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Abstract: - The main motivation of this paper is to develop some methods or techniques that will allow us to 

study complex systems (in the sense of finding their underlying structure or their similarity to others). If we have 

these techniques, we will be able to tackle a series of real life problems that until now have found no reliable 

solution.  Examples of such problems are 3D-object recognition, handwritten word recognition, interpretation of 

bio-medical signal and speech recognition. In this paper, we will present a technique to analyze dynamical 

systems based on their behavior, where that behavior can be determined from the system output trajectories. We 

will use dynamic pattern recognition concepts for dynamic system analysis.  

Key-Words: - Pattern recognition, Dynamical system, Complex systems, Artificial Intelligence, Similarity. 

1   Introduction.
Similarity plays a fundamental role in the theories of 

knowledge and behavior and has been extensively 

studied in the literature of psychology. 

     Traditionally, dynamic systems have been studied 

using formal mathematical theories.  

     However, these approaches to system modeling 

perform poorly for complex, nonlinear, chaotic, and 

uncertain systems. We believe that a possible way to 

study and analyze such dynamical systems is to 

restate the problem as a similarity problem.  

     

between the dynamic system under study and know 

-Based-

once a problem has been solved, it is often more 

efficient to solve a similar problem by starting from 

the old solution, rather than rerunning all the 

reasoning that was necessary the first time.

2   Problem Formulation. 

Traditional approaches to system analysis e.g. trying 

to find a mathematical model that describes  output as 

a function of state variable and due to the fact that  

input perform poorly when dealing with complex 

systems. This may be due to their nonlinear, time-

varying nature or to uncertainty in the available 

measurement. 

    We can approach the analysis of dynamic systems 

in two different ways: the first is based on the 

existence of a state measuring mechanism in the form 

of a mathematical model; In the absence of such a 

measuring mechanism, we must resort to some 

perceptual mechanism, that allows us to perceive the 

underling structure of the system, based on the 

behavior of the dynamic system. The similarity 

measure is one the possible perceptual mechanism 

that can be used to analyze such systems. One of the 

motivations of this dissertation is to discover ways to 

use structural similarity as mechanics to study 

dynamic systems. 

2.1 Mathematical Description and Modeling 
of Dynamic System. 

The classic methods of recognition of patterns should 

be tuned to consider desirable problems from the 

dynamic point of view, that is to say the process of 
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objects are described with sequences of temporary 

observations. 

     In the design of dynamic systems and analysis in 

the domain of time, the concept of states of a system 

is used; a dynamic system is usually modeled by a 

system of differential equations.  

     To obtain dynamic systems by differential 

equations that represent the relationship between the 

input variables
1 2( ), ( ),..., ( )pu t u t u t  and the output 

variables
0 1( ), ( ),..., ( )qy t y t y t , the intermediate 

variables receive the name of state 

variables
1 2( ), ( ),..., ( )nx t y t x t . A set of state 

variables in any instant determines the state of the 

system at this time. 

    If the current state of a system and the value of the

variables are given for
0t , the behavior of the 

system can be described clearly. 

    The state of the systems is a set of real numbers in 

such a way that the knowledge of these numbers and 

the values of the input variables provide the future 

state of the system and the values of the output 

variables by the equations that describe the dynamics 

of the system. The state variables determine the 

future behavior of the system when the current state 

of the system and the values of the input variables are 

known 2 . 

    The multidimensional space of observation 

induced by the state variables receives the name of 

space of states. The solution of a system of 

differential equations can be represented by a 

vector ( )tX  that corresponds to a point in the state 

space in an instant of time t . This point moves in the 

space of states like steps of time. The appearance or 

the way to this point in the space of states is known 

like as trajectory of the system. For an initial state 

and   end state given 1 an infinite number of input 

vectors exist that correspond to trajectories with start 

and end points.  

    On the other hand, through a point on the state 

space only one trajectory passes. 3 . 

Considering dynamic systems in the control theory, a 

lot of attention has been paid to adaptive control. The 

main reason to introduce this area of investigation is 

to obtain controllers whose parameters can adapt to 

the changes in the dynamic process dynamic to 

perturbation characteristic. 

2.1.1 Classes of Linear Dynamic System.  

The state of transition of the dynamic system in the 

internal space and the mapping from the space of 

internal states to the space of observations is modeled 

by the following linear equations. 

t t t

t t

xt

yt

(1)

    Where 
( )iF  is a transition matrix; 

( )ig  is a bias 

vector. H  Is a transition matrix that defines the 

lineal projection from a space of internal state to the 

observation space, Notice that each dynamic system 

has,
( )iF ( )ig y

( )i
tw  individually.  It is assumed that 

each 
( )iw  is noise identifier and v  has normal 

distribution 
( )

0,
t

i
xN Q  and 0,yN R respectively. 

    The classes of dynamic systems can be categorized 

by the eigenvalue of the transition matrix which 

determines answers of the input zero of the system. In 

other words, these eigenvalues determine the general 

behavior of patterns (trajectories) with temporary 

variation in the space of states. 

    For the concentration of the temporary evolution of 

the state in the dynamic system, it is assumed that the 

bias term and that of noise process are zero in the 

equation (1). Using the decomposition of the 

eigenvalue in the transition matrix the following 

expressions are obtained:

1 n n n1 11 ediagF (2)

    The state in the time t can be resolved with initial 

conditions 
0x  this way: 

0 0

0

1 0

T

t

p

xt

E (3)

    Where p and pe  are the corresponding 

eigenvalue and eigenvectors and the pondered 

value p  is determined from the initial state 
0x   in 

the complex plane. 

    From this, the general patterns of a system can be 

categorized by the position of the eigenvalue (poles)

in the complex plane. The determination of the

oscillatory states are based   the following rules.

It oscillates if at least one eigenvalue is 

negative or complex.  

It doesn't oscillate if all the eigenvalue are 

real numbers.   

    The absolute value of the eigenvalue determines 

the convergence or divergence state in the way:   
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     diverges if at least one value of the eingenvalue 

is greater that one.

l the absolute values of the 

eigenvalue are less than one. 

    Figure 1 shows states of trajectories with two-

dimensional states.   The systems can generate 

patterns for temporary variation if and only if this 

pattern converges to zero. (In control terms is said 

that the system to stable).    

Fig 1 Examples of class of dynamic in the complex plane   

2.2 Dynamic Pattern Recognition Base   

Let us consider a complex system that assumes

different states in the course of time. Each state of the 

system in the instant of time is considered as an 

object to classify. If a dynamic system is observed 

temporarily, the variable value of the features is a 

dependent function of the time.  

    However, each object is not only described by a

vector of features in any instant but also by the 

history of the temporary development of this vector 

of features.  

    The objects receive the name of dynamic if they 

represent measurements or observations of a dynamic 

system and contain the history of their temporary 

development.  That is to say, each dynamic object is a 

temporary sequence of observations that is described 

by a discreet function in time. The dependent

function of time is represented by a trace, or 

trajectory, for each object from its initial state to its 

current state in the space of features. 

     

Figure 2 shows trajectories of objects in a space of 

two-dimensional features. If the form of the 

trajectories is chosen as the criterion of similarity   

the trajectories then three clusters of objects can be 

distinguished ,A C , , , ,B D E G y ,F H . These 

three clusters are different to those that are 

recognized as static objects in an instant in time 6

Fig 2 Objects in the two-dimensional space of features 

If the form and orientation of the trajectories is 

chosen then as similarity approach the objects 

, , ,B D E G  they cannot be considered similar and 

they are divided in the following two groups 

,B D and ,E G . If the form and orientation of 

the trajectories are considered irrelevant but their 

closeness space is then a base for a similarity 

definition, four clusters they are recognized this 

way: ,A B , ,C D , ,E F and ,G H . 

     This example illustrated the method of classic   

recognition patterns in the environment dynamic, 

since it doesn't consider the temporary behavior of 

the system under consideration 6 . 

2.2.1 Similarity Measures Based on the 
Characteristics of Trajectories.  

    In the previous section we considered a criterion   

for the comparison between two trajectories. Two 

similarity types between trajectories are considered: 

1. Pointwise Similarity: the smaller Pointwise 

distance between two trajectories in feature 

space. The greater measure of similarity between 

two trajectories is a criterion. 

2. Structural Similarity: the best match of two 

trajectories in form, evolution, characteristics, 

and the greatest similarity between two 

trajectories is criterion.  

To determine the structural similarity structural   

relevant aspects of the behavior of the trajectories are 

specified depending on a concrete application based 

on physical properties of the trajectories (e.g. slope, 

curvature, smoothness, position and value of 

inflection points) these can be selected, and  are then 

used as comparison criteria.  
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    In such a way, the structural similarity is suited to a 

situation where we look at particular patterns in 

trajectories that should be well matched. 

2.2.2   Structural Similarity Based on Slope and 
Curvature Trajectories.  

    The curvature of the trajectories of each point 

describes the grade with the one which a trajectory is 

bent at this point. This is evaluated by the coefficient 

of the second derivative of a trajectory with regard to 

time in each point that can be defined by the 

following equation (for a one-dimensional trajectory).

k k
k k

x
cvk tk

(4)

Where kx  denotes the coefficient of the first 

derivative at point kx and given as:

´
  k=2,...,pk

k k

x
xk tk

(5 )

Substituting the previous equation in the equation of 

the curvature, you arrive at the following equation 

based on the values of the original trajectories as: 

( k k

x
x t( )     (6 )

    The distinctive characteristic when the curvature is 

considered is the sign of the coefficient of the second 

derivate. If the coefficient is positive in certain period 

of time, then the trajectory is convex in the interval 

(near to the end). If the coefficient is a negative in a

certain period of time, the trajectory is concave (near 

to the low point). If the coefficient is equal to zero at 

some point is call the inflection point, not bend is 

found in this point. 

    In a trajectory, they can be distinguished seven 

types of segments (tendencies), each one of those 

which this characterized by a constant sign in the first 

one and second derived. Such a triangular 

representation of tendencies provides characteristic 

qualitative for a description of the segments.  

    To derive quantitative information starting from 

the segments, these are described by the following 

group of parameters ( )t a ; ( )t b  they are the instants of 

initial and final time of the segment.  See figure 3a. 

3   Problem Solution 
    The key idea for the learning process is that the 

estimate process is divided in to two stages: the 

process of clustering of dynamic systems to estimate 

a group of dynamic systems and a refinement of 

parameters of the estimated dynamic systems.  

Fig 3 a) Clustering results of an oscillatory system and b) 

Eigenvalue in complex plane.

3.1 Clusters of Trajectories as Dynamic 
Systems (Dynamic Objects) 

    This is the first stage of the process under 

consideration; it consists in finding a set of dynamic 

systems, the number of dynamic systems and their 

parameters. A group of typical sequences is used (for 

example a subset of given training data) and the 

sequences have already been mapping in the space of 

internal states. The clustering technique estimates a 

group of dynamic systems; then an estimate is made

of the N  number of dynamic systems and an

approximation of the parameters i  of 

the dynamic system.    

    The second stage is a process of refinement of the 

parameters of the system based on the algorithm EM. 

The process is applied to the whole of the given 

training data, while the clustering process is applied 

to a select group of training data.

    

 It is assumed that a sequence of many 

variables 1 1,...,
T

Ty y y  is a typical training data. The

order of the transitions of the dynamic systems

be considered.  You can consider a single set of data 

of training without losing generality in this stage of 

the clustering.  

    A group of dynamic systems simultaneously can be 

identified 1 2
, ,..., ND D D  (for example the number 

of dynamic systems and their parameters 
1,..., Nw w   

for some interval groups I  (For example to segment 
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and to label the sequence) from the sample of 

training. 
1

Ty where the number of intervals K  is also 

ignored.  

We show how the behavior of any states variable in 

linear system can be decomposed into several modes 

of behavior, each characterized by an eigenvalue, that 

is, the time trajectory of state variable i can be

expressed as:

( )i i ij j in n i1 1( )x ( )i ( )

Where
,i jw  is a constant term representing the 

significance of mode j  to state variable i , ( )jm t is 

the value of the 
thj mode of behavior at time t ; and 

iu is a constant term. The modes of behavior of a

linear system are function of the eigenvalue of the 

jacobiana matrix that characteristic the system 

[Ogata, 1999].  Where ( )jm t  is a function of the 

form? 

jm =   

 Behavioral is picture in figure 1. 

3.2 System Identification Based an 
Eigenvalue. 

To identify the parameters with a small set of data 

training, one has to make restrictions in the 

eigenvalue to estimate desirable dynamic systems.   

This restriction is based on the dynamic stability; the 

key idea of estimating dynamic stability to give 

constraint in the eigenvalue. State of dynamics 

system change in a stable manner if all the 

eingenvalues are smaller that one 

    The identification of the system without 

restrictions is conditioned so that the temporary range 

,b e is represented by the lineal dynamic system iD . 

    The transition matrix 
( )iF  and the vector of bias 

( )ig of the sequence of internal states
( ) ( )

,...,
i i

b ex x are 

considered. This problem of estimate of parameters 

becomes a problem of minimization of prediction of 

errors.   

    This vector of error prediction can be determined 

by starting from equation (1) and estimating the 

matrix 
( )iF   and the vector of biases

( )ig . Their 

formulation is: 

t t t (7)

    So the sum of the norms of the squares of all the 

error vectors in the range ,b e becomes:  

2
2

t

(8)

    Finally the optimal values of 
( )iF and 

( )ig by the 

solution can be determined by solving the following 

problem of the least mean square.

(i) ( )

2e
(* ) (* )

F ,(i)

t=b+1

, arg  min min
(i) ( )

(* )) (*) (*(*

g
F (* )

,
)

(9)

    The identification system with restrictions in the 

eingenvalue of the transition matrix 
( )iF  is deduced 

from the estimated transition matrix and the estimated 

vector bias and has the following form:   

( )*

1 0

( )*

1 0

)*

)*

F ( )*)*

g ( )*)*
(10)

Where 
0m and 

1m   are the vectorial means of the 

columns in 
( )

0

iX and 
( )

1

iX respectively. The temporal 

interval ,b e is represented by a linear dynamic 

system iD . Thus we can estimate the transition matrix 

( )iF by the following equation:
2

( )*

0 1

( )*

lim

)*

F

)*

F ( )*)*

F ( )*)*
(11)

    Where I is the unit matrix, is a positive real 

value.  

    In the eigenvalues constraint, the limit is detained 

before
(i) (i)

1 0X X
(i)

1 converges to the pseudo-

inverse matrix of
( )

0

iX 1

theorem in linear algebra 4 , we can determine the 

upper bound of the eingenvalue in the matrix.  

Suppose 
( )

( , )

i
u vf is an element in row u and column 

v of the transition matrix
( )iF .  Then, the upper 

bound of the eingenvalue is determined 

by u
v

B . Therefore, we search for a
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nonzero value for ; which controls the scale of 

elements in the matrix
( )iF , which should satisfy the 

equation B via iterative numerical methods.

    For the evaluation, we used two simulated 

sequences of a physic problem as training data to 

verify the clustering method, because it will provide

new paper system identification   

The analysis of the cases: the worst case , the 

best case and the average 0.25 produce 

following result:  

With a data matrix for each dynamic system, the 

transition matrix is possible to estimate follow way:  

(1)X (1)

The analysis of the cases: the worst case , the 

best case and the average 0.25 produce 

following result: 

(1)X

(2)X (2)

In worst case:

(1)*F

1 *F

(2)*F

2 *F

In average case:

(1)*F

1 *F

(2)*F

2 *F

In best cases:

(1)*F

1 *F

(2)*F

2 *F

We begin by giving some result for locating and 

bounding the eigenvalues of a matrix 
( )iF  (see figure 

3 right side).  We give a picture in the complex plane 

of what the circles form a connected set S , not 

disjoint, then   S contains exactly n of the 

eigenvalues of
( )iF , counted according to their 

multiplicity as roots of the characteristic polynomial 

of
( )iF . 

4   Conclusion 
In this paper, we proposed a novel computational 

model, named clustering based on structural 

similarity to model dynamic systems and their 

structures. The temporal segmentation and system 

identification problem need be resolved 

simultaneously; we showed that the system can 

analyze dynamic features based on the timing 

structure extracted from temporal intervals. We 

applied the proposed model to describe dynamic 

to determine the appropriate number of dynamic 

systems, there are several well know criteria between 

find knee of the log-likelihood curve and an 

evaluation functions that consist in the log-likelihood 

scores and the numbers free of parameters. 
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