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1. Introduction

Controllability and observability problems for discrete and ordinary
differential systems were formulated and solved originally by R.Kalman in
1960. These problems as before play a central role in modern control theory,
in particular for nonautonomous ordinary differential systems, functional- *
differential systems, singularly perturbed dynamic systems (SPDS), SPDS
with delay (SPDSD). The objects of study become more complicated, the
range of controllability and observability problems is widened, definitions,
the notions related to their solutions undergo refinement, known approaches
and investigation methods are classified, new approaches are suggested, and
their relationships are analyzed.

There are several approaches to study the controllability and observ-
ability problems for linear nonstationary dynamic systems. The efficiency
of introducing the defining equations (i.e. matrix algebraic recurrence equa-
tions) for studying the controllability problem for nonstationary differential
systems with delay was shown in [1].

In this paper the unified method of investigating controllability and
observability problems for various types of systems (autonomous and non-
stationary ordinary differential systems, SPDS, linear functional-differential
systems, SPDSD etc.) is suggested. This method combines the state space
method and the method of the defining equations, takes into account the
specific character of the objects being investigated (their nonstationarity,
singularity, the presence or lack of delay) and does not require the investi-
gation of conjugate systems in the observability problem. In terms of the
components of the defining equations we formulate all controllability and
observability conditions. The rules for constructing the defining equations
are very simple and reflect the type of the object being investigated by a
natural way.

The present paper is a mini-course, which has been read for post-
graduated students and professors of the Department of Mathematics (Sci-
ence Faculty) and Department of Control Systems (Engineering Faculty) of
the University de Los Andes during October, 30 - November, 21, 2000. It
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includes such directions of qualitative theory of control processes as control-
lability and observability problems of linear time-invariant and time-varying
systems (of ordinary differential equations, with constant delay, with the
deviatng argument of neutral type), singularly perturbed dynamic systems
(without delay, with constant delay, with the deviatng argument of neutral
type), the stabilization problem.

2. Controllability of Linear Time-Invariant Systems

2.1. Complete Controllability
Let us consider a control system for which the equation of controlled
motion has the form

z(t) = Az(t) + Bu(t), t>ty, z€R", u€R™, (1)

where A € R™*", B € R™™ are constant matrices. There are no restrictions
on the value of the control function u(t).

Definition 2.1. System (1) is called controllable on the segment
T = [to,t1], t1 > to, if for any vectors zo, x; € R" there ezists such a
control function u(t), that the corresponding solution of the equation (1)
satisfies the condition z(ty) = g, z(t1) = 1.

In other words, the controllable system can be transferred from any
arbitrary state zo at the moment ¢y to another arbitrary prescribed final
state 1 at the moment ¢{; by choosing the corresponding control u(t). It
is well known that the controllability condition of system (1) depends on
so-called the controllability matriz

K ={B,AB,..., A" 'B}. (2)

A pair of matrices (A, B) is called controllable if rank of (2) is equal
to n.

Theorem 2.1. System (1) is controllable if and only if rank of the
controllability matriz is equal to n :

rank{B,AB,..., A" !B} = n. (3)

Let us denote
t

W (to, ) = / F(to, 7)BB'F(ty, 7)dr,

to
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where F(t,7) is a fundamental Cauchy matrix, satisfying the homogeneous
part of the equation (1):

dF(t,T)
7 = AF(t,T),
dF(t,1)
2\ F
with the initial condition
F(ti t) = ETH

where E, is identity n x n-matrix.

Then Theorem 2.1 is equivalent to the following one.

Theorem 2.2. The system (1) is controllable on the segment [to,t1]
if and only if the matriz W (tg,t1) is positively defined.

Then the control function which transfers the state of system (1)
from any initial point zy to any prescribed final point z; has the form

u(t) = —B'F'(to, t)yW " (to, t1)[z0 — F(to, t1)z1)-

Ezample 2.1. Consider the controllable motion of the material point
on the line under the influence of scalar controlling force u(t). The equation
of such motion has the form

Let z(t) be the coordinate of the point, z5(t) is its velocity. Then the
equation of the motion has the form

£1(t) = z2(t),  2(t) = u(d). (4)

Equations (4) will have the form (1) if suppose

The matrix K due to the equality (2) has the form
01
k=(01).
So rank K = 2 and the motion of the material point is controllable.
Remarks.
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1. If rankB = k, then necessary and sufficient condition for control-
lability of (4) is
rank(B, AB, ..., A" %) =n,

2. The controllability criterion
rank{B,AB,..., A" 'B} =n (5)

is established in the assumption that there are no restrictions on the value
of the control function u(t). Controllability criteria with the restrictions on
the value of control are of more interest for engineers. For example, the
criterion (5) is not sufficient under the restriction |u(t)| < C, where C is a
given constant. Really, if all eigenvalues of matrix A lie at the left half-plane
then for any initial state ¢ and any control system (1) remains inside of .
some restrict domain. On the contrary, if all eigenvalues of the matrix A lie
at the right half-plane then there is no one control function that transfers the
point zq to the origin if zq is sufficiently far from the origin of coordinates.
In both these cases the system (1) is not controllable.

Theorem 2.3. In order that the system (1) be controllable under
the restriction |u(t)] < C, C > 0, it is necessary and sufficient that

rank{B,AB,..., A" 'B} =n

and besides all eigenvalues of the matriz A have to lie at the imaginary azis.

(see: Ovwseevich A.I. On the complete controllability of linear sys-
tems// Prikl. Math. and Mech., 1989, Vol. 53. Vyp. 5.)

2.2. Relative Controllability

Definition 2.2. The dynamical system (1) is called controllable rel-
ative to the subspace H, Hx = 0 (relatively controllable) if for each state
there exists a number t* < oo, and a piece-wise continuous control u(t), to <
t < t*, such that Hz(t*) = 0.

Theorem 2.4. The dynamical system (1) is relatively controllable if
and only if

rank{HB,HAB,...,HA" 'B} = rankH. (6)

2.3. Conditional Controllability

Definition 2.3. The dynamical system (1) is called controllable in
the space M (conditionally controllable) if each initial state from the subspace
M, zop = My, y € R"™ is controllable.

Theorem 2.5. The dynamical system (1) is conditionally control-
lable if and only if

rank{M,B,AB, ..., A" 'B} = rank{B, AB, ..., A" ' B} (7)
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Ezample 2.2. Consider the 4-th order control system with 4 inputs

T1 = 371 + T2 + uy + 2us + duy

To = —4x) — To +uz + duy (8)
T3 =6z, — T2+ 2T3 + T4 + us + Juy
:i:4 = —14:1,‘1 - 51‘2 — I3
with the matrices

3 1 0 0 1 2 05
-4 -1 0 O 010 4

A= 6 -1 2 11’ B= 0 013
-14 -5 -1 0 0000

Let the initial state of this system lies in the plane 3 = z4 = 0.
It is required to determine whether this system is conditionally controllable
separately by the first control.

In this case, the subspace M is given by the expression z = My, y €
RY, where

oo oo
oo oo

0
1
0
0

[e=R =Rl s

For the vector &' = (1,0,0,0) we have AY = (3,—4,6,—14). The conditions
of Theorem 4 are satisfied meaning that each state from M may be trans-
ferred to the origin by the control u;. However, all states from the plane
z; = T2 = 0 may not be transferred to the origin by this control. In this
subspace the system is controllable by the third control us.

2.4. Conditionally-Relative Controllability

Let matrices M € R™"*? and H € R™*" be given.

Definition 2.4. System (1),t > 0, is called completely conditionally-
relatively controllable if for any q-vector yo there exists such a time moment
t1 < 0o and a piece-wise control u(t), t > 0, that for this equation and for
the corresponding solution z(t) of the system (1) with the initial condition
z(0) = Myy the following relations Hz(t) = 0, u(t) =0, t > t,, take place.
Theorem 2.6. System (1) is completely conditionally-relatively controllable
if and only if

HAF k —
rank{k:(),—n—_—l}-{A B,k=0,n—-1, M}_



6 Tatiana B. Kopeikina

= ———— . = _1 .
mnk{kzo,n—l} {A B, k=0,n } (9)

2.5. Canonical Form of Linear Time-Invariant Systems
Consider linear system (1). Suppose that rankK = j, j < n. Let us
show that there exists the change of variables

z=Ty, detT #0,

such that last n — j coordinates y;.1,...,yn of the vector y don’t depend on
neither control function no the previous coordinates yi,...,y;. Let ky,...,k;
be linear independent columns of K. Let matrix T has vectors ki,...,k; as

first columns and the rest (n — j) columns are arbitrary with the condition
detT # 0. We have then from equation (1)

y(t) = T 'ATy + T ' Bu. (10)

Theorem 2.7. For matrices T~ AT and T~ 'B the following rela-
tions are valid

A A B
T AT = ( ! 2 ) T-'B = ( 1 ) 11
On-jyxj As On—j)xm (11)

where A; € R7*I,| Ay € RI*(n=7) A, € R(n-9)x(n—4) B, € RI*™_ Besides
rank(B1, A\ By, ..., A7 B)) = j. 12)

From this theorem follows that if vector y can be presented in the form
y = (21,22) where z; € R?, 23 € R" 7 then due to (10), (11) the following
relations

2.1 = A121 + A222 + Bl,

z9 = A322
with the initial states

( z1(to) ) = T a(to)

z3(to)

are valid for the components z,23. So the component 2, of the vector y
doesn’t depend neither control u no 2; and can be calculated in advance as
function of time ¢. If we substitute it to the equation for z; we shall obtain
nonhomogeneous differential equation.
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Suppose that system (1) is controllable, u(t) is a scalar control, B = b
is a column vector. Consider a characteristic polynomial of the matrix A :

detOE —A) = X"+ A" 14+ ... +a,
and a set of vectors
mn=A""o4+ A" 2+ ... + ap_1b,

v =A"204 01 AV 2b 4+ ...+ an_ab,

Tn-1= Ab + alba
Tn = b.

Due to the controllobility of system (1) it follows that vectors 7i,...,7n
form basis in the space R"™.

Let L be nonsingular a transfer matrix from the initial basis to the
basis 1, ... ,Vn- Suppose z(t) = Ly(t). Then

y(t) = L7 ALy(t) + L' Bu(t), (13)
where

0 1 0 0 0 0
0 0 1 0 ... 0 0

LTAL=| : : .t |, LITB=
0 0 0 0 1 0
—Qp —Qp-1 —Qp-2 —Cp-3 ... —O 1
(14)

In other words system (1) is equivalent to the differential equation of the
order n with respect to y;(t) that has the form
Y (1) + ey V() + ..+ anyi () = ul?). (15)
So system (1) with the scalar control (B = b) which satisfies the controlla-
bility condition (5) can be transformed to a single equation of the n-order
(15).
2.6. Hautus’s Controllability Criterion

To check controllability of a system it is useful to have Hautus’s
criterion controllability.
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Theorem 2.8. The system (1) is controllable if and only if for any
complex number A € C

rank(AE, — A, B) =n.
As all proper numbers of the matrix A satisfy the equality
det (M\E, — A) #0,

then the condition
rank(AE, — A, B) =n

holds automatically. Therefore it is necessary to check Theorem 2.8 only for
all eigenvalues of the matrix A and Theorem 2.8 may be reformulated by
the following way: .

Theorem 2.8.1. The system (1) is controllable if and only if for all
eigenvalues A;, 1 = 1,2,...,n of the matriz A

rank(AE, — AB) =n.

Now we shall give some examples of the application of Theorem 2.8.

2.7. Examples

Ezample 2.3. Let A be a diagonal matrix with ); on the main diag-
onal. Show that system £ = Az + Bu is controllable if and only if all rows
of B are nonzero and rows of B, which correspond to the same diagonal
elements of matrix A, are linear independent.

Ezample 2.4. Show that from the controllability of the pare (A, B)
follows the controllability of the pair of (A + nEy), B for any number 7.

Ezample 2.5. Let us consider two-links manipulator consisting from
two rigid bodies )1, Q2 with masses m;, my which are fasten together with
help of hinge Oy and with the fixed base with the help of hinge O,. The
axes of hinges are parallel. The manipulator can move in the plane which is
perpendiculag to the axes of hinges (see Fig.1).

Oy T
uy Fig. 1
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We can control by the manipulator due to moments u;,ug, which are
applied to the axes O, O2. Suppose that the centre of masses is disposed on
the axis Oy. Then the equations for the motion of the manipulator have the
form:

(I + maL?)$1 = u1 — ug,

IZ¢2 = u2, (16)

where ¢; is the angle between link @; and the axis O;z, ¢» is the angle
between link ()2 and the axis O,z, L is the distance between the axes of
hinges 01, Os; I, I are the moments of inertia of hinges J1, Q2 with respect
to the axes O;, Oz correspondingly.

Introduce new variables

1/2 . R
o1 = (L+maL) Y21, 20 =Ly, 3= (I+maL®) %%y, 24 = I}/*a.
Then system (16) can be written as
il =$2, iz :ul _u21

T3 =4, T4=1Uug (17)

System (17) has the form of system (1) with the matrices

0100 0 0
0 00O 1 -1
A= 0001 |’ B= 0 0
0 00O 0 1

The controllability matrix of the system (17) is

0 0 1 -1 00O00O0
B ) 3p;y _ | 1 -1 0 0 0 00O
K=(B,AB,A"B, AB)=| o " 0 | 00 0 0
0 1 0 0 00O00UO
We can see that

0 0 1 -1

1 -1 0 O

0 1 0 0

so the system (17) is controllable.
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We can obtain the same result from the Hautus Theorem 8. Really
all eigenvalues \; of matrix A are equal to zero, so the matrix (A — AE, B)
for A = 0 has the form

01 00O0 O
00001 -1
(4,B) = 00010 O
000O0O©D0 1

As rank(A, B) = 4 then system (17) is controllable.
Let us show that system (17) is not controllable with the help of one

control up, where ug is a rotating moment. In this case matrices B and
K = (B, AB, A2B, A3B) have the forms

0 0 -1 1 -1
-1 -1 0 0 O
B= 0 , K= 0 1 -1 1
1 1 0 0 O

It is obviously that rankK = 2. It means that system (17) is not controllable
with help of only single control us.

3. Controllability of Linear Time-Varying Systems

3.1. Complete State (Output) Controllability
Consider the n-dimensional linear system defined by

#(t) = A()z(t) + B(t)u(t) (18)

y(t) = C(H)=(d), (19)

where z(t) € R" is the state, y(t) € R™,m < n, is the output, u(t) € R" is
the input of (18). The matrices A(t), B(t), C(t) are of the order compatible
to the vectors, and they are assumed to be at least piecewise continuous.
The basic definitions for controllability of the system (18), (19) may be
stated as follows:

Definition 3.1. The system (18), (19) is completely state (output)
controllable at ty if for any points o, z, € R® (yo,y1 € R™) there exists an
input u(t), defined on some finite interval [ty, t1], such that the correspond-
ing solution z(t) = z(t,t0,z0,u) (y(t) = y(t,u)) with the initial condition
z(tp) = zo satisfies the equality z(t)) = =1 (y(t1) = ).

In general u(t) depends on both g, z(%p).
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Definition 3.2. The system (18), (19) is completely state (output)
controllable if the conditions of Definition 1 hold for all tg.

Definition 3.3. The system (18), (19) is totally state (output) con-
trollable if for all ty and almost all t; > ty and any state z(ty) at Lo, there
erists an input u(t), defined on [to,t1], such that z(t1) =1 (y(t1) = w)-

As it is well known, the output of the system (18), (19) can be ex-
pressed in the form

t
y(t) = CUH)F(t, to)z(to) + / C(O)F(t, 7)B(r)u(r)dr, (20)
to

where F(t, 7) is Cauchy matrix satisfying the homogeneous part of (18) with ,
respect to the first argument ¢:

dF(t,7)

T AtYF(t,7), F(r,7)=Eq,.

Suppose
HS(t’ T) = F(ta T)B(T)a

Hy(t,7) = C(t)F(t,7)B(1) = C(t)H,(t, 7).

The necessary and sufficient conditions for various types of controllability
can then be summarized in the following theorems (see Kalman, Kreindler
and Sarachik).

Theorem 3.1. it The system (18), (19) is completely state (output)
controllable at ¢g if and only if there exists a finite time #; > ty such that
the rows of the matrix H,(t,,7) (Ho(t,7)) are linearly indeplto, ¢1]-

Theorem 3.2. The system (18), (19) is totally state (output) con-
trollable if and only if for all ty and for almost all t; > ty the rows of
the matriz Hy(t1,7) (Ho(t, 7)) are linearly independent functions of T on
[to,tl].

Corollary 3.1. System (18) is completely state controllable on the
interval [to,t1] if and only if

dCtW(to, tl) 76 0,

where
t

W(to,t) :—‘/Hs(to,T)H;(to,T)dT.

to
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Corollary 3.2. System (18), (19) is completely output controllable
on the interval [to,t1] if and only if

detV(th tl) 7[: 0,
where

t
Vi(te,t) = / Ho(t, 7)H.(t, 7)dr.
to

If the system (18), (19) is fixed one (i.e. we have time-invariant system),
controllability is independent of the initial time, and complete controllability
implies total controllability. The converse is clearly always true. ‘

The necessary and sufficient conditions for controllability in the fixed
case can be formulated directly in terms of the matrix coefficients of the
system, as in the following theorem.

Theorem 3.3.A fized system (18), (19) is state (output) control-
lable if and only if

rank Ks=n

where
K,={B,AB,..., A" !B}
or
rank(K,) =m,
where

K,=CK,={CB,CAB,...,CA"'B}.

Now criteria, which seem to be natural generalizations of Theorem
3.3 for time-varying systems, are derived and discussed.

3.3. Generalization of Theorem 3.3

Let F(t,7) be some fundamental matrix of system (18),

G(t) = F(t,7) ' B(t)

and p be nonnegative entire number. We shall say that system (18) has a
class p on the open set A € R, if matrix function G(t) is p times differentiable
on A.

As the function G(t) is given with the help of fundamental matrix
F(t,7), which is unknown in explicit form as a rule, then it is desirable
to have some conditions of belonging system (18) to the class p which are
expressed directly through parameters A(t), B(t).
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Define S(n,r) as a set of systems (18) with continuous matrices
A(t) € R™*",B(t) € R™*" on some interval A C R. Identify this set with
the set of pairs
(A, B) = (A(t), B(t)).

Define a map
Pp : 8(n,r) = S(n,r)

according to the rule
PA(4,B)(t) = (A(), A()B(t) - B(t), teA.

It is clear that the domain dom(Pa) of the operator Pa consists of such
elements (A4, B) € S(n,r), that matrix function B(t) is continuously differ-
entiable on A. If the pair

(A, B) € dom(Pa)

is such that matrix .
@1(t) = A(t)B(t) — B(t)

is also continuously differentiable on A then there exists an operator P2 on
this pair for which
PX(A,B) = PA(4,Q1).

Denote the domain of the map P2 as dom (P2 ). We can construct any degree
of Pg, k=0,1,2,... of the operator Po by induction. We assume that Pg
is the identical map in S(n,r) and that

dom(P) = S(n,r).
Lemma 3.1.System (18) belongs to the class p on the set A if and only if
(A, B) € dom(PY).

(see: Gaishun I.V. Introduction to the Theory of Linear Nonstation-
aty Systems. Minsk, 1999.)

Thus system (18) belongs to the class p on the set A if and only if
the following matrix functions

QO(t) = B(t)a Ql(t) = A(t)Qz—l(t) - Qi—l(t)a 1= L2,... ' Py (21)

are defined and continuous on this set A.
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Note. If matrices A(t), B(t) are continuously differentiable p — 1
and p times correspondingly then system (18) belongs to the class p. The
converse is not true.

Definition 3.4.If the pair of matrices (A, B) belongs to the class
n — 1 then (n x nr)-matriz function

Q1) ={Qo(t), @1(%), ..., @n-1(t)}

is called the controllability matriz of system (18).

Theorem 3.4. System (18) of the class n — 1 on the open set A D
[to, 1] is completely state controllable on the interval [to,t1] if there ezists
such a point t* € [to,t1] that

rank Q(t*) = n. (22) ‘

Theorem 3.5. System (18) of the class n — 1 on the open set A D
[to,t1] is completely output controllable with respect to output (19) on the
interval [to, 1] if there exists such a point t* € [to, 1] that

rank C(11)Q(t*) = m. (23)

Theorem 3.4 gives us only sufficient conditions for complete state control-
lability, i.e. there exist completely state controllable systems which don’t
satisfy (22).

Theorem 3.6.System (18) with analytical matrices on R is com-
pletely state controllable on any interval [to,t1] C R if and only if for some
t* € [to,t1] the equality (22) hold.

3.4. Canonical Form of Linear Time-Varying Systems

Consider now the canonical form for linear time-varying control sys-
tems for the scalar function u(t), B(t) = b(t) and rank Q(t) = n for all
te [to, tl].

Define the following operators and matrices:

A=A -2, a=Q wamBY),

er =(1,0,...,0), ...,en1 = (0,...,0,1,0),

e €ER", i=1n-1,

da
dt’
D = (e1,Arey,..., A ), G(t)=DQ7'(¢).

A= (a,el,...,en_l), A= All +
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Suppose z(t) = G(t)z(t). Then the following equation is valid for function

z(t):
#(t) = Ao(t)z(t) + Bo(t)u(t), z€ R",u€ R,

where
0 1 0 0
0 0 1 0
Ap(t) = ,
0 0 0o ... 1
ai(t) ax(t) az(t) ... an(t)

Bo(t) = (0,0,...,0,1),
Ao(t) = GI)A()G™Ht) + G)GL(2).

This system can be written as one equation of n-order with respect to z; () :
2™ @) + a1 )2 V(@) + ... + an(®)2(t) = u(t).

3.5. Examples
Ezample 3.1. Consider the system of the second order
E=E+u, N=n+u
with the output
y(t) = £(t) + n(t).
This system is not completely state controllable on any segment [tp, 1] : we

can only transfer any arbitrary state £g,7p on some line £ — n = ¢. However
it is output controllable because of the following equality takes place:

t1
y(t) = e (yoe™® + 2 / e Tu(r)dr),

to

which allow us to choose u(t) and to obtain any desire y; = y(t1).
Ezample 3.2. Suppose [to,t1] = [0,1] and

(5 %)= (G ) o

where a, 3 are real numbers,

0, teo, ], 1, telo, 1],
bl(t) = (,O(t), te [%a §]’ b2(t) = { "/J(t)’ te [%7 §]1
1, te [5, 1], 0, te [g, '.]
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Moreover functions ¢(t), 1(t) are such ones that b, (t), b2(t) are continuously
differentiable functions and (t) > 0 for t € (1/3,2/3] and %(t) > 0 for
t€[1/6,1/3) (see Fig. 2).

f@)

ba(t) b1(2)

Pt o — e ———

o
Ol - — e
L

Fig. 2
The controllability matrix has the form

_ bty —abi(t) - bi(t)
)= ( ba(t) —Bba(t) — ba(?) )

and due to the construction of functions b, (t), bg(t)

detQ(t) = (a — B)ba(t)b2(t) — b1(t)ba(t) + ba(t)by(t) = 0.

It means that the relation (22) is not fulfilled. Nevertheless the matrix

1

fb%('r)ez""d'r 0

W(to,t1) = W(0,1) = | ° .

0 fb%('r)ezﬂ"d'r
0

is nonsingular and consequently system (24) is completely controllable.

4. Observability of Linear Dynamic Systems

Consider a system

(t) = Az(t), teT =[to,t], =€ R™ (25)
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Suppose that due to unknown perturbation of the initial state z(tp) a trans-
fer process z(t), t > tg, has began in this system, and it is inaccessible for
measurement. We can observe only m-vector function y(t), t € T, which is
connected with the state z(t) of system (25) by the relation

y(t) = Ca(t), teT, yeR™ (26)
where C € R™*" m < n is the known matrix.

4.1. Relative G-observability of Linear Time-Invariant Sys-
tems

Let g € R™ be an arbitrary vector, G € R7*™ is a given constant
matrix.

Problem 1. To restore vector Gro by given matrices A, C, G
and measured signal y(t), t € T.

. In other words it is necessary to calculate ¢ linear combinations Gz
of the coordinates zg or, equivalently, to find projections of the vector z¢ on
q directions which are given by vector-rows of the matrix G.

Definition 4.1. The observation system (25), (26) is said to be
relatively G-observable on the interval T if for the known vector-function
y(t), € T, it is possible uniquely to determine the value Gz for any arbitrary
initial state xq.

4.2. Conditional H-observability of Linear Time-Invariant
Systems

Let H € R™**® be given matrix with constant elements, 2 € R? is an
arbitrary vector. Suppose that the observer is interested in initial states zg
from the hyperplane

zo = Hz. (27)

Problem 2 Torestore the initial state zg of the form (27) by
given matrices A, C, H and measured signal y(t), t € T, which is generated
by unknown initial state (27).

Definition 4.2. The observation system (25), (26) is said to be con-
ditionally H-observable on the interval T if for the known vector-function
y(t), t € T, it is possible uniquely to determine arbitrary initial state zo of
the form (27).

The combination of these definitions leads us to the following prob-
lem.

4.3. Conditionally-Relative (H — G)-observability of Linear
Time-Invariant Systems
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Problem 3. Torestore vector Gzg by given matrices A, C, H, G
and measured signal y(t), t € T, if the initial state o has the form zy =
Hz z € R°.

Definition 4.3.The system (25), (26) is said to be conditionally-
relatively (H — G)-observable on the interval T if for the known vector-
function y(t), t € T, it is possible uniquely to determine the vector Gzo for
all initial states x9, z9 = Hz, z € R®.

Theorem 4.1.System (25) is (H — G)-conditionally-relatively ob-
servable on the segment T = [to,t1] with respect to the measurements (26)
if and only if

GH
AFH
rank © = rank cAkH . (28) .
k=0,n-1 s
k=0,n-1

Egample 4.1. Consider a material point of mass m which is under the
influence of central force P, arising as a result of interaction with another
material point of mass M (m <« M) (see Fig. 3).

A reactive force f is appliedF;l(')gpgint m as a control influence. Under
the influence P and f the point m does a motion along the curve I" which
differs a little from some circular orbit I'?. If the vector of reactive force f
is in the plane of the curve I'? then the motion of the point m will be at
the plane of this curve and it is determined completely by the change of its

polar coordinates 7, 9. Let r(t), 7(t), ¥(t), ¥(¢) be phase coordinates. Then
we can obtain differential equation which describes the change of r, v :

. . v 2
U = Y2, y2=—?7+y1y4—ul,
1
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} ) ay2 1
Y3 =Y4, Y4 = —o¥¥2 _ y—u2’ (29)

where )
YL1=rYy =7y =19,y =19,

Uy = , Ug = ,v=uv"M,
m

1% is a gravitation constant, a,, a, are the projections on the radius and
cross direction of the velocity vector of the leaving small part. Under some
assumptions we obtain the following equations:

T1 = T2, T2=0Q21T1+ G24T4 + U1,

T3 = T4, T4 = G4aT2 + Pua, (30)

where a;;, 8 are some constants expressed through the parameters of the
system. Suppose that uq, us are known. Write the system in the form

#=Ar+Bu, z€R' ue€eR? (31)
0 1 0 0 0 0
a1 0 0 az |10
A4=1%9 o0 0 1 (" B=lo o |
0 aq9 0 0 0 ﬂ

with unknown initial states
z1(to) =r(to) — 0, z2(to) = 7(t0),
z3(to) = P(to) — ato.

The observer knows only the value

Ta(to) = P(to) — @, a=

ol ®

Problem 4. To define z;(to) if the motion of the material point is
described by the equation (30) and the vector-function y(t) = z4(t), t € T,
is accessible for the measurements.

It is necessary to restore vector Gz at this problem where

zo=Hz +d, ¢ =(0,0,0,1), G =[1,0,0,0],
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1 000 0
0100 0
H= 0010]’ d= ) 0
0000 Plto) — o
So we have the problem of (H — G)-observability. Its criterion is
0 0 00
L0 as 00| _
ran Q42021 0 0 0 -
0 asoao + a£2a24 00
1 0 00
0 0 00
0 a49 0 0
Q49091 0 00
0 a4q2a91 + 032024 00

We can see that system (29) is (H — G)-observable with respect to output
y(t) = z4(t). However this system is not completely observable with respect
to the same output y(t) = z4(t) since the observability criterion

c' Ak
V=4
rank{k=0’3}

of this system with respect to the output y(t) = z4(t) is not fulfilled.

4.4. Observability of Linear Time-Varying Dynamic Sys-
tems

Consider the problem of finding the state vector z(t) of linear time-
varying system

#(t) = A(t)z(t) + B(t)u(t), z € R, (32)

on the basis of incomplete data of its components z;(t), i = 1,n, i.e. we
have system (32) with the output

y(t) =C(t)z(t), ye€R™, m<n. (33)

As we suppose further that the input function u(t) is fixed one, we can
counsider the system

#(t) = A(t)z(t), (34)

where A(t) € R™*" is continuous matrix on the open set T C R and C(t) is
continuous (m x n)-matrix function on 7.
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Suppose that [tg,t;] € T. To each element zg € R" we can put into
the correspondence m-vector function

y(t) = y(ta xO) = C(t)x(ta to, xO)u te [th tl]u

due to (34), (33) by the single way. Here z(t,%o,%o) is the solution of (34)
with the initial condition z(tg) = z¢. Let us compose the set

Yigo 1) = {y(t, o) [to <t < ty, Voo € R}

It means that all functions y(t,z¢), to <t < ¢, are the elements of this set
for all zo € R™.

Definition 4.4.System (34) is completely observable with respect to
output (33) on the segment [to,t1] if the map o — y(t,zo0) is injection of '
the space R" to the set Yig, 4,)-

This definition says that if the system (34) is completely observable
then the knowledge of the output function y(¢,zo) on the segment [to,#1]
allow us to restore uniquely the initial state z(tp) = zp which has generated
this function in virtue of (34), (33).

For any o € R" the output y(t) = y(t, o) is given by the relation

y(t) = C(t)F(t,to)zo,

where F(t,tp) is a fundamental matrix of the system (34) with the property
F(to,t0) = Epn. Thus Y}y, 4, is a vector space and the map zo — y(t,zo) is a
linear one. Therefore the system (34) is completely observable with respect
to output (33) if and only if the equality y(t,zo) = 0, t € [to, 1], is fulfilled
only for ¢ = 0.

Definition 4.5. System (34) is differentially observable with respect
to output (33) if it is completely observable with respect to this output on
any segment [19, T1] C [to, t1]-

It is clear that the differentially observable system is completely ob-
servable; the converse assertation is clearly not always true.

4.5. The Duality Principle and Some Observability Condi-
tions

Theorem 4.2.System (34) is completely observable with respect to
output (33) on the segment [t,t1] if and only if the observability Grammian

t
Mo, 1)) = / F(t,t)C' () C()F(t, to)dt (35)
to
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18 nonsingular.
Notice that the observability Grammian is symmetric positive semidef-
inite and is the solution to the matrix differential equation

4 M (t,1) = ~ AWM 1) - M(5, 1) A) - CHOE)

with the initial condition
M(tl,tl) = 0.

Then the initial state z(tp) is given by the formula
t
20 = M~ (to, 1) / F(t,10)C' (t)y(t)dt,
to

where A(t) € C™" 2[ty, 1], C(t) € C™ [to, t1].
Corollary 4.1.System (34), (33) is completely observable on the set
[to, t1] #f and only f

C(t)F(t,to)g 75 0, te [to, tl]., (36)

for any unit n-vector g, ||g|| = 1.

Corollary 4.2.System (34), (33) is differentially observable on the
set [to, 1] if and only if for any segment [19, 1] C [to, t1] the matriz M (1o, 1)
is nondegenerate or

C(t)F(t7t0)g 7é 01 te [TOa Tl]

for any unit n-vector g, ||g|| = 1.¢
Let us consider a system

2(t) = —A'()z(t) + C'(t)u(t), (37)

which is said to be conjugate system to the observation system (34), (33).
It i8 clear that if F(t,7) is a fundamental matrix of the system (34), then
Z(t,7) = (F~(t, 7)) is a fundamental matrix of the conjugate system

2(t) = —-A'(t)z(t).
Therefore the matrix (35) can be rewritten in another form

Mito,t,) = / Z(to, 7)C'(r)C(T) 2 (to, T)dr-

to
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Theorem 4.3 (The duality principle).System (34) is completely
(differentially ) observable with respect to the output (33) on the segment
[to, t1] ¢f and only if the conjugate system (87) is completely (differentially)
state controllable on the same segment.

Now we obtain some coefficient conditions of complete and differen-
tiable observability which are analogous to the controllability conditions.

Definition 4.6. We shall say that the observation system (84), (33)
has the class p, p > 0, on the segment A C T if its any output y(t) is p
times continuously differentiable on A.

Lemma 4.1.The observation system (34), (33) has the class p on
the set A if and only if the conjugate control system (37) belongs to the class
p on the same set.

The control system (37) belongs to the set A if and only if the matrix
functions

Qo(t) = C'(t), Qi(t) = —A'()Qi-1(t) — Qi-1(2),

Q'L(t) € Rnxm, 1= rpa

are defined and continuous on A. Consequently system (34), (33) has the
class p on the set A if and only if there exist continuous matrices

So(t) = C(t), Si(t) = Sima(t)A(t) + Sia(t),

Si(t) € R™", i=T1,p. (38)

for t € A.
Suppose that system (34), (33) has the class n — 1 on the set A.
Definition 4.7. Matriz function

So(t)

S(t) = S1(t)
Sn:l(t)

is said to be the observability matriz for system (34), (33).

Theorem 4.4.System (34), (33) of the class n — 1 on the set A is
— completely observable on the segment [tg,t1] C A if

rank S(t*) =n

for some t* € [to, t1];
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— differentially observable on the set [to,t1] if and only if
rank S(t) =n

for almost all t € [ty, 1]

Let the elements of matrices A(t), B(t) be analytical functions on the
set T € R.

Theorem 4.5. System (34) is completely observable with respect to
the output (33) on the each segment [to,t1] C T if and only if

rank S(t*) =n

for some t* € [to, t1].
4.6. Examples .
Ezample 4.2. Longitudinal oscillations of aircraft with respect to the
center of masses are described by the equations

é = k3a,

¢ = —kia — ka9,
6+ p16 = Bou, (39)
a=p-—20,

where ¢,0,a,d are some angles corresponding to the flight of the aircraft;

k1, k2, k3, B1, B2 are constants. Suppose &1 = ¢, & = p, &3 = 0, £4 = 6; then
we can write the system (39) in the form

&1 = —ki1&2 — ka3 + k1,
=&,
& = —P1& + Pou, (40)
€4 = ks — ksta.

Suppose that the coordinates &3(t) = (t),£4(t) = 6(t) are accessible for the
observability. It means that the output y(t) is defined by the relation

v =5 6 g1 )e0, (41)

where the state vector z(t) is z(t) = {£1(t), &a(t), £3(t), £4(t)}. Compose the
observability matrix S(t) for u = 0. We can see that

rank S = 4.
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It means that system (40) is observable. However if we shall measure the
coordinates &1 (t) = ¢(t), &(t) = (t), i.e. we have the output

=g 0 1 o )20 (12)

we can see that rank S = 3. This fact means that the system (40) is not
observable.

Ezample 4.3. Inverted pendulum

Consider the inverted pendulum (see Fig. 4;)

m [ [pendulum

M ] carriage
pivot

N

Fig. 4; An inverted pendulum positioning system.

whose behaviour is described by the the equation

0 1 0 0 0

) 0 -£ o0 o 1

)= o & o 1 [s0+]| ¥ |u), (43)
-& 0 £ o0 0

where (see Fig. 42)
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Center of gravity

mg

Fig. 45 Inverted pendulum: forces and displacements.

F represents the friction coefficient (friction is accounted for only in
the motion of the carriadge and not at the pivot); g is the gravitational
acceleration, M is the mass of carriage; L is the distance from the pivot
to the center of gravity; L' = L + #, J is the moment of inertia with
respect to the center of gravity; s(t) is the displacement of the pivot at time
t. We choose the components of the state z(t) as z(t) = {s(t), $(t), s(t) +
L'p(t), 3(t) + L'¢(t)}, where ¢(t) is the angular rotation at time t of the
pendulum.

If we take as the output variable y;(t) the angle ¢(t), we have

01(t) = (7,0, 75, 0a(2) (44)

The observability matrix has the form

1
-5 0 F 0
0 - 0 &
Q=1 _g1 F1 21 9 (45)
T g (MI o, VTP
0 —fHo-(w'r 0 Fyp
We have
rank @ =3,

consequently system is not completely observable. If we add as a second
component of the output variable the displacement s(t) of the carriage, we

have the output
-4 0 4 0
y(t)—( 0ot O)z(t).
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With this output rank Q = 4 and the system (40) is completely observable.
Note that the canonical observability form for linear system (25) is

2= (42 0, )=,
Vit) = (C1,0)2(0). ()

5. Stabilization of Dynamic Systems

5.1. Statement of the Problem
Consider the following control system

l‘(t) =f(t,a:(t),u), t2>0, f(t,0,0) =0,
z(0) =z9, z(t)€R", uw€eR. (47)

We shall seek a control function u of this system in the form of C-control u =
u(t, z(t)), which depends on the time ¢ and the values of running coordinates
of z(t). Besides a restriction u = u(t,z(t)) € U is valid where U is a given
set from R'. In addition we suppose that

u(t,0) = 0.

It is possible to extract the following statements for control problems
on the infinite time interval.

19, To find C-control u(t,z) for which system (47) became asymp-
totically stable in some sense. The following problems may be considered in
that case: the problems of asymptotical stabilization, exponential stabiliza-
tion, stabilization in the large and so on, if the trivial solution of system (47)
becomes asymptotically stable, exponentially stable, asymptotically stable
in the large and so on for the control u, correspondingly. Such a control is
called asymptotically stabilizing, exponentially stabilizing, stabilizing in the
large and so on.

20, To find a control u(t,z) which minimizes the cost functional

J(u) = / Folt, (0), u(t, 2)dt - inf (48)
0

Here Fy is a given function

Fy:R'x R® x R™ — RL.
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30. To find a control u(t,z) which minimizes the cost functional (48)
and transforms the system (47) into stable one simultaneously.

We have here the problem of optimal stabilization and the correspond-
ing control is the optimal stabilizing control.

5.2. Stabilization of Linear System

The control problem of linear systems with quadratic cost functional
is one of more well known and studied problem. Let us consider a linear
systemn

z(t) = A(t)z(t) + B(t)u, t > 0, (49)

z€R", ue R, z(0) =1z
with the quadratic cost functional
00
J(u) = / [/ (6N (8)(t) + ' No(t)uldt — inf (50)
0
which is minimized. The matrices A(t), B(t), N1(t), No(t) are given and they

have a bounded continuous elements. In addition the matrices Ni(t), No(t)
are uniformly positive definite:

Nl(t) > CEp, NO(t) > CE,, (51)

where C > 0 is some constant, Ey is unite (k % k)-matrix. Inequalities (51)
have the following sense: for any z € R™, u € R" and t > 0 the estimations

' Ni(t)z > Cz'z, ' Ny(t)u > Cu'u

take place. We shall seek the control u for the problem (49), (50) in the form
u = u(t,z(t)). Any other restrictions on the control function u are absent.
The conditions of optimal stabilization in terms of scalar Lyapunov
functions V' (t, ) with some properties are known. Now we remind them.
Let w;(r), r > 0, be a scalar continuous nondecreasing functions such
that
wi(r) >0 for r>0, w;i(0)=0,

and L, is an operator of the form

v (te) = V8 (0, LD,

Note that L,V (t,z) is a full derivative of the function V(¢,z) along the
trajectories of system (47) for the control u.
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Now we shall give the condition of the fact that some C-control u(t, z)
is stabilizing.

Theorem 5.1. A control u(t,z) is a stabilizing control for the sys-
tem (47) if there exists such a continuously differentiable Lyapunov function
V(t,z) that

wi(lz]) < V(i z) < wallz]), (52)

L,V (t,z) < —wsl(|z|). (63)

For such a control function the trivial solution of system (47) is uniformly
asymptotically stable.

In accordance with Theorem 1 for the solving problem (49), (50) it
is necessary to construct a Lyapunov function V' (¢, z). It is naturally to seek
this function in the form

V(t,z) =z’ P(t)z,

where a symmetric function P(t) > 0 to be defined.
It is known from the theory of optimal control that optimal control
ug and matrix P(t) for the problem (49), (50) satisfy the relations

up(t, ) = —N; L (t)B' (t)P(t)z, t >0, (54)
P(t) + A'(t)P(t) + P(t)A(t)—
—P(t)B(t)N; (t)B'(t)P(t) + Ni(t) = 0. (55)
Besides, if there exists such a solution P(t) of the equation (55) that
P(t) > aE,, |P®)|<C, a>0, C>0, (56)

then the system (49) is exponentially stable for the control (54).

Now we formulate a sufficient conditions for the existing and unique-
ness of the solution P(t), t > 0, which satisfies the condition (56). Sup-
pose that the elements of the matrices A(t), B(t),t > 0, have continuous
bounded derivatives till n — 1 order inclusive. Let us introduce n matrices
Qo(t),-..Qn-1(t) of the dimension n x r and (n X nr)-matrix Q(t) :

Qo(t) = B(t), Qi(t) =—-A(t)Qi_1 + Qi_1(t),

i=1,2,...,n—1,

Q(t) = {QO(t)a Ql(t)a L Qn—l(t)}‘
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Theorem 5.2. Suppose that all restrictions on the parameters of the
problem (49), (50) are satisfied. Let, in addition, there ezxists such a number
A > 0, that for any segment [t,t + A], t > 0, there ezists a point t*(t) .at
which

rankQ(t*(t)) =n, t>0. (67)

Then for t > O there ezists an unique solution P(t) satisfying the conditions
P(t) > aE,, ||P@)|<C, a>0, C>0.
The optimal control uy(t,z) has the form
up(t,z) = —N; Ht)B'(t)P(t)z, t>0, (58)

where )
P(t) + A (t)P(t) + P(t)A(t)—

—P()B(t)Ng ' (t)B'(t)P(t) + Ni(t) =0, (59)
system (49) is exponentially stable for this control and
J(uo) = V(0,z0).

5.3. Time-Invariant Linear-Quadratic Problem
Consider time-invariant linear-quadratic problem

z(t) = Az(t) + Bu, t >0,

z€R", uweR, z(0)=x (60)

with the quadratic cost functional
oo
J(u) = /[-’Ifl(t)NL’L‘(t) + U'Nou]dt — inf,
u
0

N; >0, Ng > 0. (61)

As the value of the quadratic cost functional is not changed when we change
the initial time moment ¢ = 0 into ¢ = #¢ then the Lyapunov function V
depends on only = and has the form

V(z) = 7' Pr, (62)
optimal control is

uo(t, ) = uo(z) = —N; ' B'Pz. (63)
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A constant symmetric matrix P > 0 from (62), (63) is the solution of the

equation
A'P+ PA—PBN§'B'P+ N, =0. (64)

The equation (64) is called Riccati equation.
Theorem 5.3. Suppose that

Ny>0, N;>0, rank(B,AB,...,A" 'B)=n, (65)

in the problem (60), (61).
Then equation (64) has the unique solution P > 0 and the relations

V(z) = 2'Pz, uo(t,z) = up(z) = -—NO’IB'Pg;
are valid. System (60) is exponentially stable for the control (63) and
min J(u) = J(up) = o Pxo.
u

Thus for constant matrices A, B, Ny, N1 the solution of the stabilization
problem consists in the construction of positively defined solution for the
Riccati equation (64).

5.4. Algebraic Riccati Equation

Consider so-called establishment method of constructing the solution
of Riccati equation (64). It is based on the approximation of the problem
(60), (61) on the infinite time interval by linear quadratic problem on the
finite time interval 0 < ¢ < T for linear time-invariant system (60)

#(t) = Az(t) + Bu (66)
with the cost functional
T
Ji(w) = / [/ () N1 2(2) + o' Nouldt. (67)

0

If u; is an optimal control in the problem (66), (67) then

J1(u1) < Ji(uo),

where ug is an optimal control for the problem (60), (61). In addition it is
clear that
Ji(uy) = Ji(wp) for T — co.
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We obtain from this point and from the well known solution of the problem
(66), (67) that, if there exists a positive definite solution P of Riccati equa-
tion (64), then this solution is a limit for T' — oo of the solutions «(t) for
Cauchy problem

a(t) + a(t)A + A'a(t) — a(t)BNy 'B'a(t) + Ny =0,

0<t<T, «T)=0.

It is convenient to suppose
B(t) = o(T — 1.
Then a function S(t) is the solution of the equation
B=BA+AB—BBN;'Bf+ N, B(0)=0,

from which we have Jim B(t) = P.
o0
The ground of this fact you can find in N.N.Krasovskii. Stabiliz-

ability problems for control motions. M. 1965 (in Russian).
It is well known that for the linear system

z(t) = Az(t) + Bu(t) (68)
any initial state z(0) can be present by the unique way as follows
£(0) = 7,(0) + z(0), (69)

where z5(0), z,(0) belong to the subspace of stable and unstable states,
correspondingly . It is evident that if we want to control correctly by the
system it is necessary that unstable state should be controllable.

Definition 5.1. Linear system (68) is said to be stabilizable if its
subspace of unstable states is contained in its subspace of controllable states,
that is any vector which belongs to the subspace of unstable states belongs
the subspace of controllable states as well.

Theorem 5.4. Any asymptotically stable system with constant pa-
rameters is stabilizable. Any completely controllable system is stabilizable.

The following result shows the convenience of applying the control-
lability canonical form.

Theorem 5.5. Consider the system (68) and suppose that it is
transformed into the controllability canonical form

() = ( A A )z(t) + ( B )u(t), (70)

22
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where the pair of matrices {A},, B}} is completely controllable. System (68)
is stabilizable if and only if the matriz A%, is asymptotically stable.

5.5. Examples

Ezample 5.1. An inverted pendulum

Consider the inverted pendulum (see Fig.4;). Suppose that we wish
to stabilize it. It is clear that if the pendulum starts falling to the right the
carriadge must also move to the right. We therefore attempt a method of
control whereby we apply a force u(t) to the carriadge which is proportional
to the angle ¢(t) (see Fig. 42). This angle can be measured by a poten-
tiometer at the pivot, the force u(t) is exerted through a small servomotor.
Thus we have

u(t) = ke(), (71) ‘

where k is a constant. It may be proved (see, for example, H. Kwakernaak,
R.Sivan Linear Optimal Control Systems. 1972), that the system (43) not be
stabilized with the input function (71) for any value of the gain k. But it is
possible, however, to stabilize the system (43) by feeding back the complete
state z(t) = col{s(t), $(t), s(t) + L'p(t), $(t) + L'p(t)} as follows

u(t) = —k'z(t). (72)

In (72) k € R™ is a constant row vector to be determined. We note that
implementation of this controller requires measurement of all four state vari-
ables s(t), 5(t), s(t) + L'p(t), 3(t) + L'¢(t), and not only of two as in (71)
for k = {—#,0,4-,0}. Since the behaviour of the inverted pendulum is
described by the linear equation

z(t) = Az(t) + Bu(t), (73)
then substitution of (72) into (73) yields
z(t) = (A — bk')z(t). (74)

It is well known that the stability of this linear system is determined by the
characteristic values of the matrix A — bk'.

Theorem 5.6.4 trivial solution of the linear system (73) is

a) stable if and only if

1. all of the eigenvalues A\; of the matriz A — bk’ have nonpositive
real parts;

2. to any characteristic value on the imaginary azis with multiplicity
m there correspond ezactly m characteristic vectors of the matriz A — bk'.
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b) asymptotically stable if and only if all of the characteristic values
of A — bk’ have strictly negative real parts.

Ezample 5.2. A Stirred Tank
Consider a stirred tank (see Fig. 5)

valves

/\

feed F; feed F5
concentration c¢; l concentration cp

e — T ————TT ]
/\ /\
—
head h volume V
<S> concentration ¢
propellor

outgoing flow F
concentration ¢

Fig. 5. A stirred tank

which is fed with two incoming flows with time-varying rates F(t) and
F5,(t). Both feeds contain dissolved material with constant concentrations c;
and ¢y, respectively. The outgoing flow has a flow rate F(t). It is assumed
that the tank is stirred well so that the concentration of the outgoing flow
equals the concentration ¢(t) in the tank. Let V(t) be the volume of the
fluid in the tank.

Let us consider a steady-state situation where all quantities are con-
stant, say Fig, Fop, Fp for the flow rates, Vy for the volume, and ¢y for the
concentration in the bank. Under some conditions it is described by the
differential equation

() = ( ‘02*19 0 )z(t) + ( o . )u(t), (75)

-1
6
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where 8 = %%, 0 is the time of completing the tank, 8 > 0, Fy— are expendi-
tures, Vy—volume of a substance. This system is not completely controllable.
Differential state equation (75) has the canonical controllability form (70).
The matrix A3, has a characteristic number —1/6, so system (75) is stabi-
lizable.

6. Linear Control Systems with Delay

6.1. Introduction to the Problem
A lot of control objects possess time delay either in control device
or in a state. Let the motion of the controlled object be described by the
equation
z(t) = Az(t) + A1z(t — h) + Bu(t),

_ z€R® weR, teT=][0t], (76)
where h = const > 0 is a number characterizing the delay, A, A;, B are

constant matrices of appropriate sizes. In order that the motion of the
system be defined for ¢ > 0, we must give an initial condition

zo(-) = {z(t) = ¢(t), —h <1 <0, 2(0) = 2o}, (77)

where (t) is a continuous function, and =y € R™. The state of the object at
any moment ¢ € T is not characterized by only a finite number of quantities,
but by a function

{z(t +6), 6 € [-h,0)},

defined on an interval [t — 0, t). This peculiarity of delay systems essentially
complicates solution of the control problem.
The solution of the problem (76), (77) has the form

0 t
z(t) = F(t,O)w0+/F(t,T+h)A1(p(T)dT+/F(t,T)Bu(T)dT, t>0, (78)
~h 0

where F(t,7) is the Cauchy fundamental matrix, satisfying the following
equations with respect to its first and second arguments:

dF(t,7)

dt

dF(t,7)
dr

= AF(t, 1)+ A1 F(t—h,7), T<H{, (79)

=~F(t,7)A— F(t,7 + h)A;, quadTr < t,
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F(t,t—0)=E,, F(t,7)=0, 71>t (80)

It is possible to distinguish two forms of controllability. If for each
state zo(-) it is possible to find a time ¢; > 0 and a piecewise continuous
control u(t),t € [0,¢], for which z(t;) = 0, then we shall say that the state
is relatively controllable. In many cases of such system it is not sufficient
to "cut off” control at time t = ¢; (u(t) = 0, t > ¢;) since the system may
depart from the equilibrium z(t) = 0 due to the action of the delay. Thus,
we introduce the concept of a completely controllable state of (77) when the
trajectory goes to the origin or to some prescribe function and remains there
under an admissible control.

6.2. Relative Controllability of Linear Time-Invariant Sys-
tems with a Constant Delay ‘

Definition 6.1. The initial state zo(-) of the system (76) is called
relatively T-controllable if there erists a piecewise-continuous control
u(t), t € [0,t1,] such that the trajectory z(t) starting at zo, generated by
the control u(t), satisfies the condition z(t;) = x; for any prescribe state
z1. A system (76), all of whose initial states are relatively T-controllable, is
called relatively T-controllable.

Definition 6.2. If the initial state xo(-) of the system (76) is rela-
tively T-controllable (T-controllable) for any t1, then this state (system) is
called relatively controllable (controllable).

Consider the solution (78) at the moment ¢; :

0 t1
z(ty) = F(t1,0)zo + /F(tl, T+ h)Ayp(7T)dT + /F(t, T)Bu(t)dr, t2>0,
-h 0

(81)
To find the control function, that transferes any initial state z(—h + 8),0 €
[—h, 0] to any prescribed final state ; € R™ it is necessary to solve so-called

l-problem of moments: to find a piecewise continuous control u(t),t € [0, ¢;],

for which
t;

[ FttunButnir = w, (82)
0
where yg is a known vector
0
yo = z(t1) — F(t1,0)zo — /F(tl, T + h)A1p(7)dT. (83)
—h
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It is well known from the problem of moments that the system (76) is control-
lable if and only if the rows of the matrix F(t,7)B are linearly independend
or, equivalently

¥(g,7) = ¢ F(t1,7)Bu(t) #0, 7€ [0,t1], (84)

forany g, | g ||= 1.

The criterion (84) is implicit one for time-invariant system (76). Let
us find an explicit criterion of relative controllability which is expressed
through the matrices A, A;, B of the system (76).

6.3. The Defining Equation

The solution of controllability and observability problems for time-
invariant and time-varying systems with delay is based on the notion of the
defining equation for the systems under investigation. This method gives us
an effective and convenient for realization criteria of relative controllability
for' linear hereditary systems of various types. The defining equation is
formed using the original kind of the control systems and allows us to verify
if the system is controllable on structural schemes and experimental data or
not. Note that the defining equation plays the same role in the theory of of
controllability of the time-invariant systems as the characteristic equation
in the stability theory.

For the system (76) let us introduce the n x n-matrix function X(s),
depending on two arguments k,s, (k =1,2,...;8=0,h,2h,...), and estab-
lish the following relations between the vector functions z(t) € R™, u(t) € R™
and matrix functions X(s) € R"*", Ug(s) € RT*T :

z(t) = Xi(s), z(t—h) = Xp(s—h), z(t) > Xgy1(s), u(t) = Ui(s).
Then for the equation (76) we have
Xky1(s) = AXi(s) + A1 Xk(s — h) + BUg(s), s>0, k=1,2,.... (85)

The equation (85) we shall call the defining equation of the system (76). We
shall calculate the solutions Xi(s), k =0,1,2,... for the initial conditions

Uo(0) = E,, Ui(s)=0, s#0VEk#DO. (86)

In subsequent discussions, this equation (86) will play very important role.
It is clear that the solution of (86) is a sequence of matrices Xj(s) defined
for k=1,2,...,8=0,h,2h,..., where for fixed k£ we have X (s) = 0 for
s = (k +1)h,(k + 2)h,.... For each o we denote II, as the set

o = {Xk(s), k=0,n—1; s€[0,ah]}
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the solution of the defining equation. The defining equation is called o
-nonsingular if
rankIl, = n.

If this condition is satisfied for one o < oo, then we call the defining equation
nonsingular.

Theorem 6.1. The system (76) is relatively T-controllable if and
only if the defining equation of this system is a-nonsingular, o = [T/h],
where [-] is a whole part of the number.

Remark 6.1. In the case t; < h, the number o = 0 and the condition
for relative controllability of a system with delay (76) coincides with the
condition for complete controllability of a system without delay:

rank{B, AB ...,A""'B} =n.

6.4. Complete Controllability of Linear Time-Invariant Sys-
tems with a Constant Delay

We have introduced the notion of completely controllable state of the
system (76) when the trajectory z(t,zo(-), o, u(t)) goes to the origin or to
some prescribe function and remains there under an admissible control. Now
let us introduce the accurate definitions.

Definition 6.3. The initial state zo(-) of the system (76) is called
completely T-controllable if there ezists a piecewise-continuous control
u(t), t € [0,t1,] such that the trajectory z(t), starting at zo(-) and generated
by the control u(t), satisfies the condition z(0) = ¢(8), 0 € [t1 — h,t;] for
any prescribe function ¢(t1+8), 6 € (—h,0]. A system (76), all of whose ini-
tial states are completely T'-controllable, is called completely T-controllable.

Definition 6.4. If the initial state zo(-) of the system (76) is com-
pletely T-controllable for any t,, then this state (system) is called completely
controllable.

Theorem 6.3. The system (76), (77) is completely controllable if
and only if

rank {\E,—A—Aje™ B}=n (87)

for all complez numbers A € C.

Note. The delay system can have only a finite number of proper
values A with ReX > 0 (see,for example, I.G.Malkin The theory of stability
of the motion. Moscow, 1966). All proper numbers satisfy the equality

det(A\E, — A — Aje ) =0.



The Qualitative Theory of Control Processes 39

For nonproper numbers we have
det(A\E, — A — Aje™ ) #£0;

in this case
rank {AE, — A—Aje™ B}=n

and the condition (87) holds automatically. Therefore it is necessary to
check this condition for all A, ReA > 0.

6.5. Linear Systems with a Deviating Argument of Neutral
Type. The defining Equation

Consider the behaviour of a system represented by the following equa-
tion with the deviating argument of neutral type

z(t) = Az(t) + Awz(t — h) + A2 (t — h) + Bu(t), (88)

z€R", ueR", teT=[0,t].

We assign the initial condition

go(-) = {2(7) = ¢(7), 7€[-h,0); z(0) = zo}, (89)

where ¢(7) is a continuously differentiable function and zy is an n-vector.
Just as in the investigation of equation (76), here it is also possible to dis-
tinguish two forms of controllability: relative controllability and complete
controllability. In this section we study the relative controllability of the
time-invariant systems (88) in the sense of definitions of the previous sec-
tion.

Let us find the solution of the equation (88). This solution is ex-
pressed through the fundamental matrix F(t,7) from two arguments: with
respect to its first argument ¢ it satisfies the homogeneous part of (88):

dF(t,T)
dt

with the initial condition

dF(t — h,7)
dt ’

=AF(t,T)+A1F(t—h,T)+A2 T <, (90)
F(t,t — 0) = E,.

It is necessary to know for the matrix F(t,7) the equation with respect to
the second argument 7. For this reason the equation (88) we multiply on
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¢

the left side to some matrix F(ttau) and take the integral [ from all adds
0

n (88):

o

F(t,T):iI(T)dT - /F(t,T)Ag:&(T — h)d'r =

t t t
- / F(t,7)Az(r)dr + / F(t,7)Ayz(r — h)dr + / F(t, 7)Bu(r)dr. (91)
0 0 0
For the first two integrals we suppose that matrix function F(t,7)— F(t,7+
h) Az is continuous one for 7 € [0,t]. Now we apply the integration in parts
to the integral

( / F(t, ) - F(t, 7 + h)Ag)é(r)dr

0

and after the change of variables get the formula

(F(t,7) — F(t,7 + ) Aga(r)) / (dF (t,7) _dF (t’;: WAz () —

0 ¢ 0
- /F(t,‘r + h)Asp(T)dT = /F(t,T)A:L‘(T)dT + /F(t,T + h)A1p(T)dT+
Zh

t
dF(t,7+h
+—(%)A1z(7')d7' + / F(t,7)Bu(T)dr. (92)
0
Let us choose the matrix F(t,7) from the equation
dF(t, dF(t,7+h
% = —F(t,7)A — F(t, 7+ h)A, + %_)A% r<t  (93)

and the conditions

F(t,t_0)=En, F(t,T)ZOn, TZt

b

F(t,7) — F(t,7 + h) A, ' (94)
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is a continuous function for 7 € [0, t]. Then the solution of the equation (88)
will has the form

0
5(t) = (F(£,0) — F(t, h)As)zo + / Ft, 7 + h) Avpr)dr+
Zh

0 t
+ / F(t, 7 + h)Axp(T)dT + /F(t,T)Bu(T)dT, t>0, (95)
—h 0

where F(t,7) is the Cauchy fundamental matrix, satisfying the equation
(90) with respect to its first argument ¢ and the equation (93) with respect
to its second argument 7. ‘
For the system (88) let us introduce (n x n)-matrix function Xj(s),
depending on two arguments k,s, k = 0,1,2,...;8 = 0,h,2h,...): and
establish the following relations between the vector-functions z(t) € R",
#(t) € R™, u(t) € R™, and matrix functions X(s) € R("*") Ux(s) € RI*") .

z(t) = Xi(s), z(t—h) = Xe(s—h), z(t) > Xg1(s), u(t) = Ux(s).
Then instead of the equation (88) we have
Xi+1(s) = AXi(s) + A1 Xg(s — h) + Ao Xg11(s — h) + BUi(s),  (96)
>0, k=1,2,....

The equation (96) we shall call the defining equation of the system (88).
For the unique solvability of (96) we shall calculate the solutions Xy(s), k =
0,1,2,...: with the initial conditions

UO(O) = E-,-, Uk(s) = 0, 8 7’—' vk 7’—' 0. (97)

Then the following theorem may be proved.
bf Theorem 6.1.The system (88) is relatively T-controllable if and
only if
rank{Xy(s), k=0,n—-1;s € [0,ah]} =n,

where X;(s),= 0,1,2,... are the solutions of the defining equation (96) with
the initial conditions (97) for the system (88).
7. Controllability of Linear Time-Varying Delay Systems

Let us consider the system

z(t) = A(t)z(t) + A1(t)z(t — h) + B(t)u(?), (98)
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teT =|ty,t1, z€R", u€eR.
with the initial state

:L'()(') = {‘T(T) = (p(T)’ tO —h S T S t()a} (99)

where h = const > 0 is a number characterizing the delay, A(t), Ai(t), B(t)
are time varying matrices of appropriate sizes. Suppose that A(t), 4;(t), B(t)
are analytical functions.

Definition 7.1. The system (98) is said to be relatively controllable
on [to, 1] if for any initial state zo(-) and arbitrary n-vector z, there exists
a piecewise continuous control u(t), t € [to,t1], such that the corresponding
trajectory z(t), t € [to,t1], satisfies the condition z(t,) = z;.

7.1. The Representation of Solution for Linear Time-Varying
Delay Systems

Let us find the solution of the equation (98). As it is true for control
linear differential equations the solution of (98), (99) is expressed through the
fundamental matrix F(t,7) from two arguments. This matrix with respect
to its first argument ¢ satisfied the homogeneous part of (98):

dF(t,7)
dt
with the initial condition

= AQF(t,7) + AL F(t — h,7), t>to, (100)

F(t,t—0) = E,.

Let us obtain the equation for the matrix F(t,7) with respect to the second
argument 7. For this reason the equation (98) we multiply on the left side

t
to matrix F(¢,7) and take the integral [ from all adds in (98):

to
¢ ¢ ¢
/F(t, T)L(T)dT = /F(t, T)A(T)z(7)dT +/F(t,T)A1(T)z(T—h)dT+
to to to
¢
+/F(t,T)B(T)u(T)dT. (101)
to

For the first integral we apply the integration in parts:

t t
/F@ﬂaﬂmzpmﬂum;—/i%ﬂuﬂm. (102)
to to
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For the third integral in (101) we introduce the change of variables 7—h = 6,
define the matrix function F(¢,7) = 0, for 7 > ¢ and obtain

t t—h
/ F(t,0) A (0)z(6 — h)dd = / F(t,0+ h)A1(8)z(6)d8 =

to to—h

1)
_ / F(t,0 + h) A1 (6)(0 + h)p(6)dd+
to—h
t—h t
+ / F(t,0 + h) A1 (0)z(8)d0 + / F(t,0+h) A ()z(0)dd.  (103)
to t—h

Notice that the last integral is zero due to the property F(t,7) = 0, for
7 > t . Therefore due to (102), (103), (99) and the property F(t,t—0) = E,
for the matrix F(¢,7) we have instead of (101)

t

2(t) — F(t, to)z0 — / F

t
b7 or)ir = / F(t,7) A(r)z(r)dr+
to

d
to
to ¢ ¢
+ / F(t,T+h)A1(T)<p(T)dT+/ F(t,T+h)A1(T)a:(T)dT+/ F(t,7)B(t)u(7)dT.
to—h to to
(104)
Now we define the matrix F(t, ) according to the equation
dF(t,
—;TL) = —F(t,T)A(r) = F(t, T+ h)Ai (T + h), T<Ht,
F(t,t—0)=E,, F{t7)=0, 7>t (105)

Then we obtain the solution of the problem (98), (99) from (104) in
the form

to t
2(t) = F(t, to)zo+ / F(t, 7+h) A1 (r)o(r)dr+ / F(t,7)B(r)u(r)dr, t >0,
to—h to
(106)
where F(t,7) is the Cauchy fundamental matrix, satisfying the equation
(100) with respect to its first argument ¢ and the equation (105) with respect
to its second argument 7.
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7.2. Implicit and Explicit Theorems of Relative Controlla-

bility
Theorem 7.1. The system (98) is relatively T-controllable if and

only if
P(g,7) = ¢'F(t1,7)Bu(t) #0, 7 €][0,t1], (107)

for any g, |l g |l=1.
To obtain explicit conditions of relative T-controllability let us rewrite
the equation (98) in the form

pz(t) = A(t)z(t) + A1(t)ezp(—ph)z(t) + B(t)u(t), (108)

where p is the differentiation operator: pz(t) = z(t);, ezp(—ph)z(t) = z(t —
h), so that '
p - exp(—ph)z(t) = (t — h).

Let us introduce the following correspondences between vector-functions
z(t) € R™, u(t) € R", the operator p and new matrix functions Xj(t,s) €
R"™" Uk(t,s) € R™ " from two arguments t,s (here t reflects the nonsta-
tionarity of the system (98) and s reflects the presence of delay £ in it), new
operators A, D according to the rules:

z(t) = Xk(t,s), u(t) = U(t,s), p— A+ D. (109)

In (109) A is the shift operator for index of some matrix function, D is the
differentiation operator with respect to ¢ of some matrix function, so that,
for example,

(A + D) Z(t,8) = Zry1(t,8) + Z(t, s). (110)

The index k + 7, = 0,1, at matrices Xy (¢, s) corresponds to j-derivative
of vectors z from (98). The nonstationary of the system (98), in contrast to
time-invariant case, is reflected due to (109) by the term D in the correspon-
dences p =+ A+ D in (109). This correspondence transforms z(t) = pz(t)
to

pz(t) = (A + D)Xk (t,8) = Xpy1(t,8) + Xi(t, s).

We have for time-invariant systems, obviously, from (109)
z(t) = Xi(s), u(t) 2> Uk(s), p— A
and we get instead of (110)

pz(t) = AXg(t, 8) = Zgy1(s).
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Due to (110) and the representation of the operator A(t) + A;(t)e P* of the
right part of the system (108) we have that e™2"* = exp—Ah is the shift
operator of argument s for some matrix function Z (¢, s):

exp(—Ah)Z(t,s) = Z(t,s — h),

and (exp— Dh) is the shift operator of argument ¢ for some matrix function
Zk(t,s), so that
exp(—Dh)Zg(t,s) = Zg(t — h, s).

Due to (110) we obtain for the system (108) the following algebraic rec-
curence on index k equations:

(A+D)Xg(t,3) = A(t)Xg(t, s)+Ai(t)ezp(—(A+D)h) Xi(t, 8)+B(t)Ui(t, s),‘

k=0,1,2,.... (111)

By virtue of properties of operators A, D this equation may be rewritten in
the form:

Xie41(t, s) + Xk(t, s) = A(t) Xk (t,s) + A (t) X (t — h,s — h) + B(t)Ui(t, s),

k=0,1,2,.... (112)

To define uniquely the solution Xg(t, s) of the equation (112) we introduce
the initial conditions:

Uo(t,O) = E,, Uk(ta S) =0, k ?(‘-OVS 750, Xk(t7s) :Onxra k< 0,
(113)
where 0y, x;, is a zero l; X lo-matrix, 0; is a zero square [ x l-matrix, E, is
identity ! x I-matrix. Matrix algebraic reccurence on the index k equations
(111) or, equivalently, (112) we shall call the defining equation of the time-
varying system with delay (98). We shall say that a totality Xi(t,s) €
R™T" k=0,1,2,... is a solution of the defining equation (112), (113).
Theorem 7.2. System (98) is relatively controllable on T = [to, 1]
if and only if

ti—tg—0

rank {Xi(t,s), s€[0,ah], a=] :

l, k=0,1,...,N}=n

(114)
holds for some integer N, where X(t,s) are the solutions of the defining
equation (112), (113).
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We shall call that the system (98) satisfies to mazimum condition on
T = [to,t1] if the solution X(t,s), k > 0,t € T, s € [0, ah] of the defining
equation (112), (113) posesses the properties

rank {Xy(t,s), k > 0,s € [0, ah]} = maz rank {Xi(t,s), k > 0,s € [0, ah]}

(115)

for all ¢ € T except, probably, nowhere dense subset. Here the function

Xi(t, s) is the solution of the of the system (98) with the parameters A(d),

1(t), B(t), h; maximum in (115) should be taken on various parameters

(t), A1(t), B(t), h of the system (98).

The results of this theorem are naturally generalized to the systems

with general proper operator and influence operator of general type, to the
time-varying systems with the deviating argument of neutral type:

At
A

#(t) = A(t)z(t) + AL ()Tt — h) + Ao(t)E(t — k) + B(t)u(t),  (116)

teT=[ty,t1], z€R", ueR,
with the initial state

zo()) = {z(7) = (1), to—h <7<t} (117)

with a differentiable initial function ¢(7), to — h < 7 < tp; to singularly
perturbed dynamic systems (SPDS):

#(t) = A1 (8, p)z(t) + C1(2, p)y(t) + Bi(t)u(t),

#Y(t) = Az(t, p)z(t) + Ca(t, p)y(t) + Ba(t)u(t), (118)

where t € T = [tp,t1], z € R™, y € R™, wu € R", uis a small
positive parameter, u € (0, 4%, u® < 1, A;i(t,p), Ci(t,p), i = 1,2, are linear
operators of the form

Ai(t,p) = Aio(t) + Ai(t)exp(—ph) + Aia(t)ezp(—ph),

Ci(t,p) = Cio(t) + Cip(t)ezp(—ph) + Cia(t)ezp(—ph).  (119)

It is evident that (118), (119) is SPDS with the deviating argument of neutral
type; for A;; = A2 = 0, C;1 = Ciz = 0,i = 1,2, we obtain SPDS of
ordinary differential equations; for A;2 =0, C; 2 = 0,i = 1,2, we get SPDS
with a constant delay h.

7.3. Output Controllability of Linear Time-Varying Delay
Systems
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Consider the behaviour of a system represented by the linear time-
varying delay system

#(t) = Az (t) + A1 (D) (t — h) + Bt)u(t), (120)

t€T=[t0,t1], ze€R", ueR,
with the initial state

zo(-) = {z(7) = p(7), tE€E [to— h,to), (121)
with the output
y(t) =Cz(t), ye€R™. (122)

Let us consider the problem of output controllability (see Definitions 3.1, -
3.2). Using the formula for the solution of (120), (121) we can obtain the
following representation for the output (122):

t
y(t) = COF(t to) + / F(t,7)B(ru(r)dr], t>t,  (123)
to

and for t = t; we have

t1

/C(tl)F(tl, T)B(T)U(T)d’r =) C(tl)F(tl, to)(L‘o, t Z to. (124)
to

So we have the implicit criterion of output controllability.
Theorem 7.3.System (120), (121) is output controllable for analyt-
ical matrices functions A(t), Ai(t), B(t) if and only if

"/1(977-) = g,C(tl)F(tlaT)B ¢ 01 TE [tatl]' (125)

Now we give the explicit criterion of the output controllability for the system
(120), (121). Consider the defining equation for (120), (121):

Xi1(t,8) = AR Xk (t, 8) + A1(t) Xk (t, s — b) + B(t)Ug(t, s) — Xi(t, s),

Yi(t, s) = C(t) X(t,s), k=0,1,2,.... (126)

with the initial conditions:

U()(t,O) = Er, Uk(t,S) =0r, k#0Vs+#0; Xk(t,.ﬂ) =0Onxr, k<0.
(127)
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Matrix algebraic reccurence on the index k equations (126), (127) we shall
call the defining equations of linear time-varying system (120) with the out-
put (121). We shall say that the totality { X (¢, s), Yi (¢, s)} € RVT™*r k=
0,1,2,...,is a solution of the defining equation (126), (127). Then matrices
Xi(t,s)} € R™ T, Yi(t,8)} € R™T, calculated according to (126), (127)
are called the components of the solution {X(t,s), Yi(t,8)} € R{vtm)xr of
these equations.

Theorem 7.4.Under the conditions A(t),Ai(t) € C" (T, R™ "),
B(t) € C™ YT, R™*7), C(t) € C(T, R™*™) we have that

1. the condition

t1—tp—0
rank{C(t1) X (t*,s),s € [0,ah],a = [%_

is a sufficient one for the output controllability of the system (120), (121)
for some t* € T,

2. if elements of matrices A(t), A1(t), B(t) are analytical functions
on T and C(t) is a continuous function on T, then the condition (128) is a
necessary one as well.

l,k=0,...,N}=m (128)

8. Singularly Perturbed Dynamic Systems (SPDS)

8.1. Introduction to the Problem

The main goal of the study of different dynamical systems is to un-
derstand the long term behavior of states in these systems. In the original
modelling process, various nature laws and simplifying assumptions are used
to obtain a dynamical system which approximately describes physical phe-
nomena. Therefore, we need to investigate not only the mathematical model
but also different perturbations of this model.

We shall distinguish two kinds of the perturbations: regular and
singular perturbations. In the last few years, there has been an increas-
ing interest in the controllability and stabilizability problems for singularly
perturbed dynamic systems (SPDS). SPDS are defined mathematically as
the systems including the singular parameters whose small perturbations
can change the order of the systems. The presence of such parameters of-
ten makes the analysis of the original system difficult due to the facts that
the system has a singularity and the presence of singular parameters in-
creases the dimension of the system. From the above reasons the original
full (n; + ng)-system is usually decomposed in two subsystems of smaller
dimensions, i.e. the reduced ni-system and the boundary layer ng-system,
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which are analyzed instead of the full (n; + ng)-system (see for example
Chow J.H., Kokotovic P.V., 1976; Kokotovic P.V., 1984; Kokotovic P.V.,
Khalil H.K., O’Reilly J., 1986).

8.2. The Standard Singular Perturbation Model

The singular perturbation model of a dynamical system is a state-
space model in which the derivatives of some of the states are multiplied by
a small positive parameter u; that is,

:i=f(t,z,z,u), zERnla

uz = g(t,z,z,4), 2z € R™. (129)

We assume that the functions f and g are continuously differentiable in
their arguments for (t,z,z, ) € [0,t,] X Dy x Dy x [0, u°], where D; C R™,
Dy C R™ are the open connected sets. When we set 4 = 0 in (129), the
dimension of the state equation reduces from n; + ng to n; because the
second differential equation in (129) degenerates into the equation

0 =g(t,z,2,0). (130)

We shall say that the model (129) is in standard form if and only if (130)
has k > 1 isolated real roots

z=hit,z), i=1,k (131)

for each (t,z) € [0,t1] x D;. This assumption ensures that a well-defined
n;-dimensional reduced model will correspond to each root of (130). To
obtain the i-th reduced model, we substitute (131) into (129), at u = 0, to
obtain

z = f(¢t,z, h(t, z),0), (132)

where we have dropped the subscript ¢ from h(t,z). It will be clear further
from the context which root of (131) we are using. The model (129) is
sometimes called a quasi-steady-state model because z, whose velocity 2 = £
can be very large when 4 — 0 and g # 0, may rapidly converge to a root of
(130) which is the equilibrium of the second equation of (129). The model
(132) is said to be slow model or reduced model.

Notice that modelling a physical system in the singularly perturbed
form may not be easy, because it is not always clear how to pick the pa-
rameters to be considered as small. Fortunately, in many applications our
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knowledge of physical processes and components of the system sets us on
the right road.

Singular perturbations cause a multitime-scale behavior of dynamic
systems characterized by the presence of slow and fast transients in the sys-
tem’s response to externel disturbation. Loosely speaking, the slow response
is approximated by the reduced model (132) while the discrepancy between
the response of the reduced model (132) and that of the full model (129) is
the fast transient. To see this point, let us consider the problem of solving
the state equation

T = f(t’a:aza“)a ﬁl,‘(t()) = E(V’)a T e Rﬂl,

pz=g(t,z,z,u), =2(t)=n(u), z€R™, (133)

where £(u), n(u) depend smoothly on y and ty € [0,¢1). Let z(t,€) and
2(t,€) denote the solution of the full problem (133). When we define the
corresponding problem for the reduced model (132), we can only specify n;
initial conditions since the model is ni-th order. Naturally, we retain the
initial state for z to obtain the reduced problem

z = f(t,z,h(t,2),0), z(to) =& =£(0), z € R™. (134)

Denote the solution of (134) by Z(t). Since the variable z has been excluded
from the reduced model and substituted by its "quasi-steady-state” h(t,z),
the only information we can obtain about 2 by solving (134) is to compute

z(t) = h(t, Z(t)),

which describes the quasi-steady-state behaviour of z when z = z. By con-
trast to the original variable z starting at t9 from a prescribed initial state
n(e), the quasi- steady-state z is not free to start from a prescribed value,
and there may be a large discrepancy between its initial value

Z(to) = h(to, &)

and the prescribed initial state 7(e). Thus, Z(¢) cannot be a uniform approx-
imation of z(t,u). The best we can expect is that the estimate

z(t, u) — Z(t) = O(u)

will hold on an interval excluding ¢y, that is, for ¢ € [t,t;] where ¢, > tq.
On the other hand, it is reasonable to expect the estimate

z(t, p) — Z(t) = O(u)
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to hold uniformly for all ¢ € [tg,t;] since

z(to, ) — Z(to) = £(u) — £(0) = O (k).

If the error z(¢, ) — z(t) is indeed O(u) over [to, ¢1], then it must be true
that during the initial (”boundary-layer”) interval [t,tp] the variable z ap-
proaches z. Let us remember that tha speed of 2 can be large since

z==.
U
In fact, having set 4 = 0 in the second equation of (133), we have made the
transient of z instantaneous whenever g # 0. From the stability of equilibria,
it should be clear that we cannot expect z to converge to its quasi-steady-
state Z unless certain stability conditions are satisfied. Such conditions will .
result from the forthcoming analysis.
It is more convenient in the analysis to perform the change of vari-
ables
y=2z—h(t,z) (135)
that shifts the quasi-steady-state of z to the origin. In the new variables
(z,y), the full problem (129) is

z = f(t’zay+h(taz)’u)a I(to) Zf(#),
. oh oh
By = g(t,l‘, y+ h'(t’ :l,‘), ru) - F‘a_t - “a—zf(t’ z,y+ h(taz)v l“)a

y(to) = n(p) — h(to, &(w))- (136)
The quasi-steady-state of the second equation of (136) is now y = 0, which
when substituted in the first equation of (136) results in the reduced model
(134). To analyze the second equation of (136), let us note that ugy(t) may
remain finite even when y tends to zero and y(t) tends to infiity. We set

dy dy dr 1
ot AN hok

bt —ar " @ 7
and we use 7 = 0 as the initial value at ¢ = ty. The new variable

t— 1o
T =
Y

is "stretched”; that is, if x4 tends to zero (u — 0) we have 7 — oo even for
finite ¢ only slightly larger than ¢, by a fixed (independent of 1) difference.
In the 7 time scale, the second equation of (136) is represented by

dy oh oh
E - g(ta T,y + h'(t7 I)au) - #E - ﬂggf(tazay + h(t,l‘),[.l,),
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y(0) = n(u) — h(to, £(1))- (137)

The variables t and z in the foregoing equation will be slowly varying since,
in the 7 time scale, they are given by the formulas

t =1+ pur,

z = z(to + p7, 1)
Setting u = 0 freezes these variables at t = tp and z = £, and reduces (137)
to the time-invariant system

% = g(to, &0,y + h(t0,&0),0), y(0) = n(0) — A(to, &) (138)

which has equilibrium at y = 0. The frozen parameters (tp,&p) in (138)
depend on the given initial time and initial state for the problem under
consideration. In our investigation we should allow the frozen parameters
to take any values in the region of slowly-varying parameters (¢, z). Assume
that the solution Z(t) of the reduced problem (134) is defined for ¢t € [0,t,]
and

| Z(t) |71 over [0,t].

Define the set
B,={zeR?| |z|<r},

where r > ;. We rewrite (138) as

d:
=X = g(t, 2,y + h(t, 2),0), (139)

where (t,z) € [0,¢1] x B, are treated as fized parameters. We shall refer to
(139) as the boundary-layer model or the boundary-layer system. Sometimes,
we shall also refer to (138) as the boundary-layer model. This should cause
no confusion since (138) is an evaluation of (139) for a given initial time
and initial state. The model (139) is more suitable when we study stability,
controllability, observability, stabilizability properties of the the boundary-
layer system.

Now we represent very important theorem (Tikhonov’s theorem) for
the singularly perturbed dynamic systems (SPDS) (133).

Theorem 9.1 (Tikhonov’s theorem). Consider SPDS (183) and
let z = h(t,z) be an isolated root of the equation

0= g(t,l‘,zaﬂ)-
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Assume that the following conditions are satisfied for all
[t,z,2 — h(t,z),u] € [0,t1] X By x B, x [0, o],

where
B,={zeR!| |=z|<r}

B,={ye R | |yll<p}:

1. The functions f,g and their first partial derivatives with respect
to (z,2,u) are continuous. The function h(t,z) and the Jacobian % t’“;’z’o
have continuous first partial derivatives with respect to their arguments. The
initial data £(u) and n(u) are smooth functions of u.
2. The reduced problem (134) has a unigque solution Z(t), defined on .
[to,tl], and
[z 1< <r

for all t € [to, t1]

3. The origin of the boundary-layer model (139) is ezponentially
stable, uniformly in (t,z).

Then, there exist positive constants ¢ and u* such that for all

| 7(0) — R(t0,£(0)) lI< c

and
0< <y,

the singular perturbation problem (133) has a unique solution z(t,u), z(t, 1)
on [to,t1], and
2(t, 1) — £(t) = O(u), (140)

2(t, u) — h(t, 2(t)) — §(t/n) = O(n), (141)

hold uniformly for t € [to,t1], where §(t/u) is the solution of the boundary-
layer model (139). Moreover, given any t, > to, there is u** < u* such
that

z(t, u) — h(t, 2(t)) = O(u), (142)

holds uniformly for t € [ty, t1] whenever p < p**.

There are other versions of this theorem which use slightly differ-
ent technical assumptions (see, for example, P.V.Kokotovic, h.K.Khalil,
O’Reilly. Singular Perturbation Methods in Control: Analysis and Design.
Academic Press, New York, 1986.)
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Let us consider example of SPDS.
8.3. Example of Armature-Controlled DC Motor

An armature-controlled DC motor can be modeled by the second-
order state equation

dw .

JE—’C'L
1%k -Ritu (143)
dt_ W 1 ,

where i,u, R, L are the armature current, voltage, resistance, and induc-

tance, J is the moment of inertia, w is the angular speed, and ki, kw are,

correspondingly, the torque and the back electromotive force developed with '
constant excitation flux @ (see Fig. 6). The first state equation in (143)

is-a mechanical torque equation, and the second one is an equation for the

electric transient in the armature circuit. Typically, L is "small” and can

play the role of the parameter u. This means that, with

w=z, =Y
the motor’s model is in standard form
&= f(t,z,y,p), z€R,

l‘l’y =9(t,$,y,ﬂ), FAS an, (144)

whenever R # 0. Neglecting L, we solve
0=—-kw—Ri4+u
to obtain
i u — kw
R

which is the only root, and substitute it in the torque equation. The resulting
model

dw  k? k

@ RYTR"
is the commonly used first-order model of the DC motor. In formulating
perturbation models it is preferable to choose the perturbation parameter
@ as a dimensionless ratio of two physical parameters. To that end, set us
define the dimensionless variables

w iR U

Wy = ﬁazr = Eﬁ,ur = E
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and rewrite the state equation as

dur _

mT T

di .
Tl’j=_wr—7'r+ura

where T, = %’} is the mechanical time constant and T} = % is the electrical

time constant. Since

Im > Ty,
we let T, be the time unit; that is, we introduce the dimensionless time
variable :
tr = —
r Tm
and rewrite the state equation in the form
dw,
—= 1,,'_
dt
T, di .
ﬁd_tr - —w'r - 7/1' + u'r' (145)

This scaling has brought the model (143) into the standard form (145) with
a physically meaninful dimensionless parameter

T, k2L

9. Controllability and Observability Problems for Linear Time-Varying SPDS
9.1. Statement of the Problems

In the standard singular perturbation model of an ordinary differ-
ential equations (control systems) some of derivatives are multiplied by a
scalar parameter, that is

(t) = A1z(t) + Asy(t) + Biu(t)
py(t) = Asz(t) + Agy(t) + Bau(t) (146)

where z(t) € R™ is the slow variable, y(t) € R™ is a fast variable, m < n is
the output, u(t) € R" is the input of (146). This time-invariant (n; + ng)-
SPDS is the partial case of the following control SPDS

£(t) = Ai(t, p)z(t) + Cu(t, p)y(t) + Br(t)u(t),
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py(t) = A2(t, p)z(t) + C2(t, p)y(t) + Ba(t)u(t), (147)
with the initial states

zo(-) = {z(¥) = 0(9),9 € [to — h,to), z(to) = zo},

yo(-) = {y(¥) = ¥(¥), ¥ € [to — h,to), y(to) = yo},

zo € R™, yo € R"2, (148)
do(-) = {£(8) = @(8), I € [to — h, to]},
Go(-) = {9(9) = ¥(¥), 9 € [to — h, to]}, (149)

where z(-) € C([to — h, t1],R™), z is a slow variable, y(-) € C([to —
h,t1],R"2), y is a fast variable, h is constant delay, h = const > 0, u is’
a control, u(-) € C(T,R"), C([a,b],RP) is a Banach space of continuous
functions mapping [a,b] in RP with the topology of uniform convergence,
t € T = [to,t1], 1 is a small parameter, p € (0, u], u° < 1, p is a differenti-
ation operator:

pz(t) = 2(t);

ezp(—ph) is a shift operator of function’s argument:
ezp(—ph)z(t) = =(t — h),

so that
p - exp(—ph)z(t) = £(t — h);

Ai(t,p), Ci(t,p), = 1,2, are operators of the form
A;(t,p) = Aio(t) + Air(t)ezp(—ph) + Asi2(t)p - exp(—ph)

Ci(t,p) = Cio(t) + Ci1(t)exp(—ph) + Cia(t)p - exp(—ph). (150)

In (147), (150) B;(t), Aij(t), C,'j(t), 1= 1,2 35 = 0,2, are sufficiently
smooth on T matrix functions of the corresponding dimensions; in (148)
@(t), (t) are continuously differentiable vector-functions; in (149) ¢(t),
¥(t) are continuous 71~ and ny-vector-functions correspondingly. System
(147) - (150) is said to be the linear nonstationary control SPDS with the
deviating argument of neutral type (LNCSPDSNT).

Definition 9.1.LNCSPDSNT (147) - (150), p € (0,u°), is called
{z,y}-relatively controllable (x-relatively controllable, y-relatively control-
lable) on T, if for any {z1,y1} € R™1"2 and any initial states (148), (149)
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there ezists an admissible control u(t) such, that the corresponding solu-
tion {z(t, u),y(t,p)} satisfies the condition {x(t,pu),y(t1,p)} = {z1, 1} €
Rtz (z(t, p) = 21 € R™; y(t, ) =11 € R™).

Problem1 ({z,y}-relative, z-relative, y-relative controllability
problem). Find conditions of {z,y}—, £—, y-relative controllability for LNC-
SPDSNT (147) - (150), u € (0, 0], expressed through its parameters A;;(t),
Cij(t), Bi(t),i=1,2,5 = 0,2.

LNCSPDSNT (147) - (150), p € (0, 4%, is {z, y}-relatively (z-relatively,
y-relatively) controllable on T if the corresponding controllability problem
is solved for any initial states (148), (149).

Consider now the following linear nonstationary observation SPDS

£(t) = Ai(t, p)=(t) + (8, p)y(t),

py(t) = Az(t, p)z(t) + Ca(t, p)y(d), (151)

wiih the output
w(t) = Di1(t)z(t) + Da(t)y(t), (152)

where £ € R, y € R"2, w € R™, ng <ny +ng, t € T = [ty, 1], operators
Ai(t,p),Ci(t,p),i = 1,2, have the form (151) and the initial state has the
form (148), (149). Suppose that 4;;(t), Ci;(t), Di(t), i =1,2,j =0,2, are
sufficiently smooth matrix functions on T = [tg,#1] in (151), (152) with
t1 € (lh,(I + 1)h], I = const > 0.

System (151) with the output (152) is said to be the linear non-
stationary observation SPDS with the deviating argument of neutral type
(LNOSPDSNT).

Definition 9.2.LNOSPDSNT (151), p € (0, u°], (148), (149) is called
{z,y}-relatively observable (z-relatively observable, y-relatively observable)
on T with respect to the output w(t),t € T, if for known initial functions
o(9), $(I), 9 € [to — h,ty), it is possible uniquely to restore the vector
{z(to),y(to)} € R™ 12 (the component z(ty) € R™, the component y(to) €
R™2) of the initial state (148) which generates the output (152).

Problem 2 ({z,y}-relative, z-relative, y-relative observabil-
ity problem.) Find conditions of {z,y}-,z-, y-relative observability for
LNOSPDSNT (151), p € (0, %], (148), (149) with respect to the output
(152) expressed through its parameters A;;(t), Ci;(t), Di(t),i =1,2,5 =0, 2.

9.2. The Defining Equations for Control Systems

To find algebraic controllability conditions for LNCSPDSNT (147)
we rewrite it in the form

pz(t) = Ai(t, p)z(t) + C1(E, p)y(t) + Bi(t)u(t),
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ppy(t) = Aa(t, p)z(t) + Ca(t, p)y(t) + Ba2(t)u(t), (153)

where £ € R™, y € R™*?, u € R",t € T = [tg,t1]. Let us introduce some
correspondences [2 — 4] between vector-functions z(t), y(t), u(t), the op-
erator p, small parameter u of the system (153) and new matrix functions
Xi(t,8) € RM*T, Yi(t,s) € R™XT, UL(t,s) € R of two arguments ¢,s (
t reflects the nonstationarity of system (153), s reflects the presence of delay
h), new operators A, A%, D according to the rules:

z(t) — Xi(t,s), y(t) — Yi(t, s), u(t) — Ug(t, 9),

p— A, +D, pu— AT (154)

In (154) A, (AT) is the shift operator to the right on 1 for lower (upper),
index of some matrix function, D is the differentiation operator with re-
spect to ¢ of some matrix function, so that for example (A + D)Zi(t,s) =
Zy .1 (t,s) + Zy(t,s). The index k + j(j = 0,1) at matrices Xivir Yii;
corresponds to j-derivative of vectors z, y from (1), the index i + m (m =
0,1) at X}*™  Yi*™ corresponds to power m of u at derivatives &, g of
the system (147). The nonstationarity of system (136) in contrast to au-
tonomous case is reflected due to (137) by the term D in the correspon-
dence p — A4 + D. This correspondence transforms z(t), ug(t) from
(147) in virtue of (153) to pz(t) — (A4 + D)Xji(t,s) = Xi, () +
Xi(t,9), wpy(t) = AT(AL + D)Y(t,5) = Yifi(ts) + Vit (¢,8). Obvi-
ously for autonomous system (153) we have z(t) — X}(s), y(t) — Yi(s)
instead of (154) and correspondingly we obtain pz(t) = (A4 + D)Xi(s) =
Xii1(s), wpy(t) = AY(A4 + D)Yi(s) = Yiti(s). Due to (154), (133)
exp(—A4h) is a shift operator of argument ¢ for some matrix function:
exp(—A1h)Xi(t,s) = XL(t — h,s); exp(—Dh) is a shift operator of argu-
ment s for some marix function: ezp(—Dh)Xi(t,s) = Xi(t,s — h), so that
exp(—(Ay + D)h)Xi(t,s) = Xi(t — h,s — h). Due to (137) we have for
system (153) the following matrix algebraic reccurence on k, i equations:

(A4 +D)XL(t,s) = Ai(t, Ay + D)X} (t,8)+
+Cl(ta A+ + D)Ylg(ta 3) + B, (t)Ulz(tv 3)3
AY (A4 + D)Y[i(t,s) = Aa(t, Ay + D)Xi(t,s)+
+Ca(t, Ay + D)Yi(t,5) + Ba(t)Uj(t, ), (155)
i=0,1,2,.., k=0,1,2,....
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By virtue of properties of operators A*, A, D these equations can be
rewritten in the form

Xi11(t,8) + Xi(t,8) = Ai(t, Ay + D) Xi(t, s)+

+C1(t, AL + D)Y{(t, s) + Bi(t)UL(t, 3),
Vit s) + Yt (¢, 8) = Aa(t, Ay + DYXE(t, 8)+
+Co(t, Ay + D)Y{i(t, s) + Bo(t) UL (2, 3), (156)
i=0,1,2,.., k=0,1,2,...

To define uniquely the solution {X}(¢, ), Y;i(t,s)} of (139) we introduce the
initial conditions:

Ud(t,0) = E,, Ui(t,s) =0y, k#0Vi#0,

Xi(t,8) = On,xrs Yi(t,8) = Onyxr, k<0, (157)

where O, x1,) is zero (I) X l2)-matrix, O;- is zero square (I x [)-matrix, E;
is the identity (I x )-matrix. Matrix algebraic reccurence on k, i equations
(155) or (156) we shall call the defining equations of LNCSPDSNT (147). A
totality {Xi(t,s), Yi(t,s)} € Rm+naxr (p = 0,1,2,...,4 = 0,1,2,...)
is said to be a solution of the defining equation (156), (157). Matrices
Xi(t,s) € R, Yji(t,s) € R™* calculated according to (156), (157) we
shall call the components of the solutions {Xi(t,s), Yii(t,s)} € Rlna+nz)xr
(k=0,1,2,...,i=0,1,2,...) of these equations.

R emark. Note that for control systems of linear ordinary differ-
ential equations the defining equations (156), (157) coincide to B(t)Ug(t),
B(t)Uk(t, s) accuracy with the well known ones before [5 — 7]. For station-
ary systems with the deviating argument of neutral type these equations
coincide with [8], but for nonstationary systems of such type they are new
equations and differ from known before [9]. For LNCSPDSNT (147) and
its partial cases of LNCSPDS described by ordinary differential equations,
LNCSPDSD the defining equations (156) are introduced for the first time.

9.3. The Defining Equations for Observation Systems
Let us consider LNOSPDSNT (151) in the form

pz(t) = A1t p)z(t) + Ci (¢, p)y(t),

upy(t) = Az(t, p)z(t) + Ca(t, p)y(t), (158)
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with the output (152). Let us introduce the following correspondences [10 -
12] between vector-functions z(t), y(t), w(t), operator p, small parameter
L, (ll X l2)-matrix functions Q(t) (ll =n1VnaVng, I =n, Vng), Q(t) € Q
= {4;;(t), Ci;(t), Di(t), i = 1,2 ,j = 0,2} which are contained in (151)
and (152), and new matrix functions XF(s,t) € Rux(min2) yk(s¢) €
Rrzx(mtnz) - Wk(s t) € Rrex(m4n2) na < py 4+ ny, of two arguments s, ¢,
operators A, At and new operator p' according to the rules:

z(t) = XF(s,t), y(t) > YE(s,1), w(t) = Wi(s,t),

P Ay, p— AY, Q@) = (By +0'E,)Q(),
Thus we have for A, (t,p) from (158) due to (159):

Ai(t,p) — (En, + p'En,)(A10(t)+

An (t)ezp(—ALh) + Ar2(t) Ay - exp(—A4h)),

where ezp(—A L h) is a shift operator of two arguments s,t to the right on
h for some matrix functions: exp(—Ah)ZF(s,t) = ZF(s — h,t — h).

Taking into consideration the nonstationarity of LNOSPDSNT (158)
let us introduce the operator

pi . Ci(T, Rllxin) % C(T2’Rinxlz) — C(T2,Rllxlz)

with the domain D(p?) = C*T,R'"*¥") x C(T?, R"*%2). This operator
puts in the correspondence to the product Q(t)QF(s,t) of an arbitrary pair
(Q(t), Q%(s,t)) of matrix functions Q(-) € CYT) ( Q(t) € Q, Q%(s,t) € Z
= {XF(s,t), Y(s,t), Wk(s, 1)}, Q¥(s,t) € R*(m+m2) g 4 € T, 4k —in-
dexes) the element p*(Q(t)Q¥(s,t)) € C(T?, R"*%) according to the rules:

, . Qf 4(s,1)
p’(Q(t)Qf(s,t)) == [CEQ(q)(t)v q= ]-,ia] X - ) (160)
g=1,1

where C¥ = il /k!(i — k)!. The index i at p* points to maximum order of the
derivative Q¥ (¢) of the matrix Q(t), as well the number of low index for
all blocks in the matrix row and a quantity of block matrices in a column
matrix (160). It is not difficult to note that p’ is a bilinear operator. Then
for example for A;(t,p)z(t) from (158), (159) we obtain

Ai(t, AL)XE(s,t) = Al(H) XF(s,t) + A2(t) XF(s — h,t — h)
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+A3(t) XE (s — h,t — h) + P (AL () XF (s, 8))+
p'(A2(8) XE(s — h,t — ) + p'(A3(t) XE, 1 (s — h,t — B)).

In virtue of (151), (152), (142) we obtain from (158) the following
reccurence on %, k relations

AL XE(s,8) = (Bny + 0 Eny)[AL(L, A4) XE (s, 1) +Ci(t, A Y (5,8),

AYALYE(5,t) = (Bny + D' Eny)lA2(t, A ) XE(s, 8) + Ca(t, A4 )Y(s, 1)),
WE(s,t) = (Eny + P Eny)[D1(t) X[ (3, 8) + Da(t)Y*(s, 1)),
i=0,1,2.. k=0,1,2,.., (161)

which are constructed according to the type of LNOSPDSNT (151), (152)

by the natural way. Equations (161) are said to be the defining equations of
LNOSPDSNT (?7), (152). They are equivalent to

sz+1 (37 t) = -Al(ta A+ )sz(sa t) + Cl (t’ A)}fik(sa t)+

+p (ALt A1) XE(s,1)) + PH(CL (8, ALY (5, 1)),
YA (s, 1) = Aa(t, A1) Xf (s,t) + Calt, A Y(s, D)+
+p*(Aa(t, A L) X[ (s, 1)) + PP (Calt, A1) Y (s, 1)), (162)
WE(s,t) = D1(t)XE(s,t) + Da(t) Y (s, )+
+p'(D1(t)XE(s,t) + p'(D2(t)Y (s, 1)),
1=0,1,2,..., k=0,1,2, ... (163)

Thus we obtained that to hybrid system consisting of SPDS (151) and al-
gebraic system (152) in virtue of (159) corresponds the system of matrix
algebraic reccurence on i,k equations (162), (163) ( or the same equa-
tion (161)). We shall call the reccurence equations (162), (163) the defin-
ing equations for (151), (152) as well. To define uniquely the solution
{XE(s,t),Y[F(s,1), Wk(s,1)} of equations (162), (163) we introduce the ini-
tial states

XO O t) [Eﬂ17 Om Xn2] X (3 t) On1><(n1+n2),

s#jh, j=0,IVs=jh, k>j+iv
Vi<OVk<O0Vj<DO,
YO O t) [Onzxma nz]a },ik('s7t) = Onzx(n1+n2),
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s#jh,j=0,IVs=jh, k>j+i+1V
Vi<O0VEk<OVvj<O. (164)

Triple of matrices {X¥ (s, t), Y}¥(s,t), Wk(s,t)} will be called the so-
lution of the defining equations (162), (163) with the initial states (164).
Matrices X¥(s,t), Y(s,t), Wk(s,t), calculated according to (162) - (164)
we shall call the components of solutions { Xk(t), YF(t), W} (t)} of these equa-
tions. Note that for any arbitrary indexes i, k each component Q¥(s,t) € Z
consists of two blocks QF(s, ), j = 1,2, Q% € R"*™, (Iy = ny Vna V n3).
This fact reflects distinct scales of variables z,y in system (151) and the
presence of motions with two essentially different velocities £(t), uy(t).

The following proposition explains the sense of all introduced matrix
elements from (159).

Lemma 1 [13]. The following formula

k _ g a 9 Jd\ g
A0 = (55,7 9 55,7 2597

takes place for any i,k (i = 0,1, 2,..., k=0, £1 ,+2,...,) for any
vector-function q(t) € {z(t), y(t), w(t)}, ¢ € R™ (I = 1,3) and for matriz
function Q¥(s,t) € Z, (Q¥ € Rh*(mtm2) | — n;VnyVng), corresponding to
it in virtue of (13), where 0/0z is the operator of partial differentiation with
respect to z, z € {z,y} and 8/8(uF) is the operator of partial differentiation
of matriz function with respect to p=k.

9.4. Main results

Now we shall find some conditions of relative controllability for NC-
SPDSNT (147) - (150) and some conditions of relative observability for
LNOSPDSNT (151) with the output (152) expressed through the compo-
nents X} (t, s), Yii(t, s), WF(s,t) of the solutions of the appropriate defining
equations (156), (157) and (152 ) — (154). First we shall demonstrate the
main idea of the paper by investigating the controllability problem for linear
nonstationary SPDS of ordinary differential equations (LNSPDSOD) (147)
- (150). Let us represent this system in an extended space of dimension
n1 + ng in the form

2(t) = A(t, 1) 2(t) + B(t)u(t),
z€RMT™ teT =[ty,t], 2(t) = 20, (165)
where A(t, p) € Ru+n2)x(m+n2) (1) = col(z(t), y(t)),

[ Al a®
ALE) = | () C'z(lt)/#]
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_ | Awn@®)  Cul) [ B
- L Ax()/u C2o(t)/ﬂ]’3(t)_[Bz(t)/u]' (166)

Note that for u — 0 system (165) singularly depends on p.

Definition 9.3.LNSPDSOD (165) , u € (0,u°], is completely con-
trollable on T if for any z; € R™M*™ and for any initial state zy € R +™2
there exists control u(t) € U such that the corresponding solution z(t,u), t €
T, satisfies the condition z(t,p) = 2.

For each fixed u, u € (0, 4%, system (165) is a linear nonstationary
one of ordinary differential equations. Sufficient conditions of complete con-
trollability for this system are well known [14, Theorem 20.1]. In terms of
solutions Z(t) of the defining equations (156) , (157) these conditions have
the form:

rank {Zg(t), k=1,n}=n, I teT,
where )
Zr+1(8) + Zi(t) = A(t) Zi(t) + B(t)Ui(1), (167)
Uo(t) = Er, Ug(t) = Or, k#0,Z(t) = Op,xr, k<0. (168)
Note that solutions Xy (t), Yx(t) of the defining equations (156) , (157) for

system (147), (150) and solutions Zx(t) of the defining equations (167) with
the initial states (168) are connected by the relation :

rank {Zx(t), k =1,n1 + no} = rank Z(t, ),

which is analogous to [4, p.42]. Here u € (0, Y,

i-1 ,
> wmXTm U, 8)

m=0

Z(t,p) = i=1,n +ny
i-1 ,
PIN i AR U)

m=0
The proof of this and consequent propositions are analogous to proofs
of Lemma 9.1, Theorem 9.1, Corollaries 9.1 - 9.3 of [4] and we drop their.
Theorem 9.1. Let us assume that Ajp(t) € CH™2=2(T, R%X™M) Cjp(t) €
Crtne2(T, Rmxm),  By(t) € CM+ma=}(T, RMX"), i = 1,2, Then
1. the condition

rank Z(t,u) = n1 +no (169)

is a sufficient one of {z,y}-complete controllability for LNSPDSOD, u €
(0,u®), (165), (166) for some t € T;
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2. if elements of matrices A (t), Cio(t), Bi(t), ¢ = 1,2 are analytical
functions on T then the condition (23) is necessary one as well.

Corollaries 1, 2 give sufficient conditions and corollary 3 gives nec-
essary condition of {z,y}—complete controllability for LNSPDSOD (147)—
(150).

Corollary 9.1. Suppose that conditions of Theorem 9.1 are fulfilled.
Then if for some set of integers l;, i = 1,n1 +ng, l; = 1,4, there exists
m, 1 <m < n; + ng, for which

X
rank i=1,n +ne | =n; +no,
Y:_m_li (t)

then there exists u* > O such that LNSPDSOD (147)— (150) is completly
controllable on T for all p € (0, u*).

Corollary 9.2. Suppose that conditions of Theorem 1 are fulfilled.
Then if for some set of integers ly, lo, l; = 1,n1 + no; 1 = 1,2, there exists
m, 1 <m < ny +ng —min(l; + 1), for which

i—m—I;—1
X7
rank t=1,n1 +ne | =n; +no,
Y.i—m—lz (t)
1

then there erxists p* > 0 such that LNSPDSOD (147)— (150) is completly
controllable on T for all p € (0, p*].

Corollary 9.3. Let us assume that elements of matrices (166) are
analytical functions on T. If LNCSPDSOD (165) is completely controllable
on T, then for u € (0, u°)

i—1
rank [Z u’"Xf‘"‘”l(t), i=1,n +ne | =ny,
m=0
i-1
rank [Z pmYrT™t), i=1,n1 +ng]=no.
m=0

For LNCSPDSNT (147)— (150) let us create the matrix

i-1 ) )
> umXTme
m=0

Z(t,u) = i=1,n +ne,s8=0Ih
i-1 ,
z um}/:-m

m=0
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where p € (0, %], Xi(¢t,s),Y{(t,s) are the components of solutions of the
defining equations (156), (157).
Theorem 9.2. Let

Aij(t) € Cn1+n2—2(T, %ngxnl)’cij(t) € Cn1+n2—2(T, ERn,'xnz),

Bi(t) € ™M™ -Y (T R™*T) § =1,2; j = 0,1,2.

Then
1. if for somet €T, u € (0,u

rank Z(t,pu) = n1 + no (170)

then LNCSPDSNT (147)— (150) is {z,y}-relatively controllable on T .

2. if elements of matrices A;(t), Ci;(t), Bi(t), ¢ = 1,2; j = 0,1,2
are analytical functions on T, then (170) is necessary condition of {z,y}-
relative controllability for (147)— (150) as well.

Now we shall formulate some algebraic conditions of relative observ-
ability for LNOSPDSNT (151), (152) in terms of the components W}(s, t)
of the defining equations (162) - (163).

To find conditions of relative observability for LNOSPDSD (151) with
the output (152) we create (n3(n1 + n2)({ + 1) x (n1 + n2))—matrix

— m=0
L(t,pu) = i=0n tng—1 (171)

j=0,1

from the components Wk(s,t) of solutions of the defining equations (162) -
(163) where W™(s,t) are (n3 % (n; + ng))—matrix so that in (171)

W (gh,t + jh) = [WiT(5h,t + 5h), W3 (ih,t +jh)],

,-T (S §Rn3xn1, Wi € praxn2

Theorem 9.3. Suppose that matrices A;;(t), Ci;(t) (1 =1,2,5 =
0,1) of system (151) are continuously differentiable (n, +ng —2) times and
D;(t), i = 1,2, — (n1 + nz — 1) times on T. Then for {z,y}—relative
observability of LNOSPDSD (151) with respect to the output (152) it is
sufficiently that

rank L(th“) =n;+ng pe (07 “0]
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If Aj;(t), Ci(t) Di(t), ¢ = 1,2,5 =0,1),5 = 1,2 are analytical func-
ttons then for {z,y}-relative observability of (151), (152) it is necessary the
existence of such time moment t* € T that

rank L(t*,p) =ny +na, p € (0,4°).

Corollary 9.4. Suppose that all elements in LNOSPDSD (151),
(152) are analytical matrices. Then if (151) is {z,y}-relatively observable
with respect to the output (152) then there erists a such time moment t* € T
that _
1
Zou"'"Wi'{'(:ih, t* + jh)
m= —_
rank i=0nFmy—1 Frp =1 =ni,
j=0,l
i
Ou‘"‘ iz (Gh,t* + jh)

rank | ™ =19

i=0,n+ng—1
j=0,1

for all u € (0, u°).
To find some conditions of relative observability for LNOSPDSNT
(151), (152) let us write it in (n; + ng)-space:

2(t) = A(t,p,u)2(t), z€ R™*™2 (172)
w(t) = D(t)z(t), weR™, teT, ue (0,4, (173)
with the initial conditions
zo(-) = {2(9) = ((9), 9 € [to — h, 1), 2(to) = 20},

2o() = (2(9) = {(8), 9 € [to — h, 2]}, (174)
where operator A(t, p, 4) has the form A(¢, p, ) = A(t, 1) +A1 (8, w)exzp(—ph)+

Ay(t, u)p - exp(—ph),
- [28].co-[59].

i o[ Aw®)  Cult)
Aol ) = [ Aot/ Crolt) ] ’
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oo [ Au(®  Cul®)
Ai(t,p) = [ Aml(lt)/u C211(1t)/ll' ]

B [ Ap)  Cual)
Aa(t,p) = [ A221(2t)/u 0221(2t)/ﬂ ]’

D(t) = [D1(t), D2(2)]- (175)

Note that for 4 — 0 system (172) in a singular way depends on p. Introduce
(ny X (n1 + ng))-matrix Hy = [Ep,,0n,xn,] and (n2 x (n1 + ng))-matrix
Hy = [OnzxnuEnz]-

Definition 9.4.LNOSPDSNT (172) is relatively ( Hy-relatively; H,-
relatively) observable with respect to output (173) on T, if from measure-
ments of output w(t) and known initial functions ¢(9), ((9),9 € [to — h, to) )
we can uniquely to restore vector 29 (Hgzo; Hyzo) of the initial state (174)
which generated this output w(t).

For each fixed u, u € (0,u°], system (172) is a linear nonstationary
system with the deviating argument of neutral type. Relative observability
conditions of such type systems are well known [15]. Then the problem of
(z-relative, y-relative) observability for LNOSPDSNT (151), (152), (149),
(150) due to (175) is equivalent to the problem of relative (Hy-relative; H,-
relative) observability of (172), (173).

To obtain some conditions of relative observability for LNSPDSNT
(172) — (173) let us establish the connection between the components
Xk(s,t), Yji(s,t) of the defining equations (162) — (164) for system (151),
(152) and the components Z;(s,t,u) of solutions of the defining equations
for system (172), (173), which can be constructed according to the rules
describing in [13, 16]. The defining equations for system (172), (173) have
the form

Zi+1(3a ta IJ') = A(ta A+a M)Zi(sa ta IJ') + pi(A(ta A+7 [l.)Zi(S, t1 ll’))1 (176)

Wi(s, t,u) = D(t)Zi(s, t, u) + p'(D(t) Zi(s, t, ), i =0,1,2,..., (177)
teT, pue€ (0,40, Z € Rmtn)x(mtns) p. ¢ Rrax(m+n2) Golutions
{Zi(s,t,p), Wi(s,t,u)} (i =0,1,2...) of equations (176), (177) can be cal-
culated with the initial states

ZO(Oa t, [l.) = En1+n21 Z‘i(sa t, IJ') = 0n1+n2a
s#3h, =0, Vi<O0 V s=jh. (178)

Lemma 9.2. Components Z;(jh,t,u), u € (0, u°], of solutions of the
defining equations (176) - (178) for each i, (i =0,1,2,..., j =0,1) are
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connected with the components XF(jh,t), Y*(jh,t) of the defining equations
(162)- (164) by the relation

i+j

>, um X (Gh, )
Zi(gh,t,p) = TfJO

3% Y (ih Y

m=0

Proof of this and next proposition can be done by induction analo-
gously to the proof of Lemma 1.2 from [13].

Lemma 9.3. For each i, j (i = 0,1,2,..., j = 0,1) components
Wi(jh,t, 1) of the defining equations (30), (81) and components WE(jh,t)
of the solution {X}(s,t),Y¥(s,t), WE(s,t)} of the defining equations (162)- .
(164) are connected by the relation

i+j
Wi(ihit,pu) = Y w W (jh,t), p € (0,4%], 5 =0,1.
m=0

To formulate conditions of relative observability for LNOSPDSNT
(151), (152) we define now (ng X mi)- (n3 X ng)-matrix functions
Wi (s, t), W5 (s, t), connected with the components W(s, t), (j = 1,2) of
the defining equations (162)—(164) by the relation

W:{"(S,t) = iT’(Sat"l"s) - WiT(S_hat"l"s)All(t"l"h)_

—Wi';_l(s —h,t+ 3)A12(t + h),
Wiz(s,1) = Wi(s,t +8) = W['(s — h,t + 5)Ca (t + h)—
_Wif2n—1(3 —h,t+ 8)C22(t + h)
Now we create the nz(n + n2)(I + 1) x (n; + no)-matrix
L A
> uHITTWR(jk, ),

— m=0
Lit.p) i=OmFm=1, | (179)

i=01

Theorem 9.4. Suppose that matrices A;;(t),Ci;(t), (i = 1,2,5 =
0,1,2) are (ny + ng — 2)-times and D;(t), ( =1,2) - (n1 + na — 1)-times
continuously differentiable on T. Then for {z,y}-relative observability of
LNOSPDSNT (151), (152) sufficiently that rank L(to,pu) = ny +no, p€
(0,u%. If Ai;(t), Ci;(t), (4 =1,2,5 =0,1,2), D;(t)( = 1,2), are matriz
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analytical functions then for {z,y}-relative observability of system (151),
(152) it is necessary the eristence of moment t* € T, such that

rankLy(t*, ) = ny +na, p € (0,4°]

Corollary 9.5. Let us assume that elements of system (151), (152)
are analytical functions. Then if LNOSPDSNT (151), (152), u € (0, %], is
{z, y}-relatively observable on T then for some t* € T

i+j

Zou Wi (jh, t*)
m= —_— =
rank e O Ty =T, n1
i=0,1
i+7
Z pTmWE(Gh, t*)
m— _
rank . W’ = no.
j=0,1

9.5. Example
Consider LNOSPDSNT with the observable output

z1(t) =1 (t) + ty(t — 1)
To(t) = z2(t) + ty(t — 1)
py(t) = z1(t) + y(t) (180)
w(t) = z,(t) + 72(t), te€L,2)- (181)

This system has the following parameters n; = 2, no =1, ng =1, h =
1, 1 =1,z(t) = col{z1(t), z2(t)},

Au®) = | § 2],Au<t>:Am<t>:[g 0]

cwr=[8]. e =[] ]

Ago(t) = [1,0], A21(t) = Aa(t) =10,0], Cao(t) =1,
Cai(t) = Caa(t) = Da(t) =0, Dy(t) =[1,1]. (182)
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Investigate {z,y}-relative observability of (34), (35), using (16)-(18)
X1 (s,t) = A XF(s,t) + Cu(®)Yif(s - 1,t - 1)+

+C2()YE (s —1,t = 1) + p(CLi(®)YF(s = 1,1 — 1))+
+P (Cra() Y1 (s — 1,t - 1)),
Y (s,t) = Ao (t) XF(s,1) + Cao(t) Y} (s, 1), (183)
W(s,t) = Di() XF (s, ), (184)
with the initial states

100]

xon-{g 9 o

000
C xHe0=]g 0 0]

i=k=0,s=3=1V s#3 5=0,1
Vs=j4,k>i+j V k<O V i<O0, j<O0;
YL(0,t) =[001]; Y¥(s,4) =[000], i =k =0,
s=j3=1V s#3 j=0,1, Vs=yj
E>i+j4+1V kE<0Vi<0 j<0. (185)
Note that in virtue to (160) and (182) for parameters in (183), (184)
members

P'(Aw()XF(s,1)), p'(A20() XE(s,1)), 5 (Coo () Yi¥ (s, 1)), 0 (D1 (£) X F (5, 1))

are absent. Calculate components X}(s, t), Yi"(s, t), Wi’“(s, t) of solutions of
the defining equations (183) — (185):

00

1 0}’

Yy (0,t) =[0 0 1], Wg(0,t) = W(0,¢) = W2(0,t) =
=[110]; Y(0,t) = W(0,t) = Y(0,t) = W}(0,t) =
= W3(0,t) =YP(1,t) = Y{(1,t) = ¥5(1,¢) = [0 0 0],

000
0 0 0]’

Y(0,t) = Y£(0,¢) = [1 0 1], ¥3(0,8) = Y5 (1,¢) =

Xp(0,t) = X(0,t) = X3(0,1) = [

(el

X1(0,t) = X3(0,t) = X2(0,t) = [
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=[100], X{’(l,t):[g 8 2] W(1,t) =
=[OOt];X11(1,t)=[é g é],Wf(l,t)=

=Y7(L,t) =W3(1,8) = [t 0 8], X3(1,¢) =
100 0 0 _ )

2t+1 0 t+1

=[3t+102t+1]; X§(1,t)=[[t) ‘1) (t)] (186) *

Using (186), (182) let us calculate the matrix L; (¢, 1) from (179) and
according to Theorem 9.4 we obtain for {g = 1

rankLi(1,p) =

rank =3

| T2 +2u 0 pd+5u%+2u |

Vu € (0,1°].

Consequently LNOSPDSNT (180), (181) is {z, y}-relatively observ-

able. Note that system is also z-relatively observable because for the matrix
H; = [E;, 02x1] the condition

_ H:c 0
mnkLl(thu) = rank l: L(to,[.l) ] y MHE (0,# ]

is fulfilled.

9.6. Conclusion

The unified method of investigating controllability and observability
problems for various classes of dynamical systems is suggested. It combines
the state space method and the method of defining equations [1, 6, 7] and
allows to obtain conditions of controllability and observability in an explicit
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form. It may be safely suggested that this approach can be useful in study-
ing another more complicated mathematical objects (both time-invariant
and time-varying) but another problems (stabilizability, decoupling prob-
lem etc.).

9.7. Some Open Problems

There are some open problems in the frames of the theme ”The
Qualitative Theory of Control Processes”:

1. To find some controllability and observability conditions for linear
time-variable systems with continuous matrices A(t), B(t), C(t).

2. To study controllability and observability problems for another
class of linear systems - discrete event systems (statement of the problems,
conditions of controllability and observability in (max, +)-algebra).

3. To study controllability and observability problems for linear time- *

delay systems, for the systems with the deviating argument of neutral type
using the approach of approximation for such kinds of systems by the sys-
tems of ordinary differential equations.

4. To construct an inversion systems for:

a). linear time-invariant and time-varying systems with the measure-
ment output;

b). linear singularly perturbed dynamic systems of the general form
(without delay, with delay, with the deviating argument of neutral type)
with linear output.
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