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Baire and o-Borel Characterizations

of Weakly Compact Sets in M(T)

T. V. Panchapagesan *

Abstract

Let T ba a locally compact Hausdorfl space and let M(T) be the

Banach space of all bounded complex Radon measures on 7. In this note

we characterize weakly compact subsets A of M(T') in terms of the Baire

and o-Borel restrictions of the members of A. These characterizations

permit us to give a generalization of a theorem of Dieudonné which is
stronger and more natural than that given by Grothendieck.

1 Introduction

For a locally compact Hausdorff space T, let Co(T) be the Banach space of
all continuous complex functions vanishing at infinity in 7', endowed with the
supremum norm. If B(T) is the o-algebra of Borel sets in T',the dual M(T) of
C,(T) is the Banach space of all bounded complex Radon measures 4 on T,
with ||u|| = |u|(T), where |u| denotes the variation of u in B(T).Let X be a
quasicomplete locally convex Hausdorfl space (briefly,a quasicomplete 1cHs).

In the present note we characterize weakly compact sets A in M (T) in terms
of the Baire and o-Borel restrictions of the members of A. As a consequence
of the Baire characterizations, we obtain a generalization of Proposition 8 of
Dieudonné [3], which is stronger and more natural than that of Grothendieck
given on p. 150 of [8].

These characterizations are powerful enough to replace the use of Theorem
3 and Proposition 11 of [8] in the study of weakly compact operators in our
succeeding work [13]. In fact, these results play a key role in [13] to provide
a unified approach to the study of weakly compact operators u : C,(T) =+ X
and of regular Borel extension of X-valued o-additive Baire measures on 7. In
this context we would like to point out that the study of weakly compact opera-
tors was carried out by Grothendieck [8] for complete lcHs-valued operators on
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2 Baire and 0-Borel Characterizations of Weakly Compact sets in M(T)

C,(T), and by Bartle-Dunford-Schwartz [1] for Banach space valued operators
on C(R),  compact, while the regular Borel extension problem for quasicom-
plete IcHs-valued Baire measures was studied by Dinculeanu and Kluvének in
[5,10] by vector measure methods. As far as we know, such a unification study
has not been presented earlier in the literature.

2 Preliminaries

In this section we fix notation and terminology and also give some definitions
and results which will be needed in the sequel.

Let T be a locally compact Hausdorff space and let C,(T) be the Banach space
of all complex continuous functions vanishing at infinity in 7', endowed with
the supremum norm . Let B(T) be the o-algebra of Borel sets in 7, which is
the o-algebra generated by the class of all open sets in T. Then the dual of
C,(T) is the Banach space M(T) of all bounded complex Radon measures y
on T, with ||u|| = |¢|(T) ,where |u| denotes the variation of p in B(T). C(T)
(resp. Co(T)) is the class of all compact subsets (resp. compact G5 subsets) of
T. B.(T) (resp. B,{T)) is the o-ring generated by C(T) (resp. by C,(T))) and
B.(T), (resp. Bo(T)) is the o-ring of the o-Borel (resp. the Baire) sets in T'.

We need the following lemma before we give some definitions.

Lemma 1. For p € M(T), let |u|(-) = var(y,(-)) in B(T). Then
)

|1l8,(1) () = var(pls, ), (1)) and |plls.(7)(-) = var(u|s. (1), ()

Proof. Let D(Co(T)) be the d-ring generated by Co(T"). Then by Lemma 3.2
of (12], lullpc.(ry)(-) = var{ulpic. (1)), (). Given E € B,(T), there exists a

disjoint sequence (E;)s%,; C P(C,(T)) such that E = U E,. Then

n=1

I
gk

lel(E) tl(Bn) = Y var(plpc, (1)), En)
n=1

3
il
-

I
gL

var(puls, (), En) = var(s|s, (1), E)-

3
1
-

Now, let E € B.(T). Since it is easy to check that each F C E with F € B(T)
is o-Borel it follows that |ul||s (r)(E) = var(p|s (1), E).

Notation 1. For p € M(T), let |u|(-) = var(y, (-)) en B(T).

In the light of the above lemma, the variations used in the following defini-
tion are unambiguously defined. The first part is an adaptation of Definition

—————— o
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3.2 of [11].

Definition 1. Let S be a o-ring of sets in T such that C(T) C S or ,(T) C S.
A complex measure u on § is said to be S-regular if, given £ € § and € > 0,
there exists a compact set K € § and an open set U € § with K C EC U
such that |u(B)| < ¢ for every B € S with B C U\K. When § = B(T) (resp.
B.(T), Bo(T)), we use the terminology Borel (resp. o-Borel, Baire) regularity
in place of S-regularity. Let A be a subset of M(T'). We say that A is uniformly
Baire inner regular (resp. Baire regular) in a set E € B,(T) if, given € > 0,
there exists a compact K € B,(T') with K C E (resp. and an open Baire
set O in T with K C E C O) such that sup,¢ 4 |u|(E\K) < € (resp. such
that sup,¢ 4 |#|/(O\K) < €). If A is uniformly Baire inner regular (resp. Baire
regular) in each Baire set, then A is said to be uniformly Baire inner regular
(resp. Baire regular). Similarly, the uniform Borel (resp. o-Borel) regularity
and inner regularity of A and those of A in a Borel (resp. o-Borel) set E are
defined.

In virtue of Theorem 51.D of [9], we note that a compact K € B,(T) is
necessarily a Gs. It is well known that every complex Baire measure g, is Baire
regular and that it has a unique extension p to B(T)(resp. pc to B.(T)) such
that u is a Borel (resp. u. is a o-Borel) regular complex measure. Moreover,
BlB,(T) = e (See, for example, Theorem 2.4 of [12].)

Definition 2. A faimly F of complex measures defined on a o-ring X of sets is
said to be uniformly o-additive, if for each decreasing sequence (E,) of members
of T with E,, \, 0, limu(E,) = 0 uniformly in y € F.

Notation 2. Given a o-ring T of sets, ca(X) denotes the Banach space of all
complex measures u on £ with ||s|| = sup var(y, E).
EeX

The following result is well known when ¥ is a o-algebra(see, for example,
Theorem 1V .9.1 of [6]).

Proposition 1. Let ¥ be a o-ring of subsets of a non empty set Q. A subset A
of ca(X) s relatively weakly compact if and only if A is bounded and uniformly
o-additive.

Proof. By the Eberlein- Smulian theorem and by the fact that for each sequence
(#n) C ca(X) there exists E € T such that var(u,, F) = 0 for each F € £ with
FNE =@ and for each n, we can replace the space ca(S, X, A) in the proof
of Theorem IV.9.1 of [6] by the space ca(2N E, L N E,\) of all A-continuous
set functions in ca(2 N E,X N E). Since the latter is a o-algbera, the rest of
the argument in the proof of Theorem IV.9.1 of [6] holds here to show that the
conditions are necessary and sufficient.

—




4 Baire and 0-Borel Characterizations of Weakly Compact sets in M(T)

3 Main Results

In the present section we obtain characteizations of bounded relatively weakly
compact subsets of M(T) in terms of the Baire and o-Borel restrictions of the
members of the set in question. These charcterizations are similar to those
obtained by Grothendieck in Theorem 2 of [8] and those of Lemma V1.2.13 of
Diestel and Uhl [2]. As mentioned in the introduction, these results are pow-
erful enough to replace the use of Theorem 3 and Proposition 11 of [8] in our
succeeding work [13] where we characterize quasicomplete IcHs-valued weakly
compact operators on C,(T). Moreover, the isolated results of Dinculeanu and
Kluvanek [5,10] on vector valued o-additive Baire and Borel measures are de-
duced in [13] as corllaries of some of these characterizations. Finally, Theorem
1 below combined with the study of Grothendieck on p.150 of [8] provides a
generalization of Proposition 8 of Dieudonné [3], which is stronger and more
natural than that of Grothendieck [8] .See Corollary 1 below.

Theorem 1. Let A be a bounded set in M(T). Then the following statements
are equivalent:

(i) A is relatively weakly compact.

(i) For each disjoint sequence (O;) of open Baire sets in T, limpu(0;) =0
uniformly in p € A.

(iii) For each disjoint sequence (O;) of open Baire sets in T, lim|u|(O0;) = 0
uniformly in p € A.

(iv) a) A is uniformly Baire tnner reqular in each open Baire set O in T.
b) For each € > 0, there erists a K € Co(T) such that

sup [u[(T\K) <.
HEA

(v) A is uniformly Baire inner regular.
vi) Alg, (1) is uniformly o-additive on B,(T).
o(T)
(vii) A is uniformly Baire regular.

Proof. By Theorem 2 of Grothendieck [8] (which is the same as Theorem 4.22.1
of Edwards ([7]), (i) implies (ii).

(i1) = (iii). Since each p|g (1) is Baire regular for u € A, the argument in the
proof of (a) = (b) of Lemma VI1.2.13 of Diestel and Uhl [2] can suitably be
modified to show that (ii) = (iii).
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(iii) = (iv). Let O be an open Baire set in T or let O = T'. Let € > 0. If there
exists no compact G; K C O such that sup,¢ 4 |#|(O\K) < ¢, then there is a
p1 € A such that |u,|(O) > ¢, for otherwise K = @ will provide a contradiction.
If O € B,o(T),then by the Baire regularity of |u;||s,(7) there exists a compact
Gs Ky C O such that |y|(K,) > €eIf O = T, then by the Borel regularity
of || there exists a compact K such that |u;|(K) > €. Then by Theorem
50.D of Halmos [9] there exists a compact G5 K such that K C K and hence
|#1|/(K1) > €. Since K, is a subset of O, again by Theorem 50.D of [9] there
exists an open Baire set O; and a compact G5 F; such that

ODF DO DK,

Moreover, |¢#1|(01) > |p1|(K1) > €. Since F; is a compact G subset of O, by
our assumption there exists ps € A such that |u2|(O\F) > €. If O # T'then
using the Baire regularity of |u2| in O\F; and if O = T, then using the Borel
regularity of |u2| in O\ F; and then applying Theorem 50.D of [9], we can choose
a compact G5 C; C O\F) such that |u]|(Cy) > €. Let K; = F; UC). Then
Kiyisa compact Gj, 0> K, D Fy and Ipzl(Kz\Fl) = |;t2|(Cl) > E. Again by
Theorem 50.D of [9] there exists an open Baire set Oz and a compact G5 F2
such that
ODF,D20:D0K;D>F,D0,DK,;.

Accordingly, |p2|(O2\F1) > |p2|(K2\F1) > €. Next by our assumption there
exists u3 € A such that |u3|(O\F2) > €. If O # T then using the Baire regularity
of |u3| in O\ F; and if O = T, then using the Borel regularity of |u3| in O\ F2 and
then applying Theorem 50.D of [9], we can choose a compact G5 C2 C O\ F; such
that |p3|(C2) > €. Let K3 = FoUC,. Then K3 is a compact G5, O D K3 D F»
and |u3|(K3\F2) = |u3|(C2) > €. Again by Theorem 50.D of [9] there exists an
open Baire set O3 and a compact G F3 such that

ODF3203DK3DF, D0,

and hence, |u3|(03\F2) > |pal(K3\F2) > €.

Proceeding as in the proof of (b) = (c) of Lemma VI1.2.13 of [2], applying
Theorem 50.D of [9] in each step and using the Baire-regularity of each |u||s, (1)
for 4 € A or using the Borel regularuty of 4 € A and then applying Theorem
50.D of [9], as the case may be, we can produce an increasing sequence (Op)
of open Baire sets in T, another two increasing sequences (K,) and (Fy,) of
compact Gss in T and a sequence () in A such that

O0D.... DFit100,41 D Kn1 DF, D0, D ... ODK,DF,D>0,DK,

|pn+11{On+1\Frn) > €

...
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foralln > 1. Let Gp41 = Ont1\Fn, n > 1. Then (Gny4.1) is a disjoint sequence
of open Baire sets in T and satisfies [pn 41 ((Grn+1) > € for n > 1. This contardicts
(iii) and hence (iv) holds.

(iv) = (v). Let € > 0. By (iv)(b) there exists a compact Gs € in T such that

sup [u|(T\) < 5. (3.1)
HEA

We shall now modify the proof of (c) = (d) of Lemma VI.2.13 of [2] to show
that (v} holds. Let C,(Q2) = {K C Q : K compact G5 in Q with respect to the
relative topology of 2}. It is easy to check that

C(Q)=C(T)NA={KCR:KelC(T)}. (3.2)
Let

S = {E €B,(Q):for each ¢ > 0,there exists K € Co(S2) such that ENK is
compact and sup,,¢ 4 |#[(Q\K) < €} .

If £ € B,(R) and K € C,(R) are such that EN K is compact, then by Theorem
51.D of Halmos [9], EN K € Co(). Clearly, C,(Q) C S, since for C € C,(Q) we
have C NQ = C is compact and |u|(2\) = 0 for x4 € A.

Clatm 1. For each open Baire set Oin T, 0NN € S.

In fact, ONQ € B,(T) NN = S(Co(T)) N2 = S(Co(T)NQ) = S(Co(82)) = Bo(82)
by (3.2) and by Theorem 5.E of Halmos [9], where S(£) denotes the o-ring
generated by the class £. Given ¢ > 0, by (iv)(a) there exists K € Co(T) with
K C O such that

sup |ul(O\K) <. (3.3)
BHEA

Let K, = KN Then K, € C,(2) by (3.2) and moreover, ONQN K, = K, is
compact. Further, as (O NQ)\K, C O\K, by (3.3) we have

sup |ul((ONQ\K,) <¢. (3.4)
HEA

Let K1 = K, U (2\0). Then by Theorem 51.D of Halmos [9] and by (3.2),
OO € C,(2) and hence K; € C,(2). Moreover, ON NN K; = K, is compact
and by (3.4)

sup |u|(Q\K1) = sup |u|((ONQ\K,) < ¢
. HEA HEA
ThusONNeES.-

Claim 2. For K € C,(R), Q\K € S.
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In fact, by (3.2) K is of the form K = ({° Vy,, where the V,, are open Baire sets
in T (see Proposition 14, §14 ,Chapter III of [4]). Then Q\K = " (Q\Va).
Now, by Theorem 50.D of Halmos [9] there exists an open Baire set Wy, in T
such that Q\V, C W, for n > 1. Let W = [J;° Wp. Then W is an open Baire
set in T and Q\K = (Q\K)NW = Qn(W\K). Since W\K is an open Baire
set in T, by Claim 1 we conclude that Q\K € S.

To show that § is closed under countable intersections, let (E,) be a sequence
inS andlet & > 0. Then, proceeding as on p.158 of [2], there exists a sequence
(K»n) in C,(R2) such that E, N K, is compact and sup ¢ 4 |#|(Q\K») < 3= for
each n > 1. Then the set |

o0

([ Ex) 0 ([ ) Kn) = [](En N Kp)

n=1
is compact and
o0 o0 ,
sup [ul(@\[)Ka) < D sup [u|(@\Kn) < €.

neA 1 n=1 HEA

Thus ({° E, € S.

To verify that S is also closed under complements in §, let £ € S and
let ¢ > 0. Then there exists K; € C,(2) such that E N K, is compact and

sup,ea |#|(Q\K1) < . Now, by Claim 2 and by Theorem 51.D of [9], we have
Q\(ENK;) € S. Therefore there exists K5 € C,(£2) such that (Q\(ENK,))NK>
is compact and sup,¢ 4 |s|(2\K2) < %. Then (K1 N K2)N(Q\E) = K1NK3N
(Q\(E N K})) is compact and

sup [ul(Q\(K1 N K2)) < sup [ul(Q\K1) + sup |ul(Q\K2) < €.
BEA BEA HBEA

Thus Q\E € §. Consequently, S is a o-algebra in Q.

Since Co(R2) C S C B,(2), it follows that § = B,(2). Thus, for each
E € B,() and ¢ > 0, there exists K € C,(f) such that EN K is compact and
sup,e4 |Bl(A\K) <€’ Then

sup |u|(E\ENK) < sup [u|(Q\K) <e. (35)
uEA HEA

Now let E € B,(T) and € = £. Then ENQ € B,(Q) by (3.2) and by Theorem
5.E of [9]. Consequently, using E NQ € B,(2) in place of E above, as in (3.5)
there exists K € Co(f2) such that (EN Q)N K = K, (say) is compact and

sup [ul((E N Q)\K,) < (3.6)
HEA

B ™

| |
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Thus K, € C,(T), K, C E and

sup |u|(E\K,) < sup [p|({(ENQ)\K,) + sup |u|(T\Q) < €
HEA HEA HEA

by (3.6) and (3.1).Thus (v) holds.

Replacing in the proof of (d) = (e) = (f) = (a) of Lemma VI.2.13 of 2]
compact sets, Borel sets and open sets in {2 respectively by compact Gy sets in
T, Baire sets in T and open Baires sets in T, one can easily show that (v) =
(vi) = (vii) = (i1).

Finally, to show that (vi) = (i), let ®(u) = plg,(r) for 4 € M(T) and let
Mo(T) = {u : Bo(T) = €, o-additive} with [|p|lo = supgep, (1) |K|(E) for
p# € Mo(T). Then by Lemma 1 and by Theorem 5.3 of [12], ® is an isometric
isomorphism of M(T) onto M,(T). By Proposition 1, and by (vi), ®(A) is rela-
tively weakly compact in M,(T). Consequently, A is relatively weakly compact
in M(T).

This completes the proof of the theorem.

Corollary 1 (Generalization of Proposition 8 of Dieudonné [3]). A bounded
sequence (p;) in M(T) is weakly convergent if and only if , for each open Baire »
set O in T, limy; pi(O) exists inC.

Proof. We only have to show that the condition is sufficient. By regularity, each
complex Baire measure g in T is determined by its restriction on the lattice of
all open Baire sets. Moreover, each complex Baire measure has a unique regular
Borel extension. These facts and the Eberlein-Smulian theorem ensure that it
suffices to show that (y;) is relatively weakly compact in M(T). Arguing as in
the proof of Corollary 4.22.2 of Edwards [7], one can show that lim; p,{(0;) =0
uniformly in n € IN for each disjoint sequence (O;) of open Baire sets in T.
Then by the equivalence of (i) and (ii) of Theorem 1 it follows that (g;) is rela-
tively weakly compact in M(T).

Remark 1. When T is compact, the proof of Proposition 9 in [3] holds verbatim
to show that the hypothesis that lim; u;(U) exists in @ for each open set U
in T implies that (y;) is bounded. When T is locally compact, one can argue
with its one-point compactification as on p.177 of Thomas [14] to show that the
above hypothesis also ensures the boundedness of (y;) in M(T). Again, when T
is compact, using Theorem 50.D of [9] and the Baire regularity of the y;|s,(r)
we can modify the proof of Proposition 9 in [3] to show that (g;) is bounded
when lim; p;(0) exists in @ for each open Baire set O in T. However, when T
is locally compact and not compact,we do not know whether the boundedness
condition can be dispensed with in the above corollary. When T is metrizable
and compact, B(T) = B,(T) and hence the above corollary reduces to Proposi-
tion 8 of Dieudonné [3]. Thus the present generalization is more natural and is

—————————
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further stronger than that of Grothendieck on p.150 of [8].

Theorem 2. Let A be a bounded set in M(T). Then the following statements
are equivalent:

(i) A is relatively weakly compact.

(11) For each disjoint sequence (O;) of o-Borel open sets (resp. (ii)’open sets)
in T,
limp(0i) =0
1

untformly in p € A.

(i11) For each disjoint sequence (O;) of o-Borel open sets (resp. (iii)’ open sets)
in T,
lim [u](0:) = 0

uniformly in p € A.

(iv) (a) A is uniformly o-Borel inner regular in each o-Borel open set O in
T. ’

(b) For each € > 0, there exists a compact K in T such that

sup |u|(T\K)) <e.
BEA

(resp.(iv)’ A is uniformly Borel inner regular in each open set O in T).
(v) A (resp. (v)’ A) is uniformly o-Borel (resp. Borel ) inner regular.
(vi) Alg (1) (resp. (vi)’ A) is uniformly o-additive on B.(T) (resp. on B(T)).
(vii) A (resp. (vii)’ A) is uniformly o-Borel (resp. Borel ) regular.

Proof. Let M (T) = {p : B.(T) = &€, p o-additive and o-Borel regular } with
lIulle = supges, cry IkI(E), and let ¥ : M(T) — Mc(T) be given by ¥() =
pls ). Then by Lemma 1 and by Theorem 5.3 of [12], ¥ is an isometric
isomorphism of M(T) onto M (T). This fact and an argument similar to that
in the proof of Theorem 1 can be used to show that (i) = (ii) (resp. (ii)’) =
(iti) (resp. (iil)’) = (iv) (resp.(iv)’); (v) (resp. (v)’) = (vi) (resp. (vi)’) = (vii)
(resp. (vii)’) = (ii) (resp. (ii)’) and (vi) (resp.(vi)’) = (i)

Now we shall prove (iv) (resp. (iv)’) = (v) (resp. (v)’). Given € > 0, by
(iv)(b) (resp. by (iv)’) there exists a compact set  in T such that

sup [p|(T\) < (3.7)
BEA

£
5
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Let

L = {EeB(Q):foreach¢ >0, there exists a compact K C € such that
EN K is compact and sup,¢ 4 |#|(Q\K) < £}

Clearly, C(Q?) = {K C Q: K compact} C £.

We claim that O N Q € T for each o-Borel open set (resp. open set) O
in T. In fact, given ¢ > 0, by (iv)(a) (resp.(iv)’) there exists a compact K
in T with K C O such that sup,e4 |[#[(O\K) < €. Let K, = K N Q. Then
oONQNK, =K, is compact and clearly, O N2 € B(2). Moreover,

sup [B|((ONQ\K,) < sup [ul(O\K) <€
HeA HEA

Setting K; = K,U(2\O), we note tha§ K, is compact , K; C Q, (QNO)NK, =
K, € C(T) and sup ¢ 4 [p[(Q\K1) <e. Thus ONQ € L.

We also claim that Q\K € I for each compact &' C Q. In fact, by Theorem
50.D of [9] there exists a relatively compact open set U in T such that @ C U. »
Clearly U is a o-Borel open set in T and Q\K = (Q\K)NU = Q@ n (U\K)
with U\ K a o-Borel open set in T. Then by the foregoing claim it follows that
QK eX.

Proceeding as on p.158 of [2], one can show that ¥ is closed under count-
able intersections. The argument used in the proof of (iv) = (v) of Theorem
1 to show that S is closed under complements can be modified here to prove
that ¥ is also closed under complements in Q. Thus ¥ is a o-algebra in Q. As
C(Y) C E C B(R), it follows that £ = B(2). Then arguing as in the last part of
(iv) = (v) of Theorem 1 by using (3.7) in place of (3.1), we conclude that (v)
(resp. (v)’) holds.

This completes the proof of the theorem.
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