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Abstract 

In this paper we compute the dynamical spectrum for time-dependent scalar parabolic equations 
with both Neumann and Dirichlet boundary conditions. In order to do that,  first, we put foryard 
the concepts of negative continuation, exponential dichotomy and Dynamical Spectrum for 
linear skew-product semiflows. Second, we set the problem in the skew-product semiflow frame- 
work and compute explicitly the dynamical spectrum for this semiflow. Finally, we compute 
the dynamical spectrum for a time-dependent system of ordinary differential equations that is 
obtained by spatially discretizing of the parabolic equation. 

1 Introduction 

In this paper we shall characterize t he  dynamical spectrum for time dependent linear scale parabolic 
equations. In order t o  d o  tha t  we will use the  concepts of Skew-Product Semiflow and Exponential 
Dichotomy t o  define t he  dynamical spectrum. These concepts have been studied in [7],  [1],[2] and 

[GI .  
More specifically we shall compute t he  dynamical spectrum for t he  following scalar parabolic equa- 
tion with Neumann boundary conditions 

u t  = a( t )uxx  + b( t )u  a: E ( 0 , l )  

u , ( t , ~ )  = u , ( t , l ) = O .  ( N B )  

Also, we shall compute t he  dynamical spectrum for this parabolic equation with Dirichlet boundary 
conditions: 

ut = a(t)u,, + b( t )u  x E ( 0 , l )  

u ( t ,  0) = u ( t ,  1)  = 0. ( D B )  

One of the  purpose of this work is t o  prove the  following two Lemmas: 

Lemma 1.1 If a ( . )  and b(.)  are continuous functions and 

lim b( t )  = p 2 lim b( t )  = cr 
t-bca t-b-ca 

lim a ( t )  = y > lim a ( t )  = a and a ( t )  > 0. 
t-boo t-b-00 
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Then the dynamical spectrum for the equation (1.1) with Neumann boundary conditions is given by 

and the dynamical spectrum for the equation (1.1) with Direchlet boundary conditions is given by 

Lemma 1.2 If a ( . ) ,  b(.) are continuous T-periodic functions. 
Then the dynamical spectrum for the equation (1.1) with Neumann boundary conditiohs is given 

and the dynamical spectrum for the equation (1.1) with Direchlet boundary conditions is given by 

Finally, we consider the following more general time dependent scale parabolic equation 

ut = a ( t , ~ ) u , , + b ( t , x ) u  X E  ( 0 , l )  

u,(t,O) = uz(t ,  1) = 0. (DB) 

where a ,  b E c ( R 2 ,  R )  with a ( t ,  x) > a > 0 are continuous and bounded with the following 
property: 

l i m a ( t , x )  = x ) >  lim a ( t , x ) = a ( x )  
t+m Y (  - t+-m (1.7) 

lim b(t, x) = P(x) > lim b(t, x) = a ( x ) .  
t+m t-+-m (1.8) 

Instead of studying the dynamical spectrum of the equation (1.5) with (NB), we shall characterize 
the dynamical spectrum of the time-dependent system of ordinary differential tha t  are obtained by 
spatially discretizing (1.5) in [0, I.]. 

Where each u; is a function of the time t and $ is the spacing between mesh-points. This discrete 
version of the equation (1.5) can be studied for several reasons. First, they represent a simple 
scheme that  might be used t o  simulate equation (1.5) numerically. Second, the partial differential 
equations are usually derived as a (or simply the dynamical spectrum)continuous approximation 
of discrete systems. Another reason, could be purely mathematical. Then for the discrete system 
(1.9) we prove the following spectral Theorem 



L e m m a  1.3 The dynamical spectrum for the system of ODES (1.9) is given by: 

n ir c = U [ - 2 n 2  ( 1  - cos -) a + a ,  -2n2 ( 1  - cos - 
z=o n + l  n + l  ir ) ~ + P I ,  

where 

lirn a ( t )  = y > lim a ( t )  = a 
t-bcc t-b-cc 

lirn b( t )  = ,Ll > lim b( t )  = a. 
t-bcc t-b-cc 

Our last Theorem is the following: 

L e m m a  1.4 If the coefficients a ( t ,  x )  = a ( t )  and b(t ,  x )  = b( t )  are assumed to be T-periodic, 

then the dynamical spectrum for the discrete system (1.9) is  

i r 
Z = {-2n2 ( 1  - cos -) A S T  a(s )ds  + 1  ST b(s)ds : i = 0 , 1 , 2 , .  . . , n ) .  

n + l  T o 7- o 

2 Preliminaries 

In this section we shall present some definitions, notations and results about skew-product semiflow 
in infinite dimensional Banach spaces. 

2.1 S k e w - P r o d u c t  S e m i f l o w  

We begin with the notion of skew-product semiflow on the trivial Banach bundle & = X x Q where 
X is a fixed Banach space (the state space) and Q is a compact Hausdorff space. 

Definit ion 2.1 Suppose that  a ( 6 ,  t )  = 8t is a flow on O ,  i.e., the mapping (6,  t )  + Ot is continuous, 
O0 = 8 and 6,+t = 8, o Ot , for all s ,  t E R. 

A semiflow r on & = X x O is said t o  be Linear S k e w - P r o d u c t  S e m i f l o w ,  if it can be written 
as follows 

r ( x ,  8 ,  t )  = ( @ ( O ,  t ) x ,  O t ) ,  t 2 0 ,  

where @(6,  t )  E L ( X )  has the  following properties: 

(1 )  @(6,  0 )  = I ,  the identity operator on X ,  for all 6 E O 

(2)  limt,o+ @(6,  t ) x  = x ,  uniformly in 6. This means tha t  for every x E X and every 6 > 0 there is 
a S = S(x ,  6 )  > 0 such that  11@(6, t ) x  - xll 5 6 , for a11 0 E Q and 0 5 t 5 6. 

(3) @(6,  t )  is a bounded linear operator from X into X tha t  satisfies the cocycle identity: 
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(4) for all t  2 0 the mapping from & into X given by 

is continuous. 

The properties ( 2 )  and ( 3 )  imply tha t  for each ( x ,  6 )  E & the solution operator t  -+ @(6,  t ) x  is 
right continuous for t  >_ 0.  In fact : 

which goes to  0  as h goes to O+. 

For any subset 3 C & we define the fiber F ( 6 )  := { x  E X : ( x ,  6 )  E 31, 6  E 0. 
So &(6) = X x {O), 6  E O. Also, we define lo = { ( x ,  6 )  E & : x  = 0) as the zero fiber 

2.2 The Stable and Unstable Sets 

Definition 2.2 A point ( x ,  6 )  E & is said to  have a negative continuation with respect to  .rr if there 
exists a continuous functions 4 : (-oo, 0] -+ & satisfying the following properties: 

(1) 4 ( t )  = (+"(t) ,  Ot )  where 4" : (-oo, 0] -+ X 

( 2 )  4 ( 0 )  = (21 6 )  

( 3 )  ~ ( 4 ( s ) , t )  = 4 ( s  + t ) ,  foreach s  5 0 ,  and 0  5 t  5 -s  

( 4 )  .rr(4(s) , t )  = . r r (x ,O, t+s) ,  foreach 0  5 - s  5 t .  
In this case the function 4 is said to  be a negative continuation of the point ( 2 ,  6 ) .  For 

any negative continuation 4 and any r 5 0 ,  we define 4,(t) = 4(r  + t )  for - oo < t  < -r. 

Now we shall define the following sets: 

M := { ( x ,  6 )  E & : ( x ,  6 )  has a negative continuation 4 )  

U := { ( x ,  6 )  E M : there is a negative continuation 4 of ( x ,  6 )  satisfying Il4"(t:1 1 1  -+ 0  as t  -+ 
-4 

B+ := { ( x ,  6 )  E & : - (1@(6, t ) x J J  < oo) 

B; := { ( x , O )  E M : ( x 1 6 )  has a unique bounded negative continuation 4 )  

B- := { ( x ,  6 )  E M : there is a bounded negative continuation 4 of ( x ,  6 ) )  

S := { ( x ,  6 )  E & : 11@(6, t ) x J J  -+ 0  as t -+ oo) 

The set U is called unstable set, S is the  stable set and B  is the bounded set. 
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2.3 Exponential Dichotomy and Dynamical Spectrum 

A mapping P : & -+ & is said to  be a projector if P is continuous and has the form P ( x ,  8)  = 
( P ( B ) x ,  8 ) ,  where P ( 0 )  is a bounded linear projection on the fiber &(8) .  

For any projector P we define the range and null space by 

N = N ( P )  = { ( x ,  0 )  E E : P ( 0 ) x  = 0 )  

The continuity of P implies that  the fibers R ( 0 )  a n d N ( 0 )  vary continuously in 8. This also means 
that  P(8)  varies continuously in the operator norm. The following result is elementary and can be 
found in Sacker-Sell [7]. 

L e m m a  2.1 Let P be a projector on &, then R and N are closed subsets in  & and we have 

R ( 8 )  n N  = { o ) ,  R ( 8 )  +N(O) = & ( @ )  for all 0 E O .  

A projector P on & is said to  be invariant if it satisfies the following property 

We shall say that  a linear skew-product semiflow T on & has an exponen t ia l  d i c h o t o m y  over  
a n  invariant se t  8 ,  where 6 c O ,  if there are constants k > 1, p > 0 and an invariant projector 
P such that the following inequalities hold : 

I / @ ( @ ,  t )  P(O)  1 )  < ke-Ot t > 0 ,  B E 6 
I I ~ ( o , ~ ) ( I  - P ( O ) I I  5 kept t 5 0 ,  B E 8,  

and dimRange(1-  P ( 0 ) )  < m, R a n g e ( I -  P ( 8 ) )  c B;(B) for all 0 E 6. 
Proposi t ion 2.1 (See [7])If T is a linear skew-product semiflow on & = X x O which admits an 
exponential dichotomy over O ,  then one has that 13 = f0. 

Consider T = (a ,  a )  a linear skew-product semiflow on &. Then for each X E R we define the 
shifted semiflow as follows: 

T A  = ( Q x , ~ ) ,  Q X ( 8 ,  t )  = edXt@(O,t )  t > 0 ,  8 E 43 

Let 8 be an invariant subset of O under the flow a .  The resolvent  p ( 6 )  of 8 under the 
skew-product semiflow T is defined as follows 

p ( 6 )  = { A  E R : T A  admits an exponential dichotomy over 6 )  

and the dynamica l  s p e c t r u m  ~ ( 6 )  of 6 under T as follows 

~ ( 6 )  = R \ p ( 8 ) .  

The following Lemma plays an important role along this work, it can be found in [ I ] .  

L e m m a  2.2 Let 8 be a compact invariant subset of O and X E R. 

If I )aA(8,  tj(I -+ 0 as t + m for all 0 E 6 ,  then X E p ( 8 ) ,  ~ ( 6 )  C (-co, A ) ,  and S, = ~ ( 6 )  = 
x x 8 for a l l p  2 A. 



3 Dynamical Spectrum for Scalar ODE 

In this section we shall characterize the dynamical spectrum for the following very simple time 
dependent ODE 

x = b ( t ) x ,  x E X ,  (3.13) 

where X is a Banach space and b(.) : R + R is a continuous function satisfying the following 
property 

lim b( t )  = p 2 lim b( t )  = a. 
t-b" t-b-03 

(3.14) 

Proposition 3.1 Under the above conditions the function a ( . )  is uniformly continuous and bounded 
i n  R .  

The function b(.) belong to  the space W = C ( R )  endowed with the topology of uniform con- 
vergence on cotnpact subsets of R. The following set plays an important role along this work, it is 
called the Hull of b(.):  

H ( b )  := Hull(b) = cl{b, : r E R ) ,  (3.15) 

where b, E W is given by b,(t) = b,(t + r )  and cl denotes the closure in the topology of W. It is 
known from classical topological dynamical systems Theory [8] that H ( b )  is a compact metrizable 
subset of W,  and the metric is given by: 

where 
pk(h ,  g )  := sup{ )h ( t )  - g(t)l : -k 5 t 5 k )  

Moreover, the mapping a ( h ,  t )  = ht is a flow on H ( b ) .  

Proposition 3.2 Under the condition (3.14) we have that 

H ( b )  = {b,, h ( t )  = a,  s ( t )  = P : r E R ) .  

Proof It follows from the formula (3.16). 

0 
Instead of concentrating on the single equation (3.13) we shall consider the family of equations 

x = h ( t ) x ,  h E H ( b ) .  

Then the mapping T : X x H ( b )  x R + X x H ( b )  given by 

defines a linear skew-product flow on X x H ( b ) ,  where 

The following Lemma is the key of this work. 



Lemma 3.1 The dynamical spectrum of the skew-product flow given by (3.18) generated by the 
equation (3.13) is: 

C(H(b)) = [%PI. 

Proof 
Case 1. If X > p, then X E C(H(b)).  In fact, consider h E H(b), h # cr. Then limt+m h(t) = p. 
Let E > 0 be small enough such that  P + E < A. Then there exists N > 0 with h(t) < P + E for all 
t > N. So, for x E X and t 2 N we have 

- - exp (lN h(s)ds) exp (l h(s)ds) e - A t ~ .  

Then 

Hence, IIQx(h,t)/I + 0, as t + ca, for all h E H(b),  h # a .  Now, if h = cr, then 

Therefore, IIQx(h, t)ll + 0, as t + m, for all h E H(b). So, from Lemma 2.2 we get that  X E p(H(b)). 
Case 2. If X < cr, then X $! C(H(b)).  This case is similar to  case 1. 
Case 3. cr, p E C ( H  (b) ) .  In fact, for all x E X 

which means that ,  the bounded sets f?,, f?, are not trivial. So, from Proposition 2.1 we have that 
Q, P E C(H(b)).  
Case 4. If X E (cr, p), then X E C(H(b)).  In fact, for all x E X we have 

lim ax(@, t)x lim e(a-A)tx = 0 and lim Qx(P, t ) ~  = lim e(O-')'x = W. 
t+m t+m t+m t+m 

Hence, from Lemma 2.2 we get that  X E C(H(b)) .  

0 

Lemma 3.2 If the function b in the equation (3.13) is periodic of period r > 0, then the dynamical 
spectrum of the skew-product flow given by (3.18) and generated by the equation (3.13) is: 



Proof If follows from the following fact: for t > r ,  there exists n = n(t) E LV such that  t = 
n r + r ,  0 < r < r .  Then, for all h E H ( b )  weget:  

Where B ( t ,  h )  is uniformly bounded in t ,  h .  Therefore, 

( If t < -r the proof follows in the same way) 0 
Given a point ( x ,  h )  E= X x H ( b ) ,  x # 0 ,  we shall define the four Lyapunov characteristic 

exponents of ( x ,  h )  as follows: 

1 
X:(x, h )  = lim sup - In Il@(h, t ) s ) )  (3.20) 

t++m t 
1 

X?(x,h)  = liminf - l n ( ( @ ( h , t ) x l (  
t++m t (3.21) 

1 
X,(x, h )  = lim sup - In ll@(h, t)x11 

t+-rn t 
1 

= lim inf - In Il@(h, t)x11 
t+-co t 

Definition 3.1 For all h E H ( b )  we define the upper and lower Lyapunov exponents X$(h) and 
( h )  as follows: 

X:(h) := sup{X:(x, h )  : x E X ,  x # 0 )  

A: ( h )  := i n  f {A? ( x ,  h )  : x E X ,  x # 0 )  

The following Theorem is proved in [ I ]  for a general skew-product semiflow 

Theorem 3.1 The upper and the lower Lyapunov exponents X$(h) and X!(h) associated with 
h E H(b)  are given respectively by : 

1 
X z ( h )  = lim sup - In Il@(h, t)ll E [a, ,dl 

t+m t 

1 
X:(h) = - lim sup - In ( (@(h- t ,  t)II E [a, ,dl 

t+m t 

The following Corollary can be used to  study the stability of the solutions of the equation (3.13). 



Corolary 3.1 Under the condition of Lemma 3.1 we have the following: 
For each E > 0 there exists a constant M = M ( E )  2 1 such that 

Corolary 3.2 (a) If P < 0 ,  then the solutions of (3.13) are exponentially stable 

(b) If a > 0,  then the solutions of (3.13) are unstable. 

(c) If 0 E (a ,  p ) ,  then the solution of (3.13) blow up i n  both directions. 

4 Dynamical Spectrum Parabolic PDE 

We begin this section with a simple time-dependent scale parabolic equation with Neumann boun- 
dary conditions 

where a( . )  : R + R is a uniformly continuous and bounded function with the following pro- 
perties: 

lim a ( t )  = y 2 lim a ( t )  = a > 0 and a ( t )  > 0. 
t+03 t+-03 

(4.30) 

The equation (4.28) can be written as an abstract equation in the Hilbert space Z = L2[0,  11 as 
follow: 

i = a ( t ) A z ,  t > 0 (4.31) 

where A ~ ( x )  = $ ( x )  is a linear unbounded operator with domain 

It is well known that  A = $$ is selfadjoint with compact resolvent; so the spectrum of A consist 
only of a contable number of eigenvalues: 

and the corresponding eigenfunctions: 

& ( x )  = h c o s ( n -  l ) r x ,  n = 1 , 2 , 3  , . . . , . . .  and q51(x) = 1. (4.34) 

Instead of concentrating on the single equation (4.31) we shall consider the family of equations 
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where H ( a )  denote the  Hull of a given by (3.3). Then the  mapping n : Z X  H ( a )  xR+ + Z X  H ( a )  
given by 

4 2 ,  h ,  t )  = ( @ ( h ,  t)z1 h t ) ,  

defines a linear skew-product semiflow on Z x H ( a ) ,  where 

and { T ( t ) l t > 0  - is t he  co-semigroup generated by the  operator A which is given by 

and Zn = ( z ,  4,) = J,' +,(y)z(y)dy.  Since, - yield a n  orthonormal base of t he  Hilbert space 
Z ,  then we can write @ ( h ,  t ) z  as follow 

where Pn,s are orthonormal projections in the  Hilbert space Z ,  which are given by: Pnz = 
( z ,  +n)$n. 

Lemma 4.1 The dynamical spectrum of the skew-product semiflow given by (4.36) generated by 
the equation (4.28) is: 

00 

C = U [ - ( n  - 1 ) 2 ~ 2 u ,  - ( n  - 1)2n2r] l  
n=l 

Proof From (4.38) we get t h a t  

where 

@,(h, t ) ~  = exp ( L t X n h ( s ) d s )  Pnz , ,  h E H ( u ) ,  z E Z .  (4.40) 

Then,  for each n we consider the  skew-product semiflow nn : Z x H ( a )  x R+ + Z x H ( a )  given by 

which is genarated by the  following ODE 

From Lemma 3.1 t he  dynamical spectrum of the  flow nn is C n ( H ( a ) )  = [Xnu, AT]. Clearly t he  
dynamical spectrum of the  semiflow n is given by 
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0 
Now, we are ready to  prove Lemmas 1.1 and 1.2. 
Proof of Lemma 1.1. The  equation (1.1) generates a skew-product semiflow x  : Z x H ( a ,  b) x 

R+ -+ Z x H ( a ,  b) given by 
rn(z7 h, 9 ,  t )  = (@(h,  g , t ) z t . ,  ht, gt) ,  

where H  ( a ,  b) = H  ( a )  x H  (b )  and 

with 
t 

@ , ( h , t ) z =  exp (1 [Xnh(s)  + b ( s ) ] d s )  Pnzjj  h E H ( a ) ,  2 E Z. ' (4.42) 

Then, for each n we consider the  skew-product flow xn : Z x H  ( a ,  b) x R+ --+ Z x H  ( a ,  b) given 

by 
xn(zt., h, 9 ;  t )  = (@n(h, t)z7 ht, gt) ,  

which is genarated by the following O D E  

From Lemma 3.1 the Sacker-Sell spectrum of this flow xn is C n ( H ( a ,  b ) )  = [Xna + a,  Xy + PI. 
Therefore the dynamical spectrum of the semiflow x  is given by 

00 00 

C ( H ( a ,  b ) )  = U C n ( H  ( a ,  b ) )  = U [-(n - 1)2x2f l  + a,  - (n  - 1 ) 2 ~ 2 ~  + PI. 
n= l n= l 

For the  equation (1.7) with Dirichlet boundary conditions we have t o  consider t he  operator A = & 
with the domain 

D ( A )  = { z  t. L2[0, 11 : z,, E Lz[O, 11, z ( 0 )  = z ( 1 )  = 0 )  

It  is well known tha t  A is selfadjoint with compact resolvent; so the  spectrum of A consist only of 
a contable number of eigenvalues: 

and the corresponding eigenfunctions: 

Which yield t o  an  orthonormal base of the  Hilbert space Z. The  co-semigroup { S ( t ) ) t > o  - generated 
by A in this case is given by 

and & = ( 2 ,  &) = 4 n ( y ) ~ ( y ) d y .  From here everything follows in the  same way as above. 
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Proof of Lemma 1.2. Again the equation (1.1) with r-periodic coefficients a ( t ) ,  b ( t )  and 
Neumann boundary conditions generates a skew-product semiflow x  on Z x H ( a ,  b) given by 

where H ( a ,  b) = {a t  : t E R )  x {bt : t E R )  and 

n= l 

with 
t 

@n (h,  t ) z  = ~ X P  (1 [Anh(s)  + b ( s ) ] d s )  Pnz, , h  E H  ( a ) ,  z E Z. (4.44) 

Then, for each n we consider the skew-product flow sn : Z x H ( a ,  b) x R+ + Z x H (o, b) given 

by 
x n ( z ,  h, g; t )  = (@n(h, t ) z ,  ht, gt)i 

which is genarated by the  following ODE 

From Lemma 3.2 the dynamical spectrum of this flow xn is 

- ( n  - 1) 'x2 
C n ( H ( a ,  b ) )  = {@ a ( s ) d s  + L / r b ( s ) d s )  = { 

T 
/or a ( s ) d s  + IT  b(s )ds ) .  

7- 0 7- 0 

Therefore the dynamical spectrum of the semiflow x  is given by 

C ( H ( a ,  b ) )  = { C n ( H ( a ,  b ) )  : n = l , 2 , .  . .) 

The last part of the Lemma can be proved in the same way. 0 
Proof of Lemmas 1.3 and 1.4. We want t o  compute the dynamical spectrum of the non- 

autonomous linear system of differential equations 

Which is a discretization on space of the following non-autonomous parabolic equation with Neu- 
mann boundary conditions 

where a ,  b  E C ( R )  with a ( t )  > a > 0 with the following property: 

lim a ( t )  = y 2 lirn a ( t )  = a 
t+co t+-co 

lirn b( t )  = p > lirn b( t )  = a. 
t+co t+-co 



Let us introduce some notation that  will allow (4.45) - (4.46) t o  be rewritten in a more compact 
form. Consider the vector space of dimension n + 1 given by 

Un = {(uo, ~ l , . .  . , Z L , ) ~  : U; E R, i = 1 , 2 , .  . . , n}, 

where "T"  denote transposition. Let 

Then the equations (4.45)-(4.46) can 

A be the following (n  + 1) x ( n  + 1) tridiagonal matrix 

be written in a short way as follow 

It is well known that  the eigenvalues of A are given by the following formula 

jT ) : j = ~ , l , . . . , n } .  { A j  = -2 (1 - cos - 
n + l  

Since the function cosx is 1 to  1 in [0, T ) ,  then all the eigenvalues of the matrix A are simple. 
Hence, A is diagonalizable. i.e., There exists a non-singular ( n  + 1) x (n  + 1) matrix P such that  
A = PJP-' where J = diag(Ao, A1, . . . , A n )  is diagonal. 

Therefore, the equation (4.51) can be written as follow 

Now, making the change of variable v = P- 'u  we get the equivalent system 

The dynamical of this system is given by the following scale equations 

So, from Lemma 3.1 we get tha t  the dynamical spectrum for the equation (4.53) is 

Therefore, the dynamical spectrum for the  system (4.53) is 

n 

= u [-2n2 (1 - cos - jT ) c + o , - 2 n 2  1-cos- 
j = O  n + l  ( n + l  jn  PI. 

The proof of Lemma 1.4 follows in the same way by using Lemma 3.2 instead of Lemma 3.1. Cl 
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