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Abstract *

Let T be a locally compact Hausdorff space and let C,(T) be the Banach space of all complex
valued continuous functions vanishing at infinity in 7', provided with the supremum norm. Let
X be a quasicomplete locally convex Hausdorff space. A simple proof of the theorem on regular
Borel extension of X-valued o-additive Baire measures on T is given, which is more natural
and direct than the existing ones. Using this result is obtained the integral representation and
weak compactness of a continuous linear map u : C,(T) = X when ¢, ¢ X. The proof of the
latter result is direct in the sense that it doesn’t use the technique of reduction to compact
metrizable case of T unlike the proof of Theorem 5 of Pelczyniski [15] or that of the necessity
part of Theorem 5.3 of Thomas [18]. Also is given an alternative proof of the sufficiency part of
Theorem 5.3 of Thomas [18].

1. INTRODUCTION

Let T be a locally compact Hausdorff space and C,(T") the Banach space of all complex valued
continuous functions vanishing at infinity in 7', endowed with the supremum norm.

If X is a Banach space with ¢, ¢ X and S is @ compact Hausdorff space, then Pelczynski
[15] proved that each continuous linear map u : C(S) — X admits an integral representation with
respect to a o-additive X-valued Borel measure on T and that u is weakly compact. Later, in
1970, this result was extended by Thomas [18] to continuous linear maps u : Co(T) — X, where
X is a locally convex Hausdorff space (briefly, a IcHs) which is quasicomplete and 3-complete.
While Pelczynski [15] used the results of [1], Thomas [18] used the Grothendieck characterizations
of weakly compact operators on C,(T) as given in [6]. We also note that by Theorem 4 of Tumarkin
[19] the Z-completeness of X is the same as that ¢, ¢ X . The proofs of Pelczynski [15] and Thomas
[18] are rather indirect in the sense that they use the technique of reduction to compact metrizable
case.

Recently, one of the authors gave in [14] an alternative direct proof of the said result of Thomas
[18] without reducing to compact metrizable case. However, the proof given there is highly tech-
nical involving many deep results from [13,14]. So the aim of the present note is to give a simpler
direct proof of the above result. For this we use Lemma 1 and Theorem 2 of Grothendieck [6] (no
other result of [6] is used), the first part of Theorem 1 of [14] and the theorem on regular Borel
extension of quasicomplete IcHs valued Baire measures on 7.
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The regular Borel extension theorem for Banach space and complete IcHs valued Baire measures
on T are well known since the publications of [4,9] and has also been generalized to group-valued
measures by Sion [16]. But, even for the case of Banach space valued measures, the proof given in
[9] is indirect and quite involved, presupposing the results from earlier papers of the author. Here
we present an alternative proof of the said theorem for quasicomplete IcHs valued Baire measures
on T by using Theorem 2 of Dinculeanu and Kluvdnek [4] and the lemma in § 68 of Berberian [2].
The reader can observe that the present proof is direct, simple and elegant.

Finally, using the first part of Theorem 1 of [14] and Lemma 1 of Grothendieck [6] we also give
an alternative proof of the sufficiency part of Theorem 5.3 of Thomas [18]. In this connection, see
Remark 2 in Section 4.

2. PRELIMINARIES

In this section we fix notation and terminology. For the convenience of the reader we also give
some definitions and results from the literature.

In the sequel T' will denote a locally compact Hausdorff space and C,(7T') the Banach space of
all complex valued continuous functions vanishing at infinity in 7', endowed with norm || - || given

by |[fllr = supier| f(2)]-

Let K (resp. K,) be the family of all compacts (resp. compact Gss) in T. B,(T), B.(T) and
B(T) are the o-rings generated by K,, K and the class of all open sets in T, respectively. The mem-
bers of B,(T) are called Baire sets and those of B.(T) are called o-Borel sets in 7. The members
of B(T) are called Borel sets in T'. Since a subset F of T belongs to B.(T) if and only if F is a
o-bounded Borel set, the members of B.(T') are called o-Borel sets.

DEFINITION 1. Let S be a o-ring of sets in T such that KX C S or K, C S. A complex
measure 4 on S is said to be S-regular if, given E € S and ¢ > 0, there exists a compact K € S
and an open set U € § with B C¢ E C U such that |g(B)| < € for every B € § with B ¢ U\K.
When § = B(T) (resp. & = B.(T), S = B,(T')) , we use the terminology Borel (resp. o-Borel,
Baire) regularity in place of S-regularity.

The following proposition is well known. See, for example, Theorem 3.7 of [10] and Theorem
2.4 of [11].

PROPOSITION 1. Every complez Baire measure p, on T is reqular and has unique ezten-
ston p on B(T) (resp. pe on B.(T')) such that p is a Borel (resp. o-Borel) regular complez measure.
Moreover, pi| (1) = pc- Besides, p and p. are positive and finite if y, is so.

M(T) is the Banach space of all bounded complex Radon measures on T with their domain
restricted to B(T) so that each p € M(T) is a regular (bounded) complex Borel measure on T and
has norm || - || given by ||u|| = var(g,T) where the variation of p is taken with respect to B(T).
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We denote var(u, E) by |u|(E), for E € B(T).

A vector measure is an additive set function defined on a ring of sets with values in a IcHs. In
the sequel X denotes a IcHs with topology 7. I is the set of all 7-continuous seminorms on X. The
dual of X is denoted by X*.

The strong topology 8(X™, X) of X* is the locally convex topology induced by the seminorms
{pp : B bounded in X}, where pp(z*) = supep|z*(z)|. X** denotes the dual of (X*, 8(X™, X))
and is endowed with the locally convex toplogy 7. of uniform convergence on equicontinuous subsets
of X*. Note that (X™* (X* X)) and (X**,7.) are IcHs.

It is well known that the canonical injection J : X — X™** given by < Jz,z* >=< z,z* > for
all z € X and z* € X*, is linear. On identifying X with JX C X** one has 7 |yx = Te|x = 7.

DEFINITION 2. A linear map v : Co(T) — X is called a weakly compact operator on Co(T)
if {uf:||fllT < 1} is relatively weakly compact in X.

Let E and F be IcHs and let « : F — F be a continuous linear map. Then the adjoint u*
and the biadjoint u** of u are well defined linear maps and v* : (F,o(F* F)) — (E* o(E* E))
and u** : (E**, 1) — (F**,7,) are continuous (see Corollary to Proposition 1, § 12 ,Chapter 3 of
Horvéth [8] and Proposition 8.7.27 of Edwards [5]).

The following result (Corollary 9.3.2 of Edwards [5] which is essentially due to Lemma 1 of
Grothendieck [6] ) plays a key role in Section 4.

PROPOSITION 2. Let E and F be IcHs with F quasicomplete. If uw : F — F is linear and
continuous, then u maps bounded subsets of E into relatively weakly compact subsets of F' if and
only if u*(A) is relatively o (E*, E**)-compact for each equicontinuous subset A of F*.

The following result is due to Theorem 2 of Grothendieck [6], and is needed in Section 4.

PROPOSITION 3. A bounded set A in M(T) is relatively weakly compact if and only if, for
each disjoint sequence {U,}$° of open sets in T,

supuealp|(Un) = 0

asn— 0.

For each 7-continuous seminorm p on X, let p(z) = |[[z||,, z € X, and let X, = (X, ][] - |,)
be the associated seminormed space. The completion of the quotient normed space X,/p~'(0) is
denoted by X,. Let IT, : X, - X,,/p~!(0) C X, be the canonical quotient map.

Let § be a o-ring of subsets of a non empty set 2. Given a vector measure m : § = X, for each
T-continuous seminorm p on X let m, : § — X, be given by m,(E) = II, om(E) for E € §. Then
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m, is a Banach space valued vector measure on §. We define the p-semivariation ||m||, of m by
[|m|[p(E) = ||mp||(E) for E€ S

and
[[m||p(€2) = [|my|[(£2) = sup [[m,||(E)
EesS

where ||my|| is the semivariation of the vector measure m,. When m is o-additive, m, is a Ba-
nach space valued o-additive vectr asure and hence, by a well known theorem on vector measures,
|lm[|p(2) = [Imy|[(2) < 4supges [[m(E)]]p < oo

An X-valued vector measure m on a o-ring S of subsets of § is said to be bounded if {m(FE):
E € 8} is bounded in X and equivalently, if ||m|[,(2) < oo for each T-continuous seminorm p on X.

For the theory of integration of bounded S-measurable scalar functions with respect to a
bounded X-valued vector measure the reader may refer to [12]. The following result is due to
the first part of Theorem 1 of [14] which is analogous to Theorem VI.2.1 of [3] for IcHs-valued
continuous linear maps on C,(T). It plays a key role in Section 4.

PROPOSITION 4. Let X be a lcHs. Let u: C,(T) = X be a continuous linear transforma-
tion. Then there exists a unique X**- valued vector measure m on B(T) satisfying the following
properties:

(i) z*(m) € M(T) for each z* € X* and consequently, m : B(T) — X** is o-additive in
o(X™**, X*)-topology.

(i) The mapping z* — z*m of X* into M(T) is weak*-weak* continuous. Moreover, u*z* =
z*m, * € X™.

(iti) z*uf = [p fdz*m for each f € Co(T) and z* € X*.
(iv) The range of m is T.-bounded in X™**.
(v) m(E) = u**(xg) for E € B(T).

DEFINITION 3. Let u : C,(T) — X be a continuous linear map. The vector measure m
given in Proposition 4 is called the representing measure of u.

3. REGULAR BOREL (RESP. c-BOREL) EXTENSION OF X-VALUED BAIRE
MEASURES

By using Theorem 2 of [4] and the lemma in § 68 of Berberian we give here a simple direct
proof of the theorem on regular Borel and o-Borel extensions of an X-valued Baire measure on T.
To this end, we begin with the following definitions.
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DEFINITION 4. A o-additive vector measure m : B,(T) — X (resp. B.(T) — X,
B(T) = X) is called an X-valued Baire (resp. o-Borel, Borel) measure on T'.

DEFINITION 5. Let S be one of B,(T), B.(T) or B(T). An X-valued vector measure m on
S is said to be regular if, given F € S, a seminorm p € I' and ¢ > 0, there exists a compact K € S
and an open set U € § with K C E C U such that ||m(B)||, < € for every B € § with B C U\K.
When § =B,(T) (resp. B.(T), B(T)) we use the terminology Baire (resp. o-Borel, Borel) regular.

THEOREM 1. Let m be an X -valued Baire measure on T and let X be a quasicomplete lcHs.
Then there exists a unique X -valued Borel (resp. o-Borel) regular o-additive extension m (resp.m.)

of m on B(T) (resp. B.(T)). Moreover, |g Ty = m..

Proof. For each p € T, m, : B,(T) — X, is o-additive. Since the proof of Theorem 1.2.4 of [3]
holds for o-rings too, for each p € I' there exists a finite positive measure p, on B,(T) such that

li Alll, = A o(T).
Jimlmy(A)llp =0, A € Bo(T)

By Propisition 1 p, has a unique extension fi,(resp. ug) on B(T) (resp. B.(T')) such that j, (resp.
1) is a (o-additive) regular Borel (resp. o-Borel) finite positive measure. Moreover, fp|z (1) = p5-

For p € T, let p,(E,F) = f,(EAF), for E,F € B(T). Then p,(E,F) = pj(EAF) for
E,F € B.(T). Let s(I') be the uniform structure defined by the family {p,}per of semidistances
on B(T) (resp. B.(T)) and let © (resp. ©.) be the topology induced by s(I') on B(T) (resp. on
B.(T)). Then clearly, ©|z (1) = ©O.

AFFIRMATION 1. B,(T) is ©-dense (resp. O.-dense) in B(T) (resp. B.(T)).

In fact, given A € B(T) (resp. B.(T)), p € I and ¢ > 0, it suffices to show that there exists
E € B,(T) such that py(A, F) < e Since fi, is Borel regular (resp. ug is o-Borel regular), there
exists a compact K and an open set U (resp. an open set U € B.(T)) such that K C A C U and
fp(U\K) < € (resp. pg(U\K) < €). As K € B(T) and fip|s. (1) = p5 is o-Borel regular, by the
lemma in § 68 of Berberian [2] there exists F € B,(T) such that fi,(KAE) = p5(KAE) = 0. Then
pp(A, E) < ip(AAK) + iy (KAFE) < p(U\K) < € (resp. pp(A, E) < ps(U\K) < €). Hence the
affirmation holds.

Let X be the completion of X. Then by Affirmation 1 and b~y Theorem 2 of Dinculea:nu and
Kluvének [4] there exists an additive set function m : B(T) — X (resp. m. : B.(T) — X) such
that 7| (1) = m (resp. mc|,(r) = m) and for every p € I' we have

lim ||m(A)|l, =0, A€ B(T) (1)

fp(A)—0

(resp.
lim ||mc(A)|l, =0, A€ BA(T) (1).
ug(A)—0
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Since m is o-additive on B,(T), m is bounded and hence there exists a T-bounded closed set
H in X such that m(B,(T)) C H. Moreover, given A € B(T) (resp. A € B.(T)), by Affirmation 1
there eists a net {F,} C B,(T) such that E, - A in © and

m(A) = limm(Ea) (2)

(resp.

m.(A) = lig[n m(Es) (2).
As (m(E,)) is -Cauchy in X and is contained in the T-bounded closed set H, it follows from the
hypothesis on X that m(A) (resp. m.(A)) belongs to H. Hence the range of m (resp. m,) is
contained in X. Moreover, by (2) and (2’) we also have that m(A) = m.(A) for A € B.(T). Thus
M| By (T) = Me.

From (1) (resp. (1’)) and the fact that i, (resp. ;) is a finite Borel (resp. o-Borel) regular
positive measure, it follows that 7 (resp. m.) is a o-additive (X-valued) regular Borel (resp. o-
Borel) vector measure.

If ' (resp. m.) is another X-valued o-additive regular Borel (resp. o-Borel) extension of
m, then for each z* € X*, z*m/ and z*m (resp. z*m. and z*m!) are regular Borel (resp. o-
Borel) complex measures extending z*m. Then by the uniqueness part of Proposition 1 and by
the Hahn-Banach theorem we conclude that 7 = ' (resp. m. = m!). Thus the extension is unique.

Remark 1. An operator theoretic proof of the above theorem is given in [14]. But the above
proof is simple and elementary.

4. MAIN THEOREM

In this section we give an alternative simple measure theoretic proof of Theorem 5.3 of Thomas [18]
for which he employs his theory of Radon vector measures and the Grothendieck characterizations
of weakly compact operators on C,(T).

THEOREM 2. Let u: C,(T) = X be a continuous linear map and suppose X is a quasicom-
plete lcHs with ¢, ¢ X. Let m be the representing measure of u and let m, = m|g,1). Then the
following assertions hold.

(i) m, has range in X and is o-additive in T.

(it) m is an X -valued o-additive (in ) regular Borel measure.
(i) uf = [ fdm, f € Co(T).
(tv) m is uniquely determined by (ii) and (4ii).
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(v) u is a weakly compact operator.

Conversely, if X is a quasicomplete lcHs such that each continuous linear map u : Co(T) = X s
weakly compact for every locally compact Hausdorff space T, then ¢, ¢ X .

In other words, a quasicomplete lcHs X contains no copy of ¢, ( or equivalently, is X-complete
in the sense of Thomas [18, Definition 5.2] due to Theorem j of Tumarkin [19]) if and only if each
continuous linear map u : Co(T) — X 1is weakly compact for every locally compact Hausdorff space

T.

Proof. Let ¢, ¢ X and let u : C,(T) — X be a continuous linear map. By Proposition 4 there
exists a unique X**-valued vector measure m on B(T') such that

z*uf:/de(z*m), feC(T) (3)

for each z* € X*, z*m € M(T) and the mapping z* — z*m is weak*-weak* continuous.

Let C € K,. Then by Theorem 55.B of Halmos [7] there exists a decreasing sequence (f,) in
C,(T) such that f, N\, x¢ pointwise in . Then by (3) and by the Lebesgue dominated convergence
theorem

z"m(C) = lim/ frd(z™m) =limz"uf, (4)
n T n

for each z* € X™*.

Let uf, = z,. For z* € X*, z*m € M(T) and hence there exist finite positive measures pi« ;
on B(T), j=1,2,3,4, such that

(E*m = (NJ;",I — NJ;",Z) —*—\1:(}11:"3 — Nl.tA),

Again by (3) and by the Lebesgue dominated convergence theorem we have

Sl (@ = 2n)l = Sl [ (fo = frea)d(a"m)

S E?:l(zzozl (fn_fn+l)d/1:v‘,j)
T

< B, /T frdpige j + iz §(C)

< ©o0.

Hence
|27(21)[ + EoLi[e™(2n = Znpa)| < 00
for each z* € X™*. Since ¢, ¢ X, by Theorem 4 of Tumarkin [19] the formal series z; + 2, (z,, —

T,41) converges unconditionally in the topology T to some vector z, € X. In other words, lim, z,, =
z,. Then by (4) we have

t*(z,) =limz™(z,) = li7r1n T ufy, = lim /T frd(z™m) = z"m(C)

n
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for each z* € X*. Since m(C) € X**, it follows that m(C) = z, € X. Thus we have proved that
m(K,) C X.

Now let ¥ = {E € B,(T) : m(E) € X}. As K, is contained in X, it follows that the ring R(K,)
generated by K, is also contained in X. Let (E,) be a monotone sequence in ¥ with E = lim,, E,,.
When E, 7, put F, = E, — E,,_, with £, =0 and n € IN. When E, \, put F,, = F, — En4y
for n € IN. Clearly, m(F,) € X for all n. Then E = U*F, when F, / and E)\E = U F,, when
E, \. Since z*m is o-additive on B(T), we have

*m(E) = X%z m(F,) if E, /

and
"m(Ey) — z"m(E) = E%z"m(E,) if E, \ .

Then in both the cases we have £$°|z*m(F,,)| < oo for each z* € X*. As ¢, ¢ X, by Theorem 4 of
Tumarkin [19] we conclude that the formal series 3{°m(F,) is unconditionally convergent to some
vector in X in the topology 7. Then it follows in both the cases that there exists a vector w, € X
such that lim, m(E,) = w, (in the topology 7). Since z*m is o-additive and complex valued, we
have

z*m(E) = lim *m(E,) = z*w,

for all z* € X*. As m(F) € X**, we conclude that m(F) = w,. This shows that F € ¥ and
hence ¥ is a monotone class. Now by Theorem 6.B of Halmos [7] it follows that ¥ = B,(T) and
so m(B,(T)) C X. Now let m, = m|g, (7). Then the range of m, is contained in X. Since z*m is
o-additive, we conclude by the Orlicz-Pettis theorem that m, is o-additve in the toplogy 7 of X.
This proves (i).

As m, is an X-valued Baire measure on T', by Theorem 1 there exists a unique X-valued o-
additive regular Borel measure m, on T such that mo|BO(T) = m,. By Theorem 51.B of Halmos [7],
each f € Co(T) is B,(T)-measurable and bounded. Consequently, f is m,-integrable in the sense
of Definition 1 of [12] and

| famoe X, fecur). )
Then by (3) and (5) and by Lemma 6(iii) of [12], we have

z*/demo:/de(z*mo):/de(z*m)zz*uf

and /T fd(z*m,) = /T fd(z™1m,)

for z* € X* and f € C,(T). Thus the bounded linear functional z*u on C,(T) is represented by
the regular complex Borel measures z*m and z*m, and consequently, by the uniqueness part of
the Riesz representation theorem we conclude that z*m = z*m,. Since this holds for all z* € X™*,
m, is X-valued and m is X **-valued, it follows that m = m,. Thus m is X-valued, o-additive and



I.Dobrakov and T.V. Panchapagesan 9

Borel regular. Thus (ii) holds.

Since m, = m|g,(t), then by (5) we have [ fdm = [; fdm, € X for f € C,(T). Consequently,
by Proposition 4(iii), by Lemma 6(iii) of [12] and by the Hahn-Banach theorem we conclude that

uf = [ fam, feColT).
Thus (iii) holds.

If i : B(T') — X satisfies (ii) and (iii), then z*m and z*m € M(T') and represent the bounded
linear functional z*u on C,(T). Hence z*m = z*m for each z* € X*. Then by the Hahn-Banach
theorem we conclude that m = 7. Thus (iv) holds.

Let (U,) be a disjoint sequence of open sets in T and let A be an equicontinuous subset of X™.
Recall that the topology 7 is the same as the topology of uniform convergence on equicontinuous
subsets of X*. Thus, if U = U{*U,, then (ii) implies that ||m(U,)||,, — 0 as n — oo, where
pa(z) = supgecy|z*(2)|. In other words, lim, z* o m(U,) = 0 uniformly in z* € A. Since u*A =
{z* om : z* € A} by (ii) of Proposition 4, and since m has bounded range in X by (ii), we have

sup{llull 1w € A} = sup [z"om|(T)<4 sup (" om)(B)|
z* €A z*€A,BeB(T)
— 4 sup ||(m(B)lly, < .
BeB(T)

Thus u*A is bounded in M(T). Consequently, by Proposition 3, u*A is relatively weakly compact
in M(T) and then by Proposition 2 we conclude that u is a weakly compact operator. Thus (v)
holds.

To prove the converse, let w be the set IN endowed with the discrete topology. Then w is a
locally compact Hausdorff space. Let (z,) be a sequence in X such that 3{°|z*(z,)| < oo for each
z* € X*. For each n € IV, let u(x{n}) = =, and let u be extended linearly on the set S of all
P(IN)-simple functions. By the hypothesis on (z,), the set {uf : f € S,||f||n < 1} is weakly
bounded and hence 7-bounded. Then by Theorem 1.32 of Rudin [16], u is continuous. Since X is
sequentially complete and S is norm dense in C,(w), u has a unique continuous linear extension to
the whole of C,(w) and let us denote the extension too by u. Let m be the representing measure of
u. By hypothesis, u is weakly compact and hence by Lemma 1 of Grothendieck [6] u** has range
in X and hence, by Proposition 4(v) we have m(F) = v**(xg) € X for all E C IN. Then by
Proposition 4(i) and by the Orlicz-Pettis theorem we conclude that m is o-additive in the toplogy
7 of X and hence £z, = Z°u(x(n}) = ZPu™*(X{n}) = E°m({n}) = m(IV) € X. Thus the se-
ries £5°z,, is unconditonally convergent in X. Now Theorem 4 of Tumarkin [19] implies that ¢, ¢ X.

Remark 2. For Banach spaces X containing no copy of ¢, and compact Hausdorff spaces T, using
[1] Pelczy#ski established in [15] the weak compactness of continuous linear maps u : C(T) — X.
Later, using the theory of Radon vector measures and the Grothendieck characterizations of weakly
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compact operators as given in Theorem 6 of [6], Thomas [18] extended this result to quasicomplete
IcHs X and locally compact Hausdorff spaces T. Both the proofs use the technique of reduction
to compact metrizable case. Moreover, Thomas [18] also characterized the quasicomplete lcHs
containing no copy of ¢, in a form equivalent to the above theorem in terms of bounded Radon
vector measures. A direct proof for the first part of the above theorem, without employing the
reduction technique, has been given in the proof of Theorem 13 of the recent paper [14] of one
of the authors, but is highly technical and based on the results of [13] and those in Section 5 of
[14]. The advantage of the present proof of the first part is that it is not only direct, but also is
elementary and completely measure theoretic in contrast to the said proof of [14]. Moreover, it is
also noted that the final arguments of the second part as given here are much simpler than those
in the proof of Theorem 13 of [14]. '
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