New representations of focal curves in the special ϕ–Ricci Symmetric Para-Sasakian Manifold \mathbb{P}

Talat Körpinar and Essin Turhan

Abstract

In this paper, we study matrix representations of focal curves in terms of biharmonic curves in the special three-dimensional ϕ–Ricci symmetric para-Sasakian manifold \mathbb{P}. We construct new parametric equations of focal curves in terms of matrix representations in the special three-dimensional ϕ–Ricci symmetric para-Sasakian manifold \mathbb{P}.

key words. Focal curve, Biharmonic curve, Matrices, Para-Sasakian manifold.

1 Introduction

A smooth map $\phi : N \longrightarrow M$ is said to be biharmonic if it is a critical point of the bienergy functional:

$$E_2(\phi) = \int_N \frac{1}{2} |T(\phi)|^2 \, dv_h,$$

where $T(\phi) := \text{tr} \nabla \phi d\phi$ is the tension field of ϕ.

The Euler–Lagrange equation of the bienergy is given by $T_2(\phi) = 0$. Here the section $T_2(\phi)$ is defined by

$$T_2(\phi) = -\Delta_\phi T(\phi) + \text{tr} R(T(\phi), d\phi) \, d\phi,$$

and called the bitension field of ϕ. Non-harmonic biharmonic maps are called proper biharmonic maps.

In this paper, we study matrix representations of focal curves in terms of biharmonic curves in the special three-dimensional ϕ–Ricci symmetric para-Sasakian manifold \mathbb{P}. We construct new parametric equations of focal curves in terms of matrix representations in the special three-dimensional ϕ–Ricci symmetric para-Sasakian manifold \mathbb{P}.
2 Special Three-Dimensional ϕ–Ricci Symmetric Para-Sasakian Manifold \mathbb{P}

An n-dimensional differentiable manifold M is said to admit an almost para-contact Riemannian structure (ϕ, ξ, η, g), where ϕ is a $(1,1)$ tensor field, ξ is a vector field, η is a 1-form and g is a Riemannian metric on M such that

$$\phi \xi = 0, \quad \eta (\xi) = 1, \quad g (X, \xi) = \eta (X), \quad (2.1)$$

$$\phi^2 (X) = X - \eta (X) \xi, \quad (2.2)$$

$$g (\phi X, \phi Y) = g (X, Y) - \eta (X) \eta (Y), \quad (2.3)$$

for any vector fields X, Y on M, [2].

Definition 2.1. A para-Sasakian manifold M is said to be locally ϕ-symmetric if

$$\phi^2 (\nabla_W R) (X, Y) Z = 0,$$

for all vector fields X, Y, Z, W orthogonal to ξ [2].

Definition 2.2. A para-Sasakian manifold M is said to be ϕ-symmetric if

$$\phi^2 (\nabla_W R) (X, Y) Z = 0,$$

for all vector fields X, Y, Z, W on M.

Definition 2.3. A para-Sasakian manifold M is said to be ϕ-Ricci symmetric if the Ricci operator satisfies

$$\phi^2 (\nabla_X Q) (Y) = 0,$$

for all vector fields X and Y on M and $S(X, Y) = g(QX, Y)$.

If X, Y are orthogonal to ξ, then the manifold is said to be locally ϕ-Ricci symmetric.

We consider the three-dimensional manifold

$$\mathbb{P} = \{ (x^1, x^2, x^3) \in \mathbb{R}^3 : (x^1, x^2, x^3) \neq (0, 0, 0) \}.$$
where \((x^1, x^2, x^3)\) are the standard coordinates in \(\mathbb{R}^3\). We choose the vector fields
\[
e_1 = e^{x^1} \frac{\partial}{\partial x^2}, \quad e_2 = e^{x^1} \left(\frac{\partial}{\partial x^2} - \frac{\partial}{\partial x^3} \right), \quad e_3 = -\frac{\partial}{\partial x^1}
\]
are linearly independent at each point of \(\mathbb{P}\). Let \(g\) be the Riemannian metric defined by
\[
\begin{align*}
g(e_1, e_1) &= g(e_2, e_2) = g(e_3, e_3) = 1, \\
g(e_1, e_2) &= g(e_2, e_3) = g(e_1, e_3) = 0.
\end{align*}
\]

Let \(\eta\) be the 1-form defined by
\[
\eta(Z) = g(Z, e_3) \text{ for any } Z \in \chi(\mathbb{P}).
\]

Let be the (1,1) tensor field defined by
\[
\phi(e_1) = e_2, \quad \phi(e_2) = e_1, \quad \phi(e_3) = 0.
\]

Then using the linearity of and \(g\) we have
\[
\eta(e_3) = 1,
\]
\[
\phi^2(Z) = Z - \eta(Z)e_3,
\]
\[
g(\phi Z, \phi W) = g(Z, W) - \eta(Z)\eta(W),
\]
for any \(Z, W \in \chi(\mathbb{P})\). Thus for \(e_3 = \xi\), \((\phi, \xi, \eta, g)\) defines an almost para-contact metric structure on \(\mathbb{P}\).

Let \(\nabla\) be the Levi-Civita connection with respect to \(g\). Then, we have
\[
[e_1, e_2] = 0, \quad [e_1, e_3] = e_1, \quad [e_2, e_3] = e_2.
\]
3 Matrix Representation of Focal Curves in the Special Three-Dimensional ϕ–Ricci Symmetric Para-Sasakian Manifold \mathbb{P}

For a unit speed curve γ, the curve consisting of the centers of the osculating spheres of γ is called the parametrized focal curve of γ. The hyperplanes normal to γ at a point consist of the set of centers of all spheres tangent to γ at that point. Hence the center of the osculating spheres at that point lies in such a normal plane. Therefore, denoting the focal curve by C_γ, we can write

$$C_\gamma(s) = (\gamma + c_1 N + c_2 B)(s),$$

where the coefficients c_1, c_2 are smooth functions of the parameter of the curve γ, called the first and second focal curvatures of γ, respectively. Further, the focal curvatures c_1, c_2 are defined by

$$c_1 = \frac{1}{\kappa}, \quad c_2 = \frac{c_1'}{\tau}, \quad \kappa \neq 0, \quad \tau \neq 0.$$ \hspace{1cm} (3.2)

Lemma 3.1. Let $\gamma : I \rightarrow \mathbb{P}$ be a unit speed biharmonic curve and C_γ its focal curve on \mathbb{P}. Then,

$$c_1 = \frac{1}{\kappa} = \text{constant and } c_2 = 0.$$ \hspace{1cm} (3.3)

Proof. Using (2.3) and (3.2), we get (3.3).

Lemma 3.2. Let $\gamma : I \rightarrow \mathbb{P}$ be a unit speed biharmonic curve and C_γ its focal curve on \mathbb{P}. Then,

$$C_\gamma(s) = (\gamma + c_1 N)(s).$$ \hspace{1cm} (3.4)

Theorem 3.3. (see [13]) Let $\gamma : I \rightarrow \mathbb{P}$ be a non-geodesic biharmonic curve in the special three-dimensional ϕ–Ricci symmetric para-Sasakian manifold \mathbb{P}. Then,

$$A_\gamma = \sqrt{-\text{trace} (A^2)} (-\cos \varphi, \sin \varphi e^{-s \cos \varphi + C_1} (\sin [ks + C] + \cos [ks + C]),$$

$$\sin \varphi e^{-s \cos \varphi + C_1} \sin [ks + C]),$$

$$A^2_\gamma = \left(\frac{\sqrt{-\text{trace}(A^4)}}{2} \cdot \begin{align*}
\sin^2 \varphi s^2 + C_1 s + C_2, \\
e^{-\sin^2 \varphi s^2 + C_1 s + C_2} (k \sin \varphi \sin [ks + C] + \cos \varphi \sin \varphi \cos [ks + C]), \\
+ e^{-\sin^2 \varphi s^2 + C_1 s + C_2} (k \sin \varphi \cos [ks + C] + \cos \varphi \sin \varphi \sin [ks + C]), \\
- e^{-\sin^2 \varphi s^2 + C_1 s + C_2} (-k \sin \varphi \cos [ks + C] + \cos \varphi \sin \varphi \sin [ks + C])).
\end{align*}\right)$$ \hspace{1cm} (3.5)
where C, C_1, C_2 are constants of integration and $k = \frac{\sqrt{\kappa^2 - \sin^2 \varphi}}{\sin \varphi}$.

Now, let us define a special form of focal curve.

Lemma 3.4. Let $\gamma : I \rightarrow \mathbb{P}$ be a regular curve in the special three-dimensional ϕ–Ricci symmetric para-Sasakian manifold \mathbb{P}. Then,

$$C_{\gamma}(s) = \gamma(s) + c_1 \frac{A^2 \gamma}{\sqrt{\text{trace}(A^4)}}. \quad (3.6)$$

Proof. Using Theorem 3.3, we immediately obtain

$$N = \left(\frac{\sqrt{\text{trace}(A^4)}}{\text{trace}(A^4)} \right)^{-1} A^2 \gamma.$$

According to the definition of focal curve we have (3.6).

Theorem 3.5. (see [13]) Let $\gamma : I \rightarrow \mathbb{P}$ be a non-geodesic biharmonic curve in the special three-dimensional ϕ–Ricci symmetric para-Sasakian manifold \mathbb{P}. Then the new curvatures of this curve are

$$\kappa = -\frac{\sqrt{\text{trace}(A^4)}}{\text{trace}(A^2)}, \quad (3.7)$$

$$\tau = \Re\left[\frac{-\text{trace}(A^6)}{\left(\sqrt{-\text{trace}(A^4)}\right)^4 \text{trace}(A^4)} - \frac{(\text{trace}(A^4))^{\frac{3}{2}}}{\left(\sqrt{-\text{trace}(A^4)}\right)^6} \right],$$

where $\Re = \left[\frac{\text{trace}(A^6)}{\left(\sqrt{-\text{trace}(A^4)}\right)^4 \sqrt{-\text{trace}(A^4)}} - \frac{(\text{trace}(A^4))^{\frac{3}{2}}}{\left(\sqrt{-\text{trace}(A^4)}\right)^6} \right]^{-\frac{1}{2}}$.

Using above Lemma and Theorem we have following result:

Theorem 3.6. Let $\gamma : I \rightarrow \mathbb{P}$ be a biharmonic curve parametrized by arc length. If C_γ is a focal curve of γ, then the parametric equations of C_γ are
\[
\begin{align*}
\tilde{x}^1(s) &= -\left(\frac{\text{trace}(A^2)}{\text{trace}(A^4)}\right)^2 \left(\frac{-\sin^2 \varphi}{2} s^2 + \overline{C}_1 s + \overline{C}_2\right) - \cos \varphi s + C_1, \\
\tilde{x}^2(s) &= -\left(\frac{\text{trace}(A^2)}{\text{trace}(A^4)}\right)^2 \frac{\sin^3 \varphi}{e^{-s \cos \varphi + C_1}} \left(\Pi \cos [\Pi s + C] + [-\Pi + \cos \varphi] \sin [\Pi s + C]\right) \\
&\quad - \left(\frac{\text{trace}(A^2)}{\text{trace}(A^4)}\right)^2 \frac{\sin^2 \varphi}{e^{s \cos \varphi} + \overline{C}_1 s + \overline{C}_2} \left(\Pi \sin \varphi \sin [\Pi s + C] + \cos \varphi \sin \varphi \cos [\Pi s + C]\right) + C_2, \\
\tilde{x}^3(s) &= -\left(\frac{\text{trace}(A^2)}{\text{trace}(A^4)}\right)^2 \frac{\sin^3 \varphi}{e^{-s \cos \varphi + C_1}} \left(\cos \varphi \cos [\Pi s + C] + \sin [\Pi s + C]\right) + C_3,
\end{align*}
\]

where \(C, \overline{C}_1, \overline{C}_2, C_1, C_2, C_3 \) are constants of integration and \(\Pi = \left[\frac{\sqrt{\text{trace}(A^4) - (\text{trace}(A^2))^2 \sin^2 \varphi}}{\text{trace}(A^2) \sin \varphi}\right] \).

Proof. Assume that \(\gamma \) be a spacelike biharmonic curve and \(C_\gamma \) its focal curve on \(\mathbb{P} \). Substituting equation (3.5) into Lemma 3.4, and by using the Mathematica program we have above system. This completes the proof of the theorem.

References

New representations of focal curves in the special ϕ–Ricci Symmetric Para-Sasakian Manifold P

Talat Körpinar1, Essin Turhan
Fırat University, Department of Mathematics
23119, Elazığ, TURKEY
e-mail: talatkorpinar@gmail.com, essin.turhan@gmail.com