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Abstract

In this paper, we study inextensible flows of curves in E3. We research inextensible flows
of curves according to Bishop frame in E3.
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1 Introduction

One of the oldest topics in the calculus of variations is the study of the elastic rod which, according

to Daniel Bernoulli’s idealization, minimizes total squared curvature among curves of the same

length and first order boundary data. The classical term elastica refers to a curve in the plane

or R3 which represents such a rod in equilibrium.

On the other hand, physically, inextensible curve and surface flows give rise to motions in

which no strain energy is induced. The swinging motion of a cord of fixed length, for example,

or of a piece of paper carried by the wind, can be described by inextensible curve and surface

flows. Such motions arise quite naturally in a wide range of physical applications. For example,

both Chirikjian and Burdick [4] and Mochiyama et al. [12] study the shape control of hyper-

redundant, or snake-like, robots. Inextensible curve and surface flows also arise in the context of

many problems in computer vision [11] and computer animation [5].

There have been numerous studies in the literature on plane curve flows, particularly on

evolving curves in the direction of their curvature vector field (referred to by various names such

as “curve shortening”, “flow by curvature”, and “heat flow”). Particularly relevant to this article

are the methods developed by Gage and Hamilton [7] and Grayson [8] for studying the shrinking
37
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of closed plane curves to a circle via the heat equation. In [6] Gage also studies area-preserving

evolutions of plane curves.

In this paper, we study inextensible flows of curves in E3. We research inextensible flows of

curves according to Bishop frame in E3. Necessary and sufficient conditions for an inelastic curve

flow are expressed as a partial differential equation involving the curvature.

2 Preliminaries

The Bishop frame or parallel transport frame is an alternative approach to defining a moving

frame that is well defined even when the curve has vanishing second derivative. We can parallel

transport an orthonormal frame along a curve simply by parallel transporting each component

of the frame. The Euclidean 3-space E3 provided with the standard flat metric given by

〈, 〉 = dx2
1 + dx2

2 + dx2
3,

where (x1, x2, x3) is a rectangular coordinate system of E3. Recall that, the norm of an arbitrary

vector a ∈ E3 is given by ‖a‖ =
√
〈a, a〉. γ is called a unit speed curve if velocity vector v of γ

satisfies ‖a‖ = 1.

Denote by {T,N,B} the moving Frenet–Serret frame along the curve γ in the space E3. For

an arbitrary curve γ with first and second curvature, κ and τ in the space E3, the following

Frenet–Serret formulae is given

T′ = κN

N′ = −κT + τB

B′ = −τN,

where

〈T,T〉 = 〈N,N〉 = 〈B,B〉 = 1,

〈T,N〉 = 〈T,B〉 = 〈N,B〉 = 0.

Here, curvature functions are defined by κ = κ(s) = ‖T′(s)‖ and τ(s) = −〈N,B′〉.
Torsion of the curve γ is given by the aid of the mixed product

τ =
[γ′, γ′′, γ′′′]

κ2
.
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In the rest of the paper, we suppose everywhere κ 6= 0 and τ 6= 0.

The Bishop frame or parallel transport frame is an alternative approach to defining a moving

frame that is well defined even when the curve has vanishing second derivative. One can express

parallel transport of an orthonormal frame along a curve simply by parallel transporting each

component of the frame. The tangent vector and any convenient arbitrary basis for the remainder

of the frame are used. The Bishop frame is expressed as

T′ = k1M1 + k2M2,
M′

1 = −k1T,
M′

2 = −k2T.

(2.1)

Here, we shall call the set {T,M1,M1} as Bishop trihedra and k1 and k2 as Bishop curvatures.

The relation matrix may be expressed as

T= T,

N = cos θ (s)M1 + sin θ (s)M2,

B = − sin θ (s)M1 + cos θ (s)M2,

where θ (s) = arctan k2
k1
, τ(s) = θ′ (s) and κ(s) =

√
k2

1 + k2
2. Here, Bishop curvatures are defined

by

k1 = κ(s) cos θ (s) ,

k2 = κ(s) sin θ (s) .

On the other hand,

T = T,

M1 = cos θ (s)N− sin θ (s)B,

M2 = sin θ (s)N + cos θ (s)B.

3 Inextensible Flows of Curves According to Bishop Frame in E3

Throughout this article, we assume that z : [0, l]× [0, ω] → E3 is a one parameter family of

smooth curves in Euclidean space E3, where l is the arclength of the initial curve. Let u be the

curve parametrization variable, 0 ≤ u ≤ l.
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The arclength of z is given by

s(u) =u
0

∣∣∣∣
∂z
∂u

∣∣∣∣ du, (3.1)

where

∣∣∣∣
∂z
∂u

∣∣∣∣ =
∣∣∣∣
〈

∂z
∂u

,
∂z
∂u

〉∣∣∣∣

1
2 . (3.2)

The operator
∂

∂s
is given in terms of u by

∂

∂s
=

1
ν

∂

∂u
,

where v =
∣∣∣∣
∂z
∂u

∣∣∣∣ .The arclength parameter is ds = vdu.

Any flow of z can be represented as

∂z
∂u

= fT + gN + hB. (3.3)

Letting the arclength variation be

s(u, t) =u
0 vdu.

In the Euclidean space the requirement that the curve not be subject to any elongation or

compression can be expressed by the condition

∂

∂t
s(u, t) =u

0

∂v

∂t
du = 0, (3.4)

for all u ∈ [0, l] .

Definition 3.1. A curve evolution z(u, t) and its flow
∂z
∂t

in E3 are said to be inextensible

if

∂

∂t

∣∣∣∣
∂z
∂u

∣∣∣∣ = 0.

Lemma 3.2. Let
∂z
∂u

= fT + gM1 + hM2 be a smooth flow of the curve z. The flow is

inextensible if and only if

∂v

∂t
=

(
∂f

∂u
− gvk1 − hvk2

)
. (3.5)
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Proof. Suppose that
∂z
∂u

be a smooth flow of the curve z. Using definition of z, we have

v2 =
〈

∂z
∂u

,
∂z
∂u

〉
. (3.6)

∂

∂u
and

∂

∂t
commute since and are independent coordinates. So, by differentiating of the

formula (3.6), we get

2v
∂v

∂t
=

∂

∂t

〈
∂z
∂t

,
∂z
∂t

〉
.

On the other hand, changing
∂

∂u
and

∂

∂t
, we have

v
∂v

∂t
=

〈
∂z
∂u

,
∂

∂u
(
∂z
∂u

)
〉

.

From (3.3), we obtain

v
∂v

∂t
=

〈
∂z
∂u

,
∂

∂u
(fT + gM1 + hM2)

〉
.

By the formula of the Bishop, we have

∂v

∂t
=

〈
T,

(
∂z
∂u

− gvk1 − hvk2

)
T +

(
vk1f +

∂g

∂u

)
M1 +

(
vk2f +

∂h

∂u

)
M2

〉
.

Making necessary calculations from above equation, we have (3.5), which proves the lemma.

Theorem 3.3. Let
∂z
∂u

= fT + gM1 + hM2 be a smooth flow of the curve z. The flow is

inextensible if and only if

∂f

∂s
= gk1 + hk2. (3.7)

Proof. Now let
∂z
∂u

be extensible. From (3.4), we have

∂

∂t
s(u, t) =u

0

∂v

∂t
du =u

0

(
∂f

∂u
− gvk1 − hvk2

)
du = 0, (3.8)

∀u ∈ [0, l] . Substituting (3.5) in (3.8) complete the proof of the theorem.

We now restrict ourselves to arc length parametrized curves. That is, v = 1 and the local

coordinate u corresponds to the curve arc length s. We require the following lemma.
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Lemma 3.4.

∂T
∂t

=
(

fk1 +
∂g

∂s

)
M1 +

(
fk2 +

∂h

∂s

)
M2, (3.9)

∂M1

∂t
= −

(
fk1 +

∂g

∂s

)
T + ψM2, (3.10)

∂M2

∂t
= −

(
fk2 +

∂h

∂s

)
T− ψM1, (3.11)

where ψ =
〈

∂M1

∂t
,M2

〉
.

Proof. Using definition of z, we have

∂T
∂t

=
∂

∂t

∂z
∂s

=
∂

∂s
(fT + gM1 + hM2).

Using the Bishop equations, we have

∂T
∂t

=
(

∂f

∂s
− k1g − hk2

)
T +

(
k1f +

∂g

∂s

)
M1 +

(
k2f +

∂h

∂s

)
M2. (3.12)

Substituting (3.7) in (3.12), we get

∂T
∂t

=
(

fk1 +
∂g

∂s

)
M1 +

(
fk2 +

∂h

∂s

)
M2.

Now differentiate the Bishop frame by t :

0 =
∂

∂t
〈T,M1〉 =

〈
∂T
∂t

,M1

〉
+

〈
T,

∂M1

∂t

〉
= fk1 +

∂g

∂s
+

〈
T,

∂M1

∂t

〉
,

0 =
∂

∂t
〈T,M2〉 =

〈
∂T
∂t

,M2

〉
+

〈
T,

∂M2

∂t

〉
= fk2 +

∂h

∂s
+

〈
T,

∂M2

∂t

〉
,

0 =
∂

∂t
〈M1,M2〉 =

〈
∂M1

∂t
,M2

〉
+

〈
M1,

∂M2

∂t

〉
= ψ +

〈
M1,

∂M2

∂t

〉
.

From the above and using
〈

∂M1

∂t
,M1

〉
=

〈
∂M2

∂t
,M2

〉
= 0, we obtain

∂M1

∂t
= −

(
fk1 +

∂g

∂s

)
T + ψM2,

∂M2

∂t
= −

(
fk2 +

∂h

∂s

)
T− ψM1,
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where ψ =
〈

∂M1

∂t
,M2

〉
.

The following theorem states the conditions on the curvature and torsion for the curve flow

z(s, t) to be inextensible.

Theorem 3.5. Suppose the curve
∂z
∂u

= fT + gM1 + hM2 is inextensible. Then, the

following system of partial differential equations holds:

∂k2

∂t
=

(
∂

∂s
(fk2) +

∂2h

∂s2

)
+ ψk1. (3.13)

Proof. Using (3.9), we have

∂

∂s

∂T
∂t

=
∂

∂s

[(
fk1 +

∂g

∂s

)
M1 +

(
fk2 +

∂h

∂s

)
M2

]

=
(

∂

∂s
(fk1) +

∂2g

∂s2

)
M1 +

(
fk1 +

∂g

∂s

)
(−k1T)

+
(

∂

∂s
(fk2) +

∂2h

∂s2

)
M2 +

(
fk2 +

∂h

∂s

)
(−k2T) .

On the other hand, from Bishop frame we have

∂

∂s

∂T
∂t

=
∂

∂t
(k1M1 + k2M2)

=
∂k1

∂t
M1 +

(
−

(
fk1 +

∂g

∂s

)
T + ψM2

)
+

∂k1

∂t
M2

+k2

(
−

(
fk2 +

∂h

∂s

)
T− ψM1

)
.

Similarly, we have

∂

∂s

∂M2

∂t
=

∂

∂s

[
−

(
fk2 +

∂h

∂s

)
T− ψM1

]

=
(
− ∂

∂s
(fk2)− ∂2h

∂s2
− ψk1

)
T− k1

(
fk2 +

∂h

∂s
− ∂ψ

∂s

)
M1 + k2

(
fk2 +

∂h

∂s

)
M2,

∂

∂t

∂M2

∂s
=

∂

∂t
(−k2T)

= −∂k2

∂t
T− k2

[(
fk1 +

∂g

∂s

)
M1 +

(
fk2 +

∂h

∂s

)
M2

]
.

Thus, we have (3.13).
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