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Abstract

In this paper, we prove a Weierstrass representation formula for simply connected im-

mersed maximal surfaces in E(2). Using the Weierstrass representation we also give a simple

proof of the fact that maximal immersions is harmonic maps on the domain.
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1 Introduction

Analytic methods to study surfaces and their properties are of great interest both in mathematics

and in physics. A classical example of such an approach is given by the Weierstrass representation

for minimal surfaces [7]. This representation allows us to construct any minimal surface in the

three-dimensional Euclidean space R
3 via two holomorphic functions. It is the most powerful tool

for the analysis of minimal surfaces.

Weierstrass representations are very useful and suitable tools for the systematic study of min-

imal surfaces immersed in n-dimensional spaces [12]. This subject has a long and rich history.

It has been extensively investigated since the initial works of Weierstrass [19]. In the literature

there exists a great number of applications of the Weierstrass representation to various domains

of Mathematics, Physics, Chemistry and Biology. In particular in such areas as quantum field

theory [8], statistical physics [14], chemical physics, fluid dynamics and membranes [16], minimal

surfaces play an essential role. More recently it is worth mentioning that works by Kenmotsu

[10], Hoffmann [9], Osserman [15], Budinich [5], Konopelchenko [6,11] and Bobenko [3, 4] have

made very significant contributions to constructing minimal surfaces in a systematic way and
7
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to understanding their intrinsic geometric properties as well as their integrable dynamics. The

type of extension of the Weierstrass representation which has been useful in three-dimensional

applications to multidimensional spaces will continue to generate many additional applications

to physics and mathematics. According to [13] integrable deformations of surfaces are generated

by the Davey–Stewartson hierarchy of 2+1 dimensional soliton equations. These deformations

of surfaces inherit all the remarkable properties of soliton equations. Geometrically such defor-

mations are characterised by the invariance of an infinite set of functionals over surfaces, the

simplest being the Willmore functional.

D. A. Berdinski and I. A. Taimanov gave a representation formula for minimal surfaces in

3-dimensional Lie groups in terms of spinors and Dirac operators [1].

In this paper, we prove a Weierstrass representation formula for simply connected immersed

maximal surfaces in E(2). Using the Weierstrass representation we also give a simple proof of

the fact that maximal immersions is harmonic maps on the domain. Furthermore, we show that

any harmonic map of a simply connected coordinate region into E(2) can be represented a form.

2 The Group of Rigid Motions E(2)

Let E(2) be the group of rigid motions of Euclidean 2-space. This consists of all matrices of the

form




cosx1 − sinx1 x2

sinx1 cos x1 x3

0 0 1



 .

Topologically, E(2) is diffeomorphic to S
1 × R

2 under the map

E(2) −→ S
1 × R

2 :





cos[x1] − sin[x1] x2

sin[x1] cos[x1] x3

0 0 1



 −→ ([x1] , x2, x3) ,

where [x1] means x modulo 2πz. It’s Lie algebra has a basis consisting of

e1 =
∂

∂x1

, e2 = cos x1

∂

∂x2

+ sinx1

∂

∂x3

, e3 = − sinx1

∂

∂x2

+ cos x1

∂

∂x3

, (2.1)

and coframe

θ1 = dx1, θ
2 = cos x1dx2 + sinx1dx3, θ

3 = − sinx1dx2 + cos x1dx3.



Weierstrass representation formula in the group of rigid motions E(2) 9

It is easy to check that the metric g is given by

g =
(

θ1
)2

+
(

θ2
)2

−
(

θ3
)2
. (2.2)

The bracket relations are

[e1, e2] = e3, [e2, e3] = 0, [e3, e1] = e2.

Proposition 2.1. For the covariant derivatives of the Levi-Civita connection of the left-

invariant metric g, defined above the following is true:

∇ =





0 0 0

−e3 0 −e1

e2 −e1 0



 , (2.3)

where the (i, j)-element in the table above equals ∇ei
ej for our basis

{ek, k = 1, 2, 3} = {e1, e2, e3}.

Then, we write the Kozul formula for the Levi–Civita connection is:

2g(∇ei
ej , ek) = Lk

ij .

From (2.3), we get

L3

21 = 2, L1

23 = −2, L3

12 = 2, L2

31 = 2, L1

32 = −2 (2.4)

3 Weierstrass Representation Formula in E(2)

Σ ⊂ E(2) be a spacelike surface and ℘ : Σ −→ E(2) a smooth map. The pull-back bundle

℘∗(TE(2)) has a metric and compatible connection, the pull-back connection, induced by he

Riemannian metric and the Levi–Civita connection of E(2). Consider the complexified bundle

E =℘∗(TE(2)) ⊗ C.

Let (u, v) be local coordinates on Σ, and z = u + iv the (local) complex parameter and set,

as usual,

∂

∂z
=

1

2

(

∂

∂u
− i

∂

∂v

)

,
∂

∂z
=

1

2

(

∂

∂u
+ i

∂

∂v

)

. (3.1)
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Let

∂℘

∂u
|p= ℘∗p

(

∂

∂u
|p

)

,
∂℘

∂v
|p= ℘∗p

(

∂

∂v
|p

)

, (3.2)

and

φ = ℘z =
∂℘

∂z
=

1

2

(

∂℘

∂u
− i

∂℘

∂v

)

. (3.3)

Let now ℘ : Σ −→ E(2) be a conformal immersion and z = u+iv a local conformal parameter.

Then, the induced metric is

ds2 = λ2(du2 − dv2) = λ2|dz|2, (3.4)

and the Beltrami–Laplace operator on E(2), with respect to the induced metric, is given by

∆ = λ−2(
∂

∂u

∂

∂u
+

∂

∂v

∂

∂v
). (3.5)

We recall that a map ℘ : Σ −→ E(2) is harmonic if its tension field

τ(℘) = trace∇d℘ = 0. (3.6)

Let {x1, x2, x3} be a system of local coordinates in a neighborhood U of M such that U ∩

℘(Σ) 6= ∅. Then, in an open set G ⊂ Σ

φ =
3
∑

j=1

φj

∂

∂xj

, (3.7)

for some complex-valued functions φj defined on G. With respect to the local decomposition of

φ, the tension field can be written as

τ(ζ) =
∑

i







∆℘i + 4λ−2

n
∑

j,k=1

Γi
jk

∂℘j

∂z

∂℘k

∂z







∂

∂xi

, (3.8)

where Γi
jk are the Christoffel symbols of E(2).

From (3.3), we have

τ(℘) = 4λ−2
∑

i







∂φi

∂z
+

n
∑

j,k=1

Γi
jkφjφk







∂

∂xi

.
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The section φ is holomorphic if and only if

∇ ∂
∂z

(

3
∑

i=1

φi

∂

∂xi

)

=
∑

i

{

∂φi

∂z

∂

∂xi

+ φi∇ ∂ζ
∂z

∂

∂xi

}

.

Using (3.3), we get

∇ ∂
∂z

(

3
∑

i=1

φi

∂

∂xi

)

=
∑

i

{

∂φi

∂z

∂

∂xi

+ φi∇∑
j φj

∂
∂xj

∂

∂xi

}

.

Making necessary calculations, we obtain

∇ ∂
∂z

(

3
∑

i=1

φi

∂

∂xi

)

=
∑

i







∂φi

∂z
+
∑

j,k

Γi
jkφjφk







∂

∂xi

= 0.

Thus, φ is holomorphic if and only if

∂φi

∂z
+
∑

j,k

Γi
jkφjφk = 0, i = 1, 2, 3. (3.9)

Theorem 3.1. (Weierstrass representation) Let E(2) be the group of rigid motions of Eu-

clidean 2-space and {x1, x2, x3} local coordinates. Let φj, j = 1, 2, 3 be complex-valued functions

in an open simply connected domain G ⊂ C which are solutions of (3.9). Then, the map

℘j(u, v) = 2Re

(∫ z

z0

φjdz

)

(3.10)

is well defined and defines a maximal conformal immersion if and only if the following conditions

are satisfied :

3
∑

j,k=1

gijφjφk 6= 0 and
3
∑

j,k=1

gijφjφk = 0 .

Let us expand Υ with respect to this basis to obtain

Υ =

3
∑

k=1

ψkek . (3.11)

Setting

φ =
∑

i

φi

∂

∂xi

=
∑

i

ψiei, (3.12)
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for some complex functions φi, ψi : G ⊂ C. Moreover, there exists an invertible matrix A = (Aij),

with function entries Aij : ℘(G) ∩ U → R, i, j = 1, 2, 3, such that

φi =
∑

j

Aijψj. (3.13)

Using the expression of φ, the section φ is holomorphic if and only if

∂ψi

∂z
+

1

2

∑

j,k

Li
jkψjψk = 0, i = 1, 2, 3. (3.14)

Theorem 3.2. Let ψj , j = 1, 2, 3, be complex-valued functions defined in a open simply

connected set G ⊂ C, such that the following conditions are satisfied :

i. |ψ1|
2 + |ψ2|

2 − |ψ3|
2 6= 0,

ii. ψ2
1

+ ψ2
2
− ψ2

3
= 0,

iii. ψj are solutions of (3.21).

Then, the map ℘ : G→ E(2) defined by

℘i(u, v) = 2Re





∫ z

z0

∑

j

Aijψjdz



 (3.15)

is a conformal maximal immersion.

Proof. By theorem 3.1 we see that ℘ is a harmonic map if and only if ℘ satisfy (3.15). Then,

the map ℘ is a conformal maximal immersion.

Since the parameter z is conformal, we have

〈Υ,Υ〉 = 0, (3.16)

which is rewritten as

ψ2

1 + ψ2

2 − ψ2

2 = 0. (3.17)

Case I
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From (3.17), we have

(ψ1 − iψ2)(ψ1 + iψ2) = ψ2

3, (3.18)

which suggests the definition of two new complex functions

Ω :=

√

1

2
(ψ1 − iψ2), Φ :=

√

1

2
(ψ1 + iψ2). (3.19)

The functions Ω and Φ are single-valued complex functions which, for suitably chosen square

roots, satisfy

ψ1 = Ω2 + Φ2,

ψ2 = i
(

Ω2 − Φ2
)

, (3.20)

ψ3 = 2ΩΦ.

Lemma 3.3. If Υ satisfies the equation (3.14), then

ΩΩz̄ − ΦΦz̄ = −i
(

Ω̄Φ − ΩΦ̄
)

(|Ω| − |Φ|) , (3.21)

ΩΩz̄ + ΦΦz̄ = |Φ| Ω̄Φ − |Ω|ΩΦ̄, (3.22)

Ωz̄Φ + ΩΦz̄ =
i

2

(

|Ω|2 + Ω̄2Φ2 − Ω2Φ̄2 − |Φ|2
)

. (3.23)

Proof. Using (2.4) and (3.14), we have

∂ψ1

∂z
=
(

ψ2ψ3 + ψ3ψ2

)

,

∂ψ2

∂z
= −ψ3ψ2, (3.24)

∂ψ3

∂z
= −ψ2ψ1.
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Substituting (3.20) into (3.24), we have (3.21)-(3.23).

Corollary 3.4.

ΩΩz̄ = −
i

2

(

Ω̄Φ − ΩΦ̄
)

(|Ω| − |Φ|) +
1

2

(

|Φ| Ω̄Φ − |Ω|ΩΦ̄
)

(3.25)

Corollary 3.5.

ΦΦz̄ =
i

2

(

Ω̄Φ − ΩΦ̄
)

(|Ω| − |Φ|) +
1

2

(

|Φ| Ω̄Φ − |Ω|ΩΦ̄
)

. (3.26)

Theorem 3.6. Let Ω and Φ be complex-valued functions defined in a simply connected

domain G ⊂ C. Then the map ℘ : G→ E(2), defined by

℘1(u, v) = Re

(∫ z

z0

[

Ω2 + Φ2
]

dz

)

,

℘2(u, v) = Re

(
∫ z

z0

(

i
(

Ω2 − Φ2
)

cos x1 − 2ΩΦ sinx1

)

dz

)

, (3.27)

℘3(u, v) = Re

(∫ z

z0

(i
(

Ω2 − Φ2
)

sinx1 + 2ΩΦ cos x1)dz

)

,

is a conformal maximal immersion.

Proof. Using (3.12), we get

φ1 = ψ1, φ2 = ψ2 cos x1 − ψ3 sinx1, φ3 = ψ2 sinx1 + ψ3 cos x1. (3.28)

From (3.10) we have the system (3.27). Using Theorem 3.2 ℘ : G → E(2) is a conformal

maximal immersion.

Case II

From (3.17), we have

ψ1 = ℜ cosℑ, ψ2 = ℜ sinℑ, ψ3 = ℜ, (3.29)

which suggests the definition of two new complex functions

ℑ = arctan
ψ2

ψ1

and ℜ = ψ2

1 + ψ2

2 . (3.30)
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Lemma 3.7. If Υ satisfies the equation (3.14), then

ℜz̄ cosℑ− ℑz̄ℜ sinℑ = |ℜ| sinℑ + |ℜ| sinℑ, (3.31)

ℜz̄ sinℑ + ℑz̄ℜ cosℑ = − |ℜ| sinℑ, (3.32)

ℜz̄ = − |ℜ| sinℑ cosℑ. (3.33)

Proof. Using (2.4) and (3.14), we have

∂ψ1

∂z̄
=
(

ψ2ψ3 + ψ3ψ2

)

,

∂ψ2

∂z̄
= −ψ3ψ2, (3.34)

∂ψ3

∂z̄
= −ψ2ψ1.

Substituting (3.29) into (3.34), we have (3.23)-(3.25).

Corollary 3.8.

− |ℜ| cos2 ℑsinℑ− ℑz̄ℜ sinℑ = |ℜ|
(

sinℑ + sinℑ
)

, (3.35)

− |ℜ| |sinℑ| cosℑ + ℑz̄ℜ cosℑ = − |ℜ| sinℑ. (3.36)

Corollary 3.9.

cos3 ℑsinℑ + |sinℑ| cosℑ sinℑ = −
((

sinℑ + sinℑ
)

cosℑ− sin2 ℑ
)

. (3.37)

Theorem 3.10. Let ℜ and ℑ be complex-valued functions defined in a simply connected

domain G ⊂ C. Then the map ℘ : G→ E(2), defined by

℘1(u, v) = Re ((ℜ cosℑ) dz) ,

℘2(u, v) = Re

(∫ z

z0

(ℜ sinℑ cosx1 −ℜ sinx1) dz

)

, (3.38)
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℘3(u, v) = Re

(∫ z

z0

(ℜ sinℑ sinx1 + ℜ cos x1)dz

)

,

is a conformal minimal immersion.

Proof. Using (3.10) and (3.32), we get

φ1 = ℜ cosℑ, φ2 = ℜ sinℑ cos x1 −ℜ sinx1, φ3 = ℜ sinℑ sinx1 + ℜ cos x1.

Using Theorem 3.2 ℘ : G→ E(2) is a conformal maximal immersion.

References

[1] D. A. Berdinski and I. A. Taimanov, Surfaces in three-dimensional Lie groups, Sibirsk.

Mat. Zh. 46 (6) (2005), 1248–1264.

[2] D. E. Blair, Contact Manifolds in Riemannian Geometry, Lecture Notes in Mathematics,

Springer-Verlag 509, Berlin-New York, 1976.

[3] I. A. Bobenko and U. Eitner, Painlev´e Equations in the Differential Geometry of Surfaces,

Lecture Notes in Mathematics 1753, Berlin, 2000.

[4] A. I. Bobenko, Surfaces in Terms of 2 by 2 Matrices. Old and New Integrable Cases, in

Aspects of Mathematics, Editors: A P Fordy and J C Wood, Vieweg, Wiesbaden, 1994.

[5] P. Budnich and M. Rigoli, Cartan Spinors, Minimal Surfaces and Strings Il, Nuovo Ci-

mento 102 (1988), 609–646.

[6] R. Carroll and B. G. Konopelchenko, Generalized Weierstrass-Enneper inducing, conformal

immersions and gravity, Int. J. Mod. Phys. A11 (7) (1996), 1183–1216.

[7] L. P. Eisenhart, A Treatise on the Differential Geometry of Curves and Surfaces, Dover,

New York, 1909.

[8] D. G. Gross, C. N. Pope and S. Weinberg, Two-Dimensional Quantum Gravity and Random

Surfaces, World Scientific, Singapore, 1992.

[9] D. A. Hoffman and R. Osserman, The Gauss Map of Surfaces in R
3 and R

4, Proc. London

Math. Soc. 50 (1985), 27–56.

[10] K. Kenmotsu, Weierstrass Formula for Surfaces of Prescribed Mean Curvature, Math.

Ann. 245 (1979), 89-99.

[11] B. G. Konopelchenko and I. A. Taimanov, Constant Mean Curvature Surfaces via an

Integrable Dynamical System, J. Phys. A29 (1996), 1261–1265.



Weierstrass representation formula in the group of rigid motions E(2) 17

[12] B. G. Konopelchenko and G. Landolfi, Generalized Weierstrass Representation for Sur-

faces in Multi-Dimensional Riemann Spaces, J. Geom. Phys. 29 (1999), 319–333.

[13] B. G. Konopelchenko and G. Landolfi, Induced Surfaces and Their Integrable Dynamics

II. Generalized Weierstrass Representations in 4-D Spaces and Deformations via DS Hierarchy,

Studies in Appl. Math. 104 (1999), 129–168.

[14] D. Nelson, T. Piran and S. Weinberg, Statistical Mechanics of Membranes and Surfaces,

World Scientific, Singapore, 1992.

[15] R. Osserman , A Survey of Minimal Surfaces, Dover, New York, 1996.

[16] Z. C. Ou-Yang, J. X. Liu and Y. Z. Xie, Geometric Methods in the Elastic Theory of

Membranes in Liquid Crystal Phases, World Scientific, Singapore, 1999.

[17] E. Turhan and T. Körpınar, Characterize on the Heisenberg Group with left invariant

Lorentzian metric, Demonstratio Mathematica, 42 (2) (2009), 423-428.

[18] K. Uhlenbeck, Harmonic maps into Lie groups (classical solutions of the chiral model),

J. Differential Geom. 30 (1989), 1-50.

[19] K. Weierstrass, Fortsetzung der Untersuchung über die Minimalflachen, Mathematische

Werke 3 (1866), 219–248.

[20] K. Yano, M. Kon, Structures on Manifolds, Series in Pure Mathematics 3, World Scientific,

Singapore, 1984.

Essin TURHAN and Talat KÖRPINAR
Fırat University, Department of Mathematics,
23119, Elazığ, TURKEY
e-mail: essin.turhan@gmail.com


