Universidad de los Andes
 Facultad de Ciencias
 Departamento de Matemática

On a Neumann problem asymptotically linear at $-\infty$ and superlinear at $+\infty$

Jesús Alfonso Pérez Sánchez

Notas de Matemática

Serie: Pre-Print
No. 167

Mérida - Venezuela
1997

On a Neumann problem asymptotically linear at $-\infty$, and superlinear at $+\infty$

Jesús Alfonso Pérez Sánchez

(IP)

$$
\left\{\begin{array}{l}
-\Delta u=f(x, u)-t+h(x), \quad x \in \Omega \\
\frac{\partial u}{\partial \eta}=0, \quad x \in \partial \Omega
\end{array}\right.
$$

where: Ω is a bounded domain in $\mathbb{R}^{\mathbb{N}}(\mathbb{N} \geq 1)$, with smooth boundary $\partial \Omega ; f: \bar{\Omega} \times \mathbb{R} \longrightarrow \mathbb{R}$ is some continuous function, asymptotically linear at $-\infty$, and superlinear at $+\infty$; t is a real parameter and $h: \bar{\Omega} \longrightarrow \mathbb{R}$ is a function such that $\int_{\Omega} h=0$
Using variational methods, we prove the existence of two solutions of (IP), for $t<0$, and $|t|$ large enough.
Key words and phrases: asymptotically linear problem, superlinear problem, variational methods, critical point, linking condition, Palais-Smale condition.

1 Introduction

We denote by $0=\lambda_{1}<\lambda_{2} \leq \lambda_{3} \leq \cdots$ the eigenvalues of $\left(-\Delta ; H^{1}(\Omega)\right)$, where: $H^{1}(\Omega)$ is the usual Sobolev Space endowed with the norm:

$$
\|u\|^{2}=\int_{\Omega}|\nabla u|^{2}+\int_{\Omega} u^{2}
$$

In problem (IP), the function f is given by:
$\left(f_{0}\right)$

$$
f(x, s)=-\beta s^{-}+c\left(s^{+}\right)^{p}
$$

where $c>0$, and the constant β belongs to some interval contained in $\left(\lambda_{j}, \lambda_{j+1}\right)$, for some $j \geq 1$, which will be specified later.
The problem is subcritical, since p is restricted in the usual way:

$$
1<p<\frac{N+2}{N-2} \quad \text { if } N \geq 3, \quad 1<p<\infty \quad \text { if } \quad N=1,2
$$

Let us fix a $j \geq 1$ and let us denote by $e_{1}, e_{2}, e_{3}, \cdots$ the eigenfunctions associated with the eigenvalues $0=\lambda_{1}<\lambda_{2} \leq \bar{\lambda}_{3} \leq \cdots$, such that $\int_{\Omega} e_{i}^{2}=1$, for $i=1,2,3, \cdots$.
Let H_{1} be the $\operatorname{span}\left[e_{1}, \cdots, e_{j}\right]$.

We define $\quad m=\inf \left\{\int_{n} v^{2}+\int\left(\left(e_{j+1}+v\right)^{+}\right)^{2} \quad: \quad v \in H_{1}\right\}$.
It can be proved that $0<m<1$.
Our main result is the following theorem.
Theorem 1.1 Assume hypothesis $\left(f_{0}\right)$, with $\frac{m}{m+1} \lambda_{j}+\frac{1}{m+1} \lambda_{j+1}<\beta<\lambda_{j+1}$. Also suppose that $\int_{\Omega} h=0$. Then (IP) has, at least two distinct solutions, for $t<0$ and $|t|$ large enough.

Remark 1.1 Instead of $\left(f_{0}\right)$ we can suppose

$$
\begin{equation*}
f(x, s)=-\beta s^{-}+c\left(s^{+}\right)^{p}+W(x, s) \tag{0}
\end{equation*}
$$

provided this last term satisfies some appropiated growth conditions.
Our work was motivated by the analogous Dirichlet problem studied by A.Micheletti and A. Pistoia [5], namely
$\left(\mathbb{P}_{\text {Dir }}\right)$

$$
\left\{\begin{array}{l}
-\Delta u=f(x, u)+h(x)-t \varphi, \quad \Omega \\
u=0, \quad \partial \Omega
\end{array}\right.
$$

where $\varphi>0$ is an eigenfunction associated with the first eigenvalue of $\left(-\Delta ; H_{0}^{1}(\Omega)\right)$, and $\int_{\Omega} h \varphi=0$.
We also mention that Ruf-Srikanth [6] studied ($\mathbb{P}_{\text {Dir }}$) with $f(x, u)=\lambda u+\left(u^{+}\right)^{p}$,
where : $\lambda_{k}<\lambda<\lambda_{k+1}$ and $p>1$ is as above. They proved that ($\mathbb{P}_{\mathrm{Dir}}$) has at least two solutions, for $t<0$ and $|t|$ large enough. De Figueiredo [2] obtained a similar result for a larger class of nonlinearities. In these works, a solution is found directly, and the second one follows by using the Generalized Mountain Pass Theorem due to Rabinowitz. The conditions required in [2] in order to apply the Generalized Mountain Pass Theorem are:
($f_{0}^{\prime \prime}$)

$$
f \in C^{1} \quad, \quad f_{s}^{\prime}(x, s) \geq-\mu>\lambda_{k}-\lambda
$$

and all the assumptions which are needed to get the Palais-Smale condition. In [5], A. Micheletti and A. Pistoia considered another class of nonlinearities (which do not satisfy ($f_{0}^{\prime \prime}$)) for which the result remains valid under the weaker assumption $f \in \mathcal{C}(\bar{\Omega} \times \mathbb{R}, \mathbb{R})$. They used a slight different variational argument to obtain directly the existence of two distinct critical values for the Euler-Lagrange functional f_{t} associated with ($\mathbb{P}_{\mathrm{Dir}}$). In their theorem they used the following hypothesis: $f_{t} \in C^{1}, f_{t}$ satisfies the Palais-Smale condition and some" linking condition ". We use a similar variational method, but our "linking condition "is simpler and better adapted to the geometry of f_{1}.

2 " Linking condition" and existence of two critical values

Let H a Hilbert space, which is the topological direct sum of two subespaces H_{1} and H_{2}.

Definition $1 \quad$ Let $u_{0} \in H$. The function $g: H \longrightarrow \mathbb{R}$, satisfies the "Linking condition" (\mathbf{L}) with respect to u_{0}, H_{1}, H_{2}; if there exist $e_{0} \in H_{2} \backslash\{0\}, \rho_{1}, \rho_{2}$ such that:
(L)

$$
\begin{gathered}
\rho_{1}>2 \rho_{2}>0 \\
\sup _{v_{0}+\partial B_{1}} g<\inf _{u_{0}+\partial B_{2}} g
\end{gathered}
$$

where

$$
\begin{aligned}
& B_{1}=\left\{u=u_{1}+t e_{0}: u_{1} \in H_{1},\|u\|<\rho_{1}, t \geq 0\right\} \\
& B_{2}=\left\{u_{2} \in H_{2},\|u\|<\rho_{2}\right\}
\end{aligned}
$$

We shall use the following result:
Theorem 2.1 Let H be as above, with $\operatorname{dim} H_{1}<+\infty$.
If $g \in C^{1}$ and satisfies the Palais-Smale condition and the "Linking condition"(L), then there exist two critical values, c_{0} and c_{1}, for g such that:

$$
\inf _{u_{0}+B_{2}} g \leq c_{1} \leq \sup _{u_{0}+\partial B_{1}} g<\inf _{u_{0}+\partial B_{2}} g \leq c_{0} \leq \sup _{u_{0}+B_{1}} g
$$

Remark 2.1 The proof of 2.1 is made using the deformation lemma and Brouwer's degree theory, adapting the ideas of analoguos theorem in [4].

3 The Palais-Smale condition.

Problem (\mathbb{P}) can be written as:
(IP)

$$
\left\{\begin{array}{l}
-\Delta u=f(x, u)+h(x), \quad x \in \Omega \\
\frac{\partial u}{\partial \eta}=0 \quad x \in \partial \Omega
\end{array}\right.
$$

where $\hat{f}(x, s)=-\beta s^{-}+c\left(s^{+}\right)^{p}-t$.
It follows from our assumptions that

$$
\begin{equation*}
\lim _{s \rightarrow-\infty}[f(x, s)-\beta s]=-t \tag{*}
\end{equation*}
$$

and that there exist $s_{0}>0$ and $\theta \in(0,1 / 2)$, such that:

$$
\begin{equation*}
0<\hat{F}(x, s) \leq \theta s \hat{f}(x, s), \text { for } s \geq s_{0}, x \in \bar{\Omega}, \tag{**}
\end{equation*}
$$

where $\hat{F}(x, s)=\int_{0}^{s} \hat{f}(x, \tau) d \tau$.
From (*) and (**), it follows that the Palais-Smale condition is satisfied for the functional $f_{t}: H^{1}(\Omega) \longrightarrow \mathbb{R}$, given by:

$$
f_{t}(u)=\frac{1}{2} \int_{\Omega}|\nabla u|^{2}-\int_{\Omega} \hat{F}(x, u)-\int_{\Omega} h u .
$$

(See Arcoya-Villegas [1], lemma 1.1).

4 Geometry of the functional f_{t}.

8 In this section we prove that f_{t} satisfies the condition (\mathbf{L}). For that matter, we have to establish some technical lemmas. Here, as in the Introduction, H_{1} is the $\operatorname{span}\left[e_{1}, \cdots, e_{j}\right]$, and we define H_{2} as the $\operatorname{span}\left[e_{j+1}, \cdots\right]$.

Lemma 4.0 Let $z \in H_{2}$ and $s \leq 0$.
If $\hat{\Omega}=\{x \in \Omega: s+z(x) \leq 0\}$, then
$\underset{s \rightarrow-\infty}{\limsup }$ meas $(\Omega \backslash \tilde{\Omega})=0$, uniformly for $\|z\| \leq$ const.
Remark 4.1 This lemma can be proved following an idea contained in lemma 3.1 of [5].
Lemma 4.1 If $z \in H_{2}$ and $s \leq 0$, then

$$
\begin{aligned}
f_{t}(s+z)-f_{t}(s) \geq & c_{0}^{*} \cdot \frac{\lambda_{j+1}-\beta}{2 \lambda_{j+1}}\|z\|^{2}-c_{1}-\left(\int_{\Omega} h^{2}\right)^{1 / 2} \cdot\|z\| \\
& -\omega(\operatorname{meas}(\Omega \backslash \hat{\Omega}))\|z\|^{p+1},
\end{aligned}
$$

where c_{0}^{*} and c_{1} are positive constants, and $\omega: \mathbb{R}^{+} \longrightarrow \mathbb{R}$ is such that $\lim _{r \rightarrow 0^{+}} \omega(r)=0$.
Lemma 4.2 If $s \leq 0$ and $t=s \beta$, then there exists $c_{2}>0$ such that

$$
\sup _{v \in H_{1}} f_{t}(s+v) \leq f_{t}(s)+c_{2} .
$$

Remark 4.2 In the proof of lemmas 4.1 and 4.2 we use the variational inequalities:

$$
\begin{aligned}
& \int_{\Omega}\|\nabla v\|^{2} \leq \lambda_{j} \int_{\Omega} v^{2} \text { for } v \in H_{1} \\
& \int_{\Omega}\|\nabla z\|^{2} \geq \lambda_{j+1} \int_{\Omega} z^{2} \text { for } z \in H_{2} .
\end{aligned}
$$

8 From Lemmas $4.0,4.1$ and 4.2, it follows easily:

Lemma 4.3 With the same hypothesis of Lemmas 4.1 and 4.2 , there exist $R_{1}>0$ and $t_{0}<0$, such that:

$$
\inf \left\{f_{t}(s+z): z \in H_{2}, \quad\|z\|=R_{1}\right\}>\sup _{v \in H_{1}} f_{t}(s+v)
$$

for $\boldsymbol{s} \beta=t \leq t_{0}$.
Before the next lemma we will define an auxiliary function, as follows.
First, we take ϵ, such that:

$$
\begin{equation*}
0<\epsilon<\beta-\frac{m}{m+1} \lambda_{j}-\frac{1}{m+1} \lambda_{j+1} . \tag{1}
\end{equation*}
$$

Then, we choose α such that:

$$
\begin{equation*}
0<\frac{\lambda_{j+1}+\epsilon-\beta}{\alpha-\beta}<m . \tag{2}
\end{equation*}
$$

Definition 2 Let $Q_{0}: H^{1}(\Omega) \longrightarrow \mathbb{R}$, given by

$$
Q_{0}(u)=\int_{\Omega}|\nabla u|^{2}+\epsilon \int_{\Omega} u^{2}-\alpha \int_{\Omega}\left(u^{+}\right)^{2}-\beta \int_{\Omega}\left(u^{-}\right)^{2} .
$$

From (1) and (2) we can prove that
(3) $Q_{0}\left(v+e_{j+1}\right)<0$, for all $v \in H_{1}$.
(3) Let $M=\left\{u \in H^{1}(\Omega): Q_{0}^{\prime}(u) \cdot v=0\right.$, for all $\left.v \in H_{1}\right\}$.

One can prove the following fact:
(4) Given $u_{2} \in H_{2}$, there exists a unique $u_{1} \in H_{1}$ such that $u_{2}+u_{1} \in M$.

Remark 4.3 A proof of (4) can be made applyng the theorem of Minty (See [3]) to the function $P_{1} \circ T$ 。 $\left(-Q_{0}\right)^{\prime}\left(\cdot+u_{2}\right)$, where $P_{1}: H_{1} \oplus H_{2} \longrightarrow H_{1}$ is the canonical projection, $T:\left(H^{1}(\Omega)\right)^{*} \longrightarrow H^{1}(\Omega)$ is the mapping given by the Riesz's Representation Theorem.

From (4) we conclude that there exists a mapping $\quad \gamma_{0}: H_{2} \longrightarrow H_{1} \quad$ such that

$$
\begin{equation*}
u_{2}+\gamma_{0}\left(u_{2}\right) \in M, \text { for each } u_{2} \in H_{2} . \tag{5}
\end{equation*}
$$

In lemma (4.4) below we consider the element $u^{*}=e_{j+1}+\gamma_{0}\left(e_{j+1}\right)$. In particular, using (3),(5) and (3)', we have that:

$$
\begin{equation*}
Q_{0}\left(u^{*}\right)<0 \text { and } Q_{0}^{\prime}\left(u^{*}\right) \cdot v=0 \quad, \text { for all } v \in H_{1} . \tag{6}
\end{equation*}
$$

Lemma 4.4 Assuming $s \leq 0$ and u^{*} as above, it follows that:

$$
\lim f_{t}\left(s+\sigma u^{*}+v\right)=-\infty, 8
$$

as $\left\|\sigma u^{*}+v\right\| \longrightarrow+\infty$, where $\sigma \geq 0$ and $v \in H_{1}$.
Remark 4.4 Associated with Q_{0}, there are the expressions:

$$
\Gamma(u)=\frac{1}{2} \alpha\left(u^{+}\right)^{2}+\frac{1}{2} \beta\left(u^{-}\right)^{2} \quad \text { and } \quad \gamma(u)=\alpha u^{+}-\beta u^{-},
$$

which satisfy the following inequalities:

$$
\begin{equation*}
\frac{\min \{\alpha, \beta\}}{2}(u-\tilde{u})^{2} \leq \Gamma(u)-\Gamma(\tilde{u})-\gamma(u)(u-\tilde{u})^{2} \leq \frac{\max \{\alpha, \beta\}}{2}(u-\tilde{u})^{2} \tag{7}
\end{equation*}
$$

for all $u, \tilde{u} \in H^{1}(\Omega)$.

Proof of Lemma 4.4

Taking into account that $\beta<\alpha$ and using (7), we obtain:

$$
\begin{equation*}
Q_{0}\left(s+\sigma u^{*}+v\right)-Q_{0}\left(\sigma u^{*}\right) \leq \int_{\Omega}|\nabla v|^{2}+\epsilon \int_{\Omega} v^{2}-\beta \int_{\Omega} v^{2}+Q_{0}^{\prime}\left(\sigma u^{*}\right) \cdot(s+v) . \tag{8}
\end{equation*}
$$

Now, in the expression of $f_{t}\left(s+\sigma u^{*}+v\right)$ we apply (8) and the facts:

$$
\int_{\Omega}|\nabla v|^{2} \leq \lambda_{j} \int_{\Omega} v^{2}, \quad Q_{0}\left(\sigma u^{*}\right)=\sigma^{2} Q_{0}\left(u^{*}\right), \quad Q_{0}^{\prime}\left(u^{*}\right) \cdot(s+v)=0 .
$$

So, we arrive at

$$
\begin{aligned}
f_{t}\left(s+\sigma u^{*}+v\right) & \leq \frac{1}{2} \sigma^{2} Q_{0}\left(u^{*}\right)+\frac{\lambda_{j}+\epsilon-\beta}{2\left(\lambda_{j}+\epsilon\right)}\left[\int_{\Omega}|\nabla v|^{2}+\epsilon \int_{\Omega} v^{2}\right] \\
& +\frac{\epsilon}{2} \int_{\Omega} s^{2}+\epsilon \int_{\Omega} s v-\beta \int_{\Omega} s v-\sigma \int_{\Omega} h u^{*}-\int_{\Omega} h v \\
& +t s|\Omega|+t \sigma \int_{\Omega} u^{*}+t \int_{\Omega} v+\text { const. }
\end{aligned}
$$

Since $Q_{0}\left(u^{*}\right)<0$ and $\lambda_{j}+\epsilon<\beta$, the Lemma 4.4 follows.

Lemma 4.5 Assuming the same hypothesis as in Lemmas 4.1 and 4.2, it follows that, fort negative and small enough, the functional f_{t} satisfies condition (L), with respect to $u_{0}=\frac{t}{\beta}=s, H_{1}=\operatorname{span}\left[e_{1}, \cdots, e_{j}\right], H_{2}=$ $\operatorname{span}\left[e_{j+1}, \cdots\right]$.
Proof.
From Lemma 4.3, there exist $\rho_{2}>0$ and $t_{1}<0$, such that

$$
\begin{equation*}
\inf \left\{f_{t}(s+z): z \in H_{2},\|z\|=\rho_{2}\right\}>\sup _{v \in H_{1}} f_{t}(s+v), \text { for } t=s \beta \leq t_{1} \text {. } \tag{9}
\end{equation*}
$$

On the other hand, applyng Lemma 4.4 we can choose $\rho_{1}>2 \rho_{2}$ such that:

$$
\begin{equation*}
\sup \left\{f_{t}\left(s+\sigma u^{*}+v\right): \sigma \geq 0, v \in H_{1},\left\|\sigma u^{*}+v\right\|=\rho_{1}\right\} \leq \sup _{v \in H_{1}} f_{t}(s+v) . \tag{10}
\end{equation*}
$$

Then, from (9) and (10) it follows that:

$$
\sup \left\{f_{t}\left(s+\sigma u^{*}+v\right): \sigma \geq 0, v \in H_{1},\left\|\sigma u^{*}+v\right\|=\rho_{1}\right\}<\inf \left\{f_{t}(s+z): z \in H_{2},\|z\|=\rho_{2}\right\} .
$$

Hence, f_{t} satisfies condition (L) with respect to:

$$
u_{0}=s=\frac{t}{\beta}, \quad H_{1}=\operatorname{span}\left[e_{1}, \cdots, e_{j}\right], \quad H_{2}=\operatorname{span}\left[e_{j+1}, \cdots\right],
$$

$$
\text { taking } e_{0}=e_{j+1}, B_{1}=\left\{u \in H_{1} \oplus \mathbb{R}^{+} e_{0}:\|u\|<\rho_{1}\right\} \quad \text { and }
$$

$$
B_{2}=\left\{u \in H_{2}:\|u\|<\rho_{2}\right\}
$$

Remark 4.5 .The functional f_{t} then satisfies the Palais-Smale condition and, for $t<0$ small enough, also satisfies condition (L). On the other hand, $f_{t} \in \mathcal{C}^{1}\left(H^{1}(\Omega), \mathbb{R}\right)$, with $f_{t}^{\prime}(u) \cdot v=\int_{\Omega} \nabla u \cdot \nabla v-\int_{\Omega} f(x, u) v-$ $\int_{\Omega} h v+t \int_{\Omega} v$. Hence, the theorem 2.1 can be applied to obtain our theorem 1.1.

References

[1] D. Arcoya - S. Villegas.- Nontrivial solutions for a Neumann problem with a nonlinear term asymptotically Linear at $-\infty$ and superlinear at $+\infty$. Revised version. Dpto de Análisis Matemático.Universidad de Granada, 1994.
[2] D.G. Figueiredo.- On superlinear elliptic problems with nonlinearities interacting only with higher eigenvalues.Rocky Mountain Journal of Mathematics. Vol. 18, Number 2, Winter 1988.
[3] D.G. Figueiredo.- Equacōes Elípticas nāo Lineares, 10mo. Colóquio Brasileiro de Matemáticas, 1977.
[4] A. Marino - A.Micheletti - A.Pistoia.- Some Variational Results on semilinear problems with asymptotically nonsimetric behaviour. Quaderni dell' Instituto di Matematiche Applicate. "U.Dini" . Facoltá di Ingegneria. Universitá di Pisa. (1991).
[5] A.M.Micheletti-A.Pistoia.- A multiplicity result for a class of superlinear elliptic problems. Portugaliae Mathematica. Vol 51. Fasc. 2, 1994.
[6] B. Ruf and P.N.Srikanth.- Multiplicity results for superlinear elliptic problems with partial interference with the spectrum, SISSA preprint.

Departamento de Matemáticas. Facultad de Ciencias. Universidad de Los Andes. Mérida 5101. Venezuela e-mail address: jesusp@ciens.ula.ve

