dNFSp and compare it with other parallel filesystems. The
test consists in writing the same amount of data into a differ-
ent number of files (e.g. 1 file of 50Mb, 2 files of 25Mb, 128
files of 400Kb). With this method, we can see the impact of
meta-data processing, once the total amount of data written
is constant. In the ideal case, the increase in the number of
files should not degrade the performance of the filesystem.

The tests were performed using 4 nodes as meta-servers,
4 as IOD’s and 4 as clients of the filesystems. Each of these
clients writes 50Mb of data splitted into 1 to 128 files in
each step of the benchmark, summing 200Mb of data writ-
ten in the filesystem.

Figure 3 shows the execution time of the benchmark for
dNFSp1, dNFSp2 and PVFS2. By the results, we can see
that dNFSp2 sustains almost the same transfer time for all
the given sizes, while dNFSp1 and PVFSv2 have a signif-
icant performance degradation as the number of files grow
and the file sizes decrease. As the minimum file sizes trans-
ferred is larger than the maximum block size written by
dNFSp1, the file size does not represents the main reason
of it’s low performance. This performance degradation is
due theO(n) nature of dNFSp1 synchronization protocol.
With the increasing number of files being created – and con-
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sequently, lookup request from clients to servers – more
and more messages need to be exchanged among the meta-
servers to check for the existence of the file. With a smaller
number of files, on the other hand, dNFSp1 and dNFSp2
performed almost the same, once few synchronization was
needed.

PVFS also performed poorly with a greater number of
smaller files. This poor performance with small writes has
already been reported in other works [9] and can be at-
tributed to it’s write thought cache and poor paralelization
of requests.

NFS stable transfer time was expected, since it’s single
server architecture does not demand any synchonization due
to increased number of meta-data operations. dNFSp2 has
the same behaviour (with a higher transfer rate), since the
number of messages exchanged between the meta-servers
due to synchronization is small.

5 Analysis of Data Transfer

The implementation of distributed and high performance
resources requires the knowledege of the system’s capacity
and limitations. It is important then to evaluate two differ-
ent aspects of the system: 1) The system’s behavior when
transfering data normal conditions and 2) the characteristics
of the transfer in the moment of the execution of parallel ap-
plications.

For this case, the tests are proposed to measure commu-
nication aspects during the runtime of a parallel application.
For this, it’s used the code Logp-multites in the LogP-MPI
Benchmark Tool3. LogP/MPI Benchmark Tool provides
data that are expressed in terms of parametrized LogP.

The terms of LogP are defined in parameters for mes-
sages of sizem: P is the number of processors,L the la-
tency, os(m) is the send overhead time andor(m) is the
reception overhead time,g(m) is the gap between con-
secutive messages. So, a network can be described as
N(m) = (L, os, or, g, P ).

The measurement during the execution is made between
pairs of processors and it supposes the communication to
be symmetrical in both ways.Logp_multitestis a program
that allows to make measures in parallel proposed by Luiz-
Angelo Estefanel from the ID-IMAG Laboratory4. In gen-
eral, the options are the same that exist for thelogp_test

program and can be consulted in [10].
From the parameters, it’s possible to build a graphic to

observe the behavior for the transfer of 50MB in I-Cluster-
2, as it is possible to see in the figure 4.

The points in figure 4 show the space of time between

3developed by the albatross project in Netherlands,
http://www.cs.vu.nl/albatross/

4http://www-id.imag.fr/Laboratoire/Membres/Estefanel_Luiz-Angelo

two consecutive transfers of files in a RTT5 experience – in
other words, the values of gap between each pair of nodes.
The measure has been taken for many transfers between
peers and with a fixed size of message of 50Mb. The values
of gap are in microseconds. It’s important to say that for
this experience, one node uses only one processor.

With the different values is calculated the average to see
a general behavior of the transfer. Then, it’s possible to see
two aspects: 1) the increase in the gap when there are many
nodes in the transfer and 2) the peaks and irregularities in
different points. The first aspect is explained by the satura-
tion and increased use of the cluster network. The second
aspect may be interpreted as the cost of the transfer in the
time of execution by the influence of the architecture in the
system, and in fact of the file system. To observe the gen-
eral cost of the transfer, it is necessary to see the bandwidth
behavior.

Figure 5 shows the bandwidth values in I-Cluster-2.
These values are calculated with the expression proposed
in the LogGP model described in [11] to incorporate long
messages in the logP Model. The logGP model proposes to
compute the end-to-end delivery time for k-bytes of a mes-
sagem from a node to another with the following equation:

T (m) = Osend(m) +
(k − 1)

g(m)
+ L(m) + Orcvd(m) (1)

whereOsend and Orcvd are respectively the overhead
time of the node involved in sending and receive thek byte
of a long message,g is the gap, that is, the minimum time
interval between consecutive messages transfers andL is
the latency.

The figure 5 shows the decrease of the bandwidth in the
process due to the use of the network resources in the clus-
ter in the time of execution. But, the interesting aspect is
the peaks in the graphic that they are associated to the own
characteristics of the system, then, the file system.

6 Related Work

Among the main approaches to distribute data and meta-
data in systems, we highlight two classes: the tree partition-
ing and the hash distribution. In the first case, the meta-data
in the same sub-tree are stored in the same server. To access
a given file, the client must access the meta-servers respon-
sible to each sub-tree, following the file path. The meta-data
servers are accessed hierarchically until the informationis
found. File systems like AFS (Andrew File System) [12],
Coda [13], NFS and LFS (Log-Structured File System) [14]
are implemented by servers that can be responsible for one
or more sub-trees on the system.

5Round Trip Time
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Figure 3. 50 Mb transferred by each client divided in x files

On works like the one of Levy and Silberschatz [15], it is
possible to find more details about the sub-tree mechanism
together with means to implement it. In these implementa-
tions, the main disadvantage is the load distribution. When
a sub-tree is accessed more frequently than the other, there
is an unbalancing among the servers. It results on more re-
quests being treated by the server storing the most popular
sub-tree.

The second way used to manage meta-data was intro-
duced by the Vesta file system [5]. This system uses a hash
function on the file name to obtain the meta-data location.
Using an adequate hash function reduces the overload of a
server in the system. With this technique it is possible to
avoid the load unbalancing, which is the main problem of
implementing a sub-tree algorithm. In the Vesta file sys-
tem, the clients compute the hash based on the path of the
file. With the result of this function the client knows which
node it needs to contact to obtain the meta-data of the de-
sired file.

The PVFS2 file system [16] uses an algorithm similar to
the hash to support multiple meta-data servers. It is done by
distributing across the server ranges of values that can be

results of the hash function. This configuration is made at
the time of the initialization of the system.

The meta-data management system called LH (Lazy Hy-
brid) [17] uses part of both methods, it distributes the direc-
tories using sub-tree and the files using a hash based algo-
rithm. Another system implementing NFS that is based on
the Vesta file system is the Expand [7]. The Expand system
only modifies the client, keeping the servers intact. This
characteristic is the opposite of the dNFSp objective which
is to keep all the changes on the server side.

7 Conclusions

This paper presents a low-latency coherence mechanism
that allows to perform efficient meta-data updates among
distributed servers. The practical results have shown that
the system is able to present high performance even in the
presence of large amounts of meta-data operations. Also
of great importance, the implemented mechanism does not
degrade the high performance for read/write operations
(i.e. data operations) that had been previously achieved by
early implementations of dNFSp.
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Figure 4. I-Cluster-2 gap in Transfer of 50MB

It’s also important to note that the new mechanism al-
lows dNFSp to serve several files without degrading data
operations due to small block sizes, like PVFS.

In addition, the analysis of the transfer behavior suggests
that is important to define a model of management of com-
munication file system level guarantee the smaller loss in
the transfer. The falls points identified in the transfer anal-
ysis allows to know the performance limits of the applica-
tions that can be executed in the infrastructure will have to
deal with. In the tests developed in this work, it’s observable
these limitations.

Our future activities include further fine tuning of the
hash-based coherence mechanism, in order to try to extract
some more bits of performance, and mainly the inclusion
of fault-tolerance characteristics in dNFSp. We intend to
achieve a more dynamic environment which might be bet-
ter suitable to a resource-harvesting system within a local
network or even to a grid computing scenario.

Also, activities are planned for the evaluation of perfor-
mance context. It will make another tests and measurements

with nodes of different clusters from grid5000 facility, in
order to characterize the different behaviors in differentar-
chitectures and platforms and to experiment the behavior in
of dNFSp in the grid environment.
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