Capítulo LXVII

Factores que afectan la sobrevivencia post-natal de becerros productos de fecundación in vitro

Ramonundo González Fernández

La tecnología de producción in vitro de embriones (PIVE) adquiere cada día una mayor demanda comercial particularmente en las ganaderías cebúinas debido al mayor rendimiento en la producción de embriones, en relación con las razas lecheras. Sin embargo, a pesar de la amplia utilización de esta biotecnología, existen algunos problemas que superar como son una tasa ligeramente menor de preñez y una mayor incidencia de abortos, distocias y mortalidad peri-natal en relación con el uso de embriones in vitro (Hasler, 2000).

A nivel de laboratorio, los embriones son producidos de forma rutinaria después de haber cumplido las tres etapas sucesivas de manipulación del proceso de producción, que incluyen la maduración in vitro (MIV), de los ovocitos, capacitación espermiática y fecundación in vitro (IVF), de los ovocitos madurados y finalmente, el cultivo in vitro (IVC) de los ovocitos fecundados hasta alcanzar el estado de blastocisto.

Los procedimientos actuales utilizados para producir embriones in vitro requieren todavía de un considerable proceso de mejoramiento. El desarrollo de embriones in vitro está fuertemente influenciado por los eventos que ocurren durante la maduración (IVM), fecundación (IVF) y el subsiguiente desarrollo de los embriones (IVC).

MALFORMACIONES PERINATALES EN CRÍAS PRODUCTO DE FECUNDACIÓN IN VITRO

Es conocido, que la manipulación de embriones en condiciones ambientales, no fisiológicas, causan perturbaciones en el posterior desarrollo del conceptus (Jacobson et al., 2000; Rooske et al., 2007). Uno de estos trastornos comúnmente observado ha sido el síndrome del tórax grande (STG). Otras anomalías incluyen un periodo prolongado de gestación, incremento de abortos, distocias, nacimiento de tóneros débiles, con dificultades respiratorias, mayor incidencia de muertes perinatales y aumento del tamaño de ciertos órganos (corazón, hígado y riñones). También, se han observado alteraciones a nivel de la placenta como edema, hidrolaítamiento, coletaciones en un menor número y con un tamaño aumentado y una disminución del contactotero-mater.
nul. Algunas anomalías esqueléticas y la persistencia del uraco también han sido registrados en terneros producto de fecundación in vitro (Young et al., 1998; Farin et al., 2001; Costant et al., 2006).

Una alta incidencia de pérdidas tempranas fetales después de la transferencia de embriones PIVE ha sido reportada por muchos laboratorios. Se ha observado que la mayor causa de pérdidas fetales se presenta durante el primer trimestre de gestación (Hasler, 2000), lo cual ha sido atribuido a malformaciones con el desarrollo de la membrana alantoídea. Estas malformaciones de la membrana están asociadas a una insuficiencia placentaria, la cual sería una causa principal de las muertes fetales después de la transferencia de embriones (PIVE). Dichas pérdidas son consecuencia de un pobre suministro de nutrientes placentarios, así como de la inhabilidad de la membrana para remover los desechos tóxicos de nitrógeno que tienden a ocasionar la muerte embrionaria (Potter & McMillan, 1998).

INFLUENCIA DE SUPLEMENTOS EN EL MEDIO DE CULTIVO Y SU RELACIÓN CON ALTERACIONES CONGENITAS

Es importante considerar que las condiciones de cultivo determinan la morfología embrionaria y la expresión de los genes (Enright et al., 2000; Rico et al., 2002). Algunos estudios han demostrado que la adición del suero fetal bovino (FCS) al medio de cultivo in vitro podría incrementar la incidencia del STG. Un factor presente en el suero que pudiera estar relacionado con este problema es la concentración de somníaco. La suplementación de urea en la alimentación incrementó la concentración de somníaco en la sangre, la cual afectó el desarrollo de los embriones (McEvoy et al., 1997; Sinclair et al., 1998). La restricción del suero durante las primeras 72 horas de cultivo in vitro no se asoció con una disminución en la incidencia de abortos, distocias o problemas congénitos (Hasler, 2000).

En aparición, un bajo porcentaje de 2,5% de suero inactivado al medío de cultivo de los embriones mostró efecto sobre la incidencia de las alteraciones congénitas. Unas observaciones mostraron que los embriones PIVE cultivados en un medio químicamente definido (MQD), sin suero, tuvieron una elevada tasa de sobrevivencia, siendo superior después de la congelación (descongelación y luego cultivo) que la de los embriones cultivados en MQD con 10% de suero fetal, con medianas de 84.9 vs 60.2%, respectivamente (Barceló-Fimbres & Seidel, 2007). Algo similar se observa en embriones cultivados en medio suplementado con suero y Phena zinc Eithosulfate (PE5) o L-Carnitina (LC), sustancias que reducen la producción y acumulación de lipidos en los embriones PIVE (Ghanem et al., 2014). Embriones Brahman y Jersey PIVE mostraron un gran contenido de lipidos, lo que disminuye la sobrevivencia y la subseguente preñez después de la criopreservación comparada con embriones no congelados (Ballard et al., 2006; Pryor et al., 2007).

MANEJO Y CUIDADO DE LAS CRÍAS (PIVE)

Debido a la frecuente incidencia de gestaciones prolongadas en receptoras preñadas con embriones PIVE, es importante comenzar a monitorear la evolución del proceso de gestación, a partir de los siete meses de gestación. La duración del período
de gestación para novilladas receptoras mestizas (cebú × tauras lecheras) sería aproximadamente 282 días para embriones hechos y 292 días para embriones Brahman y Cyz (Slavena, 2000). Dos semanas antes de la fecha prevista del parto, las receptoras deben estar sometidas a una vigilancia más estrecha y en particular, durante las horas nocturnas. La inducción del parto utilizando la combinación de dexametasona-prostaglandina F2α estaría justificada, cuando para la fecha prevista del parto, no se observan signos clínicos evidentes de un próximo parto. El parto comúnmente tendría lugar entre 12-24h post-tratamiento.

Las crías producto de PIVIE, en general, resultan más débiles que las de transférese de embriones in vivo o de servicio natural. Es importante implementar la atención veterinaria para mejorar el acto de amamantamiento, completar la nutrición inicial con el suministro de dos litros de calostro (previamente congelado) durante las tres horas de nacimiento, así como la hidratación de las crías que muestran señales marca das de desnutrición al nacimiento. Igualmente, no se debe olvidar la práctica de cura- taje del ombligo con solución de yodo (7%), dedicando una mayor atención a aquellos terneros que nacen con la anomalía congénita del engrosamiento del cordón umbilical y persistencia del cordón. Otra recomendación para reforzar indiscutiblemente la inmunidad de las crías, sería vacunar a las receptoras 1-2 meses antes del parto, especialmente contra enfermedades virales como 18R, DVB, causantes de enfermedades respiratorias y diarreas en los recién nacidos.

CONCLUSIONES

A pesar de los problemas asociados con las alteraciones perinatales en las crías producto de PIVIE, esta tecnología continúa desarrollándose en pro del mejoramiento ganadero al utilizar con más eficiencia el potencial genético y reproductivo de las donadoras élite y el uso de semen proveniente de toros superiores para la fecundación in vivo. De igual manera, se continúan realizando amplias investigaciones con el fin de perfeccionar la técnica de producción de embriones, utilizando medios de cultivo óptimos.

REFERENCIAS BIBLIOGRÁFICAS

Slavena GA. 2000. Preñez y tablas de Gestación. Curso de Producción Bovina de Carne, FAV UNRC.

