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Resumen

En este artículo estudiamos el conjunto de las funciones a valores en G que pueden ser
aproximadas por funciones continuas a valores en G en la norma L∞

G (I, w), donde I ⊂ R es
un intervalo compacto, G es un espacio de Hilbert real separable y w es cierta función peso a
valores en G, débilmente medible. Así, obtenemos una nueva extensión del celebrado teorema
de aproximación de Weierstrass.
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funciones continuas a valores en G.

Abstract

In this paper we study the set of G-valued functions which can be approximated by G-
valued continuous functions in the norm L∞

G (I, w), where I ⊂ R is a compact interval, G is
a separable real Hilbert space and w is a certain G-valued weakly measurable weight. Thus,
we obtain a new extension of the celebrated Weierstrass approximation theorem.

key words. Weierstrass’ theorem, G-valued weights, G-valued polynomials, G-valued continuous

functions.

AMS(MOS) subject classifications. Research partially supported by DID-USB under Grant

DI-CB-015-04 Primary 41, 41A10. Secondary 43A32, 47A56.

1 Introduction.

If I ⊂ R is any compact interval, Weierstrass’ approximation theorem says that C(I) is the largest

set of functions which can be approximated by polynomials in the norm L∞(I), if we identify,

as usual, functions which are equal almost everywhere. Weierstrass proved this theorem in 1885.

He also proved the density of trigonometric polynomials in the class of 2π-periodic continuous

real-valued functions. These results were, in a sense, a counterbalance to Weierstrass’ famous
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example given in 1861 about the existence of a continuous nowhere differentiable function (see

[1]).

The result obtained in his paper in 1885 titled On the possibility of giving an analytic repre-

sentation to an arbitrary function of real variable [12], shows that he suspected that any analytic

functions could be represented by power series. Weierstrass’ approximation theorem can be stated

as follows.

Theorem 1.1 (K. Weierstrass).

Given f : [a, b] → R continuous and an arbitrary ǫ > 0 there exists an algebraic polynomial p

such that

|f(x) − p(x)| ≤ ǫ, ∀ x ∈ [a, b]. (1.1)

There have been many improvements, generalizations and extensions of this theorem; such

results may be found in [2], [8], [9] and [22]. Further, we should recall the Bernstein’s prob-

lem on approximation by polynomials on the whole real line (see [12], [13] and [14]), and the

approximation problem for unbounded functions in I (see for example, [7]).

Some recent generalizations of Weierstrass’ approximation theorem use weighted approxima-

tion. More precisely, if I ⊂ R is a compact interval, the approximation problem is studied with

the norm L∞(I, w) defined by

‖f‖L∞(I, w) := ess supx∈I |f(x)|w(x) , (1.2)

where w is a weight, i.e., a non-negative measurable function. The convention 0 · ∞ = 0 is used

as well. Observe that (1.2) is not the usual definition of the L∞ norm in the context of measure

theory, although it is the correct definition when we work with weights (see e.g. [3] and [4]). The

reader may find in [18], [19] and [20] recent and detailed results on this subject.

Other kinds of approximation problems can arise when we consider simultaneous approxima-

tion including derivatives of certain functions; this is the case for Weierstrass’ theorem in the

context of weighted Sobolev spaces. About this subject we refer to [19] and [20].

In this paper we give a new result on Weierstrass’ approximation theorem with weights for

approximation in Hilbert spaces. We consider a separable real Hilbert space G, a compact interval

I ⊂ R, the space of all the G-valued essentially bounded functions L∞
G (I), a weakly measurable

function w : I → G, the space of all G-valued continuous functions C(I;G), and the space of all

the G-valued functions L∞
G (I, w), which are bounded with respect to the norm defined by

‖f‖L∞
G

(I,w) := ess supt∈I‖(fw)(t)‖G . (1.3)
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The paper is organized as follows. In Section 2 we provide some notation, necessary prelim-

inaries and auxiliary results which will be often used throughout the text. Usually we shall use

standard notation, and it will be properly introduced whenever needed. In Section 3 we present

the main result about approximation in L∞
G (I, w).

2 Preliminaries.

In what follows, I stands for any compact interval in R. By l2(R) we denote the real linear

space of all sequences {xn}n∈Z+
with

∑∞

n=0 |xn|2 < ∞, and (G, 〈 · , · 〉G) stands for a separable

real Hilbert space with associated norm denoted by ‖ · ‖G .

It is well-known that every separable real Hilbert space G is isomorphic either to R
n for some

n ∈ N or to l2(R). In each case, G has the structure of a commutative Banach algebra with the

coordinatewise operations. In the first case, we have a commutative Banach algebra with identity

and the second case, a commutative Banach algebra without identity. The reader is referred to

[10] or [24] for more details about these statements.

However, in practice the representation which we obtain by means of this isomorphism is not

always interesting, because the properties of the individual elements of G can be in many cases

more fruitful. This happens when G is a Hilbert space of analytic functions or of differentiable

functions. Despite this, it is very valuable to know the representation given by this isomorphism

because it allows us to determine how useful the properties of the Hilbert space by itself can be.

2.1 On weighted spaces.

A detailed discussion about properties of weighted spaces may be found in [6], [11], [15] or [17].

We recall here some important tools and definitions which will be used throughout this paper.

Definition 2.1 A scalar weight w is a measurable function w : R −→ [0,∞]. If w is only defined

in A ⊂ R, we set w := 0 in R \ A.

Definition 2.2 Given a measurable set A ⊂ R and a scalar weight w, we define the space

L∞(A,w) as the space of equivalence classes of measurable functions f : A −→ R with respect to

the norm

‖f‖L∞(A,w) := ess supx∈A|f(x)|w(x) .

This space inherits some properties from the classical Lebesgue space L∞(A) and it allows

us to study new functions, which do not fit in the classical L∞(A) (see, for example [21]). Other
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properties of L∞(A,w) have a strong relation with the nature of the weight w: in fact, if A = I and

w has a multiplicative inverse, (i.e. there exists a weight w−1 : I −→ R, such that w(t)w−1(t) =

1, ∀t ∈ I) then, it is easy to see that L∞(I, w) and L∞(I) are isomorphic, since the map

Ψw : L∞(I, w) → L∞(I) given by Ψw(f) = fw is a linear and bijective isometry, and therefore,

Ψw is also homeomorphism, or equivalently, for all Y ⊆ L∞(I, w), we have Ψw(Y ) = Ψw(Y ),

where we take each closure with respect to the norms L∞(I, w) and L∞(I), respectively. Also,

for all A ⊆ L∞(I), Ψ−1
w (A) = Ψ−1

w (A) and Ψ−1
w = Ψw−1. Then using Weierstrass’ theorem we

have,

Ψ−1
w (P) = Ψ−1

w (P) = {f ∈ L∞(I, w) : fw ∈ C(I)}. (2.4)

Unfortunately, the last equality in (2.4) does not allow us to obtain information on local be-

havior of the functions f ∈ L∞(I, w) which can be approximated. Furthermore, if f ∈ L∞(I, w),

then in general fw is not a continuous function, since its continuity also depends of the singular-

ities of weight w (see [13], [18], [20]).

The next definition presents the classification of the singularities of a scalar weight w done in

[20] to show the results about density of continuous functions in the space L∞(supp(w), w).

Definition 2.3 Given a scalar weight w we say that a ∈ supp(w) is a singularity of w (or

singular for w) if

ess lim infx∈supp(w), x→aw(x) = 0 .

We say that a singularity a of w is of type 1 if ess limx→aw(x) = 0.

We say that a singularity a of w is of type 2 if 0 < ess lim supx→aw(x) < ∞.

We say that a singularity a of w is of type 3 if ess lim supx→aw(x) = ∞.

We denote by S and Si (i = 1, 2, 3) respectively, the set of singularities of w and the set of

singularities of w of type i.

We say that a ∈ S+
i (respectively a ∈ S−

i ) if a verifies the property in the definition of Si

when we take the limit as x → a+ (respectively x → a−). We define S+ := S+
1 ∪ S+

2 ∪ S+
3 and

S− := S−
1 ∪ S−

2 ∪ S−
3 .

Definition 2.4 Given a scalar weight w, we define the right regular and left regular points of w,

respectively, as

R+ :=
{

a ∈ supp(w) : ess lim infx∈supp(w), x→a+w(x) > 0
}

,

R− :=
{

a ∈ supp(w) : ess lim infx∈supp(w), x→a−w(x) > 0
}

.
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The following result was proved in [20] and it states a characterization for the functions in

L∞(supp(w), w) which can be approximated by continuous functions in norm L∞(supp(w), w)

for every w.

Theorem 2.1 (Portilla et al. [[20], Theorem 1.2]). Let w be any scalar weight and

H0 :=















f ∈ L∞(supp(w), w) : f is continuous to the right at every point of R+,

f is continuous to the left at every point of R−,

for each a ∈ S+, ess limx→a+|f(x) − f(a)|w(x) = 0 ,

for each a ∈ S−, ess limx→a− |f(x) − f(a)|w(x) = 0















.

Then:

(a) The closure of C(R) ∩ L∞(w) in L∞(w) is H0.

(b) If w ∈ L∞
loc(R), then the closure of C∞(R) ∩ L∞(w) in L∞(w) is also H0.

(c) If supp(w) is compact and w ∈ L∞(R), then the closure of the space of polynomials is H0

as well.

Theorem 2.1 is going to be an important tool which will allow us to obtain the key for the

result about Hilbert extensions of Weierstrass’ theorem with weights in the present paper.

2.2 G-valued functions.

Definition 2.5 Let G be a separable real Hilbert space and we consider any sequence {xn} ⊂ G.

We say that the support of {xn} is the set of n for which xn 6= 0. We denote to support of {xn}
by supp(xn).

Let G be a separable real Hilbert space. A G-valued polynomial on I is a function φ : I → G,

such that

φ(t) =
∑

n∈Z+

ξntn,

where (ξn)n∈Z+
⊂ G has finite support.

Let P(G) be the space of all G-valued polynomials on I. It is well-known that P(G) is a

subalgebra of the space C(I;G) of all continuous G-valued functions on I.

For 1 ≤ p ≤ ∞, L
p
G
(I) denotes the set of all weakly measurable functions f : I → G such that

∫

I
‖f(t)‖p

G
dt < ∞, if 1 ≤ p < ∞,
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or

ess supt∈I‖f(t)‖G < ∞, if p = ∞.

Then L2
G(I) is a Hilbert space with respect to the inner product

〈f, g〉L2
G
(I) =

∫

I
〈f(t), g(t)〉G dt.

P(G) is also dense in L
p
G
(I), for 1 ≤ p < ∞.

More details about these spaces may be found in [23].

Definition 2.6 Let G be a separable real Hilbert space, a weight w on G is a weakly measurable

function w : I −→ G.

Definition 2.7 Let w be a weight on G, we define the space L∞
G (I, w) as the space of equivalence

classes of all the G-valued weakly measurable functions f : I −→ G with respect to the norm

‖f‖L∞
G

(I,w) := ess supt∈I‖(fw)(t)‖G ,

where fw : I −→ G is defined as follows: If dimG < ∞; we have the functions f and w can be

expressed by f = (f1, . . . , fn0
) and w = (w1, . . . , wn0

), respectively, where fj, wj : I −→ R, for

j = 1, . . . , n0, with n0 = dimG. Then

(fw)(t) := (f1(t)w1(t), . . . , fn0
(t)wn0

(t)), for t ∈ I.

If dimG = ∞, let {τj}j∈Z+
be a complete orthonormal system, then for t ∈ I the functions f

and w can be expressed as f(t) =
∑∞

j=0〈f(t), τj〉G τj and w(t) =
∑∞

j=0〈w(t), τj〉G τj, respectively.

So, we can define

(fw)(t) :=

∞
∑

j=0

〈f(t), τj〉G 〈w(t), τj〉G τj, for t ∈ I.

In this way, we can study our approximation problem using the properties of commutative

Banach algebra of l2(R).

The next Proposition shows a result about algebraic properties and density of P(G) in C(I;G).

The analogous result, when G is a separable complex Hilbert space, appears in [23].

Proposition 2.1

i) P(G) is a subalgebra of the space of all G-valued continuous functions on I.

ii) The closure of P(G) in L∞
G (I) is C(I;G).



6 YAMILET QUINTANA

Proof.

i) It is straight forward.

ii) It is enough to prove that C(I;G) ⊂ P(G), since P(G) ⊂ C(I;G) = C(I;G).

Case 1: dimG < ∞.

Let us assume that dimG = n0. Given an orthonormal basis {τ1, . . . , τn0
} of G, ǫ > 0

and f ∈ C(I;G) = C(I, Rn0), then f ∼ (f1, . . . , fn0
) with fj ∈ C(I), j = 1, . . . , n0. The

Weierstrass’ theorem guarantees that there exists pk ∈ P such that

‖fj − pj‖L∞(I) <
ǫ√
n0

, j = 1, . . . , n0.

If we consider the polynomial p ∈ P(G) such that p ∼ (p1, . . . , pn0
), then we have that

‖f − p‖L∞
G

(I) = ess supt∈I‖(f − p)(t)‖G

= ess supt∈I





n0
∑

j=1

|〈f(t) − p(t), τj〉G |2




1/2

≤ ess supt∈I‖((f1 − p1)(t), . . . , (fn0
− pn0

)(t))‖Rn0 < ǫ.

Case 2: G is infinite-dimensional.

Let f ∈ C(I;G) and {τj}j∈Z+
a complete orthonormal system, then for each t ∈ I

f(t) =
∞
∑

j=0

〈f(t), τj〉G τj,

consequently, given ǫ > 0 there exists m0 ∈ Z+ such that

∥

∥

∥

∥

∥

∥

f(t) −
n

∑

j=0

〈f(t), τj〉τj

∥

∥

∥

∥

∥

∥

G

< ǫ, whenever n ≥ m0.

Now, let us consider the functions fj : I → R given by fj(t) = 〈f(t), τj〉G . We have that

f ∼ {fj} with
∑

j∈Z+
|fj(t)|2 < ∞, for each t ∈ I and fj ∈ C(I).

So, Weierstrass’ approximation theorem guarantees that there exists a sequence {pj}j∈Z+
⊂

P such that

‖fj − pj‖L∞(I) <
ǫ

j + 1
, j ∈ Z+.
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We define the G-polynomials p̃j ∈ P(G) by p̃j(t) = pj(t)τj , for each j ∈ Z+. Then for

n ≥ m0 we have

∥

∥

∥

∥

∥

∥

f(t) −
n

∑

j=0

p̃j(t)

∥

∥

∥

∥

∥

∥

G

≤

∥

∥

∥

∥

∥

∥

f(t) −
n

∑

j=0

fj(t)τj

∥

∥

∥

∥

∥

∥

G

+

∥

∥

∥

∥

∥

∥

n
∑

j=0

fj(t)τj −
n

∑

j=0

p̃j(t)

∥

∥

∥

∥

∥

∥

G

≤ ǫ +





∞
∑

j=0

|fj(t) − pj(t)|2




1/2

< ǫ +





∞
∑

j=0

(

ǫ

j + 1

)2




1/2

= ǫ






1 +





∞
∑

j=0

1

(j + 1)2





1/2





.

From these inequalities we can deduce that for a large enough n there exists qn(t) =
∑n

j=0 p̃j(t) such that

‖f − qn‖L∞
G

(I) < Cǫ.

This completes the proof. �

3 Approximation in L∞
G (I, w)

In this section, we only deal with weights w such that supp(w) = I.

Definition 3.1 Let G be a real and separable Hilbert space and let w be a weight on G. We say

that w is admissible⋆ if one of the following conditions is satisfied

i) If dimG < ∞ then each one of the components wj, 1 ≤ j ≤ dimG, is a scalar weight.

ii) If dimG = ∞, {τj}j∈Z+
is a complete orthonormal system, and w(t) =

∑∞

j=0〈w(t), τj〉G τj,

then each one of the functions 〈w(t), τj〉G is a scalar weight.

Let us observe that if dimG = ∞ and w is admissible⋆, then it induces a family of weighted

l2(R) spaces, {l2t (R;w) : t ∈ I} given by

l2t (R;w) =







{xj}j∈Z+
:

∞
∑

j=0

〈w(t), τj〉G |xj |2 < ∞







.

For each t ∈ I, the function wj(t) = 〈w(t), τj〉G also induces a linear isometry
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Ψt
wj

: l2t (R;wj) → l2(R) given by

Ψt
wj

(

{xj}j∈Z+

)

= {wj(t)xj}j∈Z+
= {〈w(t), τj〉G xj}j∈Z+

.

The reader is referred to [5] where weighted l2(R) spaces are studied. In order to characterize

the G-valued functions which can be approximated in L∞
G (I, w) by functions in C(I;G)∩L∞

G (I, w),

our argument requires an admissible⋆ weight w. It is clear that in the one-dimensional case an

admissible⋆ weight is an arbitrary scalar weight on I, and therefore the Theorem 2.1 in [20] holds

in this case.

Theorem 3.1 Let G be a real and separable Hilbert space and let w be an admissible⋆ weight on

G. Let us define

H :=

{

f ∈ L∞
G (I, w) : f ∼ (f1, . . . , fn0

) and fj ∈ Hj, 1 ≤ j ≤ n0 with n0 = dimG,

or f ∼ {fj} and fj ∈ Hj, j ∈ Z+ if dimG = ∞.

}

,

where

Hj :=















fj ∈ L∞(I, wj) : fj is continuous to the right at every point of R+,

fj is continuous to the left at every point of R−,

for each a ∈ S+, ess limx→a+|fj(x) − fj(a)|wj(x) = 0 ,

for each a ∈ S−, ess limx→a− |fj(x) − fj(a)|wj(x) = 0















.

Then the closure of C(I;G) ∩ L∞
G (I, w) in L∞

G (I, w) is H. Furthermore, if w ∈ L∞
G (I) then the

closure of the space of G-valued polynomials is H as well.

Proof. Let us assume first that dimG = n0. If f ∈ C(I;G) ∩ L∞
G

(I, w)
L∞
G

(I,w)
, then f ∼

(f1, . . . , fn0
), with fj : I −→ R, 1 ≤ j ≤ n0. Given ǫ > 0, there exists g ∈ C(I;G) ∩ L∞

G (I, w)

such that ‖f − g‖L∞
G

(I,w) < ǫ. Let us consider (g1, . . . , gn0
) such that gj ∈ C(I) ∩ L∞(I, wj) and

g ∼ (g1, . . . , gn0
), then

|(fj(t) − gj(t))wj(t)| ≤ ess sups∈I





n0
∑

j=1

|(fj(s) − gj(s))wj(s)|2




1/2

a.e.

On other hand, ess sups∈I

[

∑n0

j=1 |(fj(s) − gj(s))wj(s)|2
]1/2

= ‖f − g‖L∞
G

(I,w), as consequence

of G is isomorphic to R
n0 and the Parseval identity (see [5] or [24]). Then,

‖fj − gj‖L∞(I,wj) ≤ ‖f − g‖L∞
G

(I,w) < ǫ.

Hence, fj ∈ C(I) ∩ L∞(I, wj)
L∞(I,wj)

for 1 ≤ j ≤ n0, and the part (a) of Theorem 2.1 gives

that H contains C(I;G) ∩ L∞
G

(I, w)
L∞
G

(I,w)
.
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In order to see that H is contained in C(I;G) ∩ L∞
G

(I, w)
L∞
G

(I,w)
, let us fix f ∈ H and ǫ > 0,

and let us consider each one of its component functions fj ∈ Hj, j = 1, . . . , n0. By the part (a)

of Theorem 2.1, there exists gj ∈ C(I) ∩ L∞(I, wj), j = 1, . . . , n0, such that

‖fj − gj‖L∞(I,wj) <
ǫ√
n0

.

We consider g ∈ C(I;G) such that g ∼ (g1, . . . , gn0
), then

‖f − g‖L∞
G

(I,w) = ess supt∈I‖((f − p)w)(t)‖G

= ess supt∈I





n0
∑

j=1

|(fj(t) − gj(t))wj(t)|2




1/2

< ǫ.

If w ∈ L∞
G (I), the closure of the G-valued polynomials is H as well, as a consequence of

Proposition 2.1.

In a similar way, if dimG = ∞, {τj}j∈Z+
is a complete orthonormal system and f ∈

C(I;G) ∩ L∞
G

(I, w)
L∞
G

(I,w)
, then f(t) =

∑∞

j=0〈f(t), τj〉τj . Given ǫ > 0, there exists g ∈ C(I;G) ∩
L∞
G (I, w) such that ‖f − g‖L∞

G
(I,w) < ǫ. Let us consider {gj}j∈Z+

such that gj ∈ C(I)∩L∞(I, wj)

and g ∼ {gj}j∈Z+
, then

|(fj(t) − gj(t))wj(t)| ≤ ess sups∈I





∞
∑

j=0

|(fj(s) − gj(s))wj(s)|2




1/2

a.e.

On other hand, ess sups∈I

[

∑∞

j=1 |(fj(s) − gj(s))wj(s)|2
]1/2

= ‖f − g‖L∞
G

(I,w), as consequence

of G is isomorphic to l2(R) and the Parseval identity (see [5] or [24]). Then,

‖fj − gj‖L∞(I,wj) ≤ ‖f − g‖L∞
G

(I,w) < ǫ.

Hence, fj ∈ C(I) ∩ L∞(I, wj)
L∞(I,wj)

for j ∈ Z+, and the part (a) of Theorem 2.1 gives that

H contains C(I;G) ∩ L∞
G

(I, w)
L∞
G

(I,w)
.

In order to see that H is contained in C(I;G) ∩ L∞
G

(I, w)
L∞
G

(I,w)
, let f ∈ H and ǫ > 0, and

let us consider the component functions fj ∈ Hj of f , 0 ≤ j < ∞. Since wj(t) = 〈w(t), τj〉 is a

weight, by the part (a) of Theorem 2.1, there exists gj ∈ C(I)∩L∞(I, wj), 0 ≤ j < ∞, such that

‖fj − gj‖L∞(I,wj) <
ǫ

j + 1
, j ∈ Z+.
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We define the function g : I −→ G by g(t) =
∑∞

j=0 gj(t)τj , then

‖f − g‖L∞
G

(I,w) = ess supt∈I‖((f − g)w)(t)‖G
= ess supt∈I‖{(fj(t) − gj(t))wj(t)}‖l2(R)

= ess supt∈I





∞
∑

j=0

|fj(t) − gj(t)|2w2
j (t)





1/2

≤





∞
∑

j=0

(

ǫ

j + 1

)2




1/2

= ǫ





∞
∑

j=0

1

(j + 1)2





1/2

�

This result is similar when G is a complex separable Hilbert space and it can also be extended

to L∞
L(G)(I, w), where L(G) is the space of operators on G.
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