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Abstract

In this paper we study the existence of two solutions for the problem:

—Au=f(z,u)—t+h(z), zEN .
(IP)

gti =0, r €N ,

on

where:  is a bounded domain in RN (IN > 1), with smooth boundary 3Q ; f: 0 xR — Ris
some continuous function, asymptotically linear at —oo, and superlinear at +o00; ¢t is a real parameter

and h: 8 — IR is a function such that fn h=0
Using variational methods, we prove the existence of two solutions of (IP), for t < 0, and || large enough.

Key words and phrases: asymptotically linear problem, superlinear problem, varlatlonal methods,
critical point, linking condition, Palais-Smale condition.

1 Introduction

We denote by 0 = A; < A3 < A3 < -+ the eigenvalues of (—A; H!(R)), where: H'(Q) is the usual
Sobolev Space endowed with the norm:

lull® = fo @ ul? + fou?

In problem (IP), the function f is given by:

(fo) f(z,5) = =Bs™ +c(s*)?,

where ¢ > 0, and the constant § belongs to some interval contained in (A;, Aj4+1), for some j > 1, which

will be specified later.
The problem is subcritical, since p is restricted in the usual way:

N+2 | .
1<p<N+ if N>3, 1<p<oo if N=1,2.
Let us fixa j > 1 and let us denote by e1,e3,e3, -+ the eigenfunctions associated with the eigenvalues

0=X <A< A<, suchthatfne =1, for i=1,2,3, .-
Let Hy be the spanfeq, - - -, €;].
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We define m=inf{/1)2+f((ej.,.1+1;)+)2 : vEHl}.
o

It can be proved that 0 < m < 1.
Our main result is the following theorem.

Aj+1 < B < Ajy1.  Also suppose that

1
m+1
/ h =0. Then (IP) has, at least two distinct solutions, fort <0 and |t| large enough.

0

Theorem 1.1 Assume hypothesis (fo), with m':_ 1/\,- +

Remark 1.1 Instead of (fo) we can suppose
(fo) f(z,8) = —Bs~ + c(s)P + W(z, 5),
provided this last term satisfies some appropiated growth conditions.

Our work was motivated by the analogous Dirichlet problem studied by A.Micheletti and A. Pistoia [5],
namely )

(IPDir)
u=20 , n

{ =Au= f(z,u)+ h(z) —tp , Q

where ¢ > 0 is an eigenfunction associated with the first eigenvalue of (~A; H{(£2)), and [ he = 0.

We also mention that Ruf-Srikanth [6] studied (IPp;,) with f(z,u) = Au+ (ut)?,

where : Ay <A < Ayy1 and p> 1 is as above. They proved that (IPp;,) has at least two solutions, for
t < 0 and |¢| large enough. De Figueiredo [2] obtained a similar result for a larger class of nonlinearities.
In these works, a solution is found directly, and the second one follows by using the Generalized Mountain
Pass Theorem due to Rabinowitz. The conditions required in [2] in order to apply the Generalized Mountain
Pass Theorem are: :

( 6’) .feC’1 1 f:(3y3)2—[.‘>Ah-‘A y

and all the assumptions which are needed to get the Palais-Smale condition. In [5], A. Micheletti and
A. Pistoia considered another class of nonlinearities (which do not satisfy (f§')) for which the result remains
valid under the weaker assumption f € C(§? x IR,IR). They used a slight different variational argument to
obtain directly the existence of two distinct critical values for the Euler-Lagrange functional f, associated
with (IPp;;). In their theorem they used the following hypothesis: f; € C' , f; satisfies the Palais-Smale
condition and some* linking condition ”. We use a similar variational method, but our “linking condition
"is simpler and better adapted to the geometry of f;.

2 “ Linking condition ” and existence of two critical values

Let H a Hilbert space, which is the topological direct sum of two subespaces H, and Hj.
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Definition 1 Let ug € H. The function g : H — IR, satisfies the “ Linking condition ” (L) with
respect to ug, Hy, Hy ; if there exist eg € Ho\{0}, p1,p2 such that:

p1>2p>0
(L) sup g< inf ¢
vo+8B, uo+3B;
where .
Bi = {u=u; +teg:u; € Hy,|lul|] < p1,t >0},

B, {uz € Hy, ||u|| < p2} -

We shall use the following result:

Theorem 2.1 Let H be as above, with dim H, < +o00.
If g € C" and satisfies the Palais-Smale condition and the “ Linking condition ” (L), then there ezist two

critical values, cg and cy, for g such that:

inf g < ¢ < sup g < inf ¢ < ¢ < supyg

uo+B3 - uo+8B; uo+8B; uo+B1

Remark 2.1 The proof of 2.1 is made using the deformation lemma and Brouwer’s degree theory, adapting
the ideas of analoguos theorem in [4].

3 The Palais-Smale condition.

Problem (IP) can be written as:

—Au= f(z,u) +h(z), z€Q

(P)
04 _y reoq,
an

where f(z,5) = —8s~ + c(st)? — t.
It follows from our assumptions that

(+) im [f(z,5) - B8] = ~t




Jesus Alfonso Pérez Sénchez

and that there exist so > 0 and 6 € (0,1/2), such that:

(x*) 0<F‘(z,s]§03f(z,s), for s>s0 , z€Q,

where F(z,s) = /' f(z,7)dr.
0

From () and (x*), it follows that the Palais-Smale condition is satisfied for the functional f; : H*(2) — IR,

given by:
_1 2 _ - _
f:(u)_.2/0|Vu| /nF(z,u) /nhu.

(See Arcoya-Villegas [1], lemma 1.1).

4 Geometry of the functional f;.

8 In this section we prove that f; satisfies the condition (L). For that matter, we have to establish so-
me technical lemmas. Here, as in the Introduction, H, is the spanfe;,---,¢;], and we define H; as the

spanle;1, - .

Lemma 4.0 Let z € Hy and s <0.
If Q={x€Q:s5+2(z) <0} , then

limsup meas (Q\Q) =0 , wuniformly for ||z|| < const.

sm =00
Remark 4.1 This lemma can be proved following an idea contained in lemma 3.1 of [5].
Lemma 4.1 Ifz € H; and s <0, then

flo+ )= fle) 2 5L — o = ([ B2

—w(meas(Q\Q))||z[[P*"

where ¢} and ¢; are positive constants, and w : IRY — IR is such that lim+w(r) =0.
r—=0

Lemma 4.2 If s <0 and t = sf3, then there exists c; > 0 such that

sup fe(s+v) < fi(s) +co.
veH,
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Remark 4.2 In the proof of lemmas 4.1 and 4.2 we use the variational inequalities:

/||Vv||2 < /\j/‘v2 for veH,
o [y}

JRGZT
o

8 From Lemmas 4.0 , 4.1 and 4.2, it follows easily:

v

/\j+1/22 for z€ H,.
0

Lemma 4.3 With the same hypothesis of Lemmas 4.1 and 4.2, there exist Ry > 0 and ty < 0, such that:

inf{fi(s+z2):z€ Hy, ||z|l=Ri}> su}l) fi(s+v)
veH,

forsg =1t <t

Before the next lemma we will define an auxiliary function, as follows.
First, we take ¢, such that:

m N — 1
m+1"7 m+1

(1) 0<e<pB- Ajs1.

Then, we choose a such that:
Ajpr1+e-p
a—f3

<m.

(2) 0<

Definition 2 Let Qp : H'(Q) — IR, given by

Qo) = [ v+ [ w—a [ -p [y

From (1) and (2} we can prove that
(3) Qolv+ej1)<0 , forall wveH,.
(3)) Let M ={u€ H' () : Qj(u).v=0, forall ve H;}.
One can prove the following fact:
(4) Given ug € Ha, there exists a unique u; € H; such that uz + u; € M.

Remark 4.3 A proof of (4) can be made applyng the theorem of Minty (See [3]) to the function Py o T o
(=Qo)'(- + u3), where P, : Hy @ H, —> H; is the canonical projection, T : (H'(2))* — H(R) is the
mapping given by the Riesz’s Representation Theorem.

From (4) we conclude that there erists a mapping o : Hy — H,  such that

(5) uz + yo(u3z) € M, for each uy € Hs.

In lemma (4.4) below we consider the element u* = ej41 + yo(€j4+1). In particular, using (3),(5) and (3)/,
we have that:

(6) Qo(u*) <0 and Qu(u*)v=0 , forall veH,.
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Lemma 4.4 Assuming s <0 and u* as above, it follows that:

lim f(s + ou® +v) = —o0, & )
as |lou* +v|| — 400, whereo >0 and v € H,.

Remark 4.4 Associated with Qq, there are the expressions:
[(u) = %a(u‘*)2 + %B(u')2 and ~(u) = aut — Bu~,

which satisfy the following inequalities:

" M(u — @)? < T(u) - 0(@) = y(u)(u — #)* < 2255

for all u,ie H'(Q).

Proof of Lemma 4.4

Taking into account that 3 < a and using (7), we obtain:

(8) Qo(s + ou” +v) — Qo(ou” / |Vv|2+c/ vz—ﬁ/ v? + Qh(ou*).(s + v).
o

Now, in the expression of f;(s + ou* + v) we apply (8) and the facts:

/IVvle/\j/v2 , Qo(ou”) =a?Qo(v*) , Q4(u").(s+v)=0.
Q o

So, we arrive at

florow 4y < forQew)+ Y= [ [ wuae [ ]

+ E/si’+c/.«w—ﬂ/sv—a’/hu"—/hv
2Ja o a Q a

+ ts|Q|+ta'/u‘+t/v+const.
o} Q

Since Qo(u*) < 0 and A; + € < (3, the Lemma 4.4 follows. [ ]

Lemma 4.5 Assuming the same hypothesis as in Lemmas 4.1 and 4.2, it follows that, fort negative and sma-
. . " . 14

Ul enough, the functional f; satisfies condition (L), with respect to ug = 3 =5, Hi=spanlei,---,¢] , Hy=

spanfejy, -+ ).

Proof.
From Lemma 4.3, there exist p; > 0 and ¢; < 0, such that

(9) inf{fi(s+2) : z€ Hy, ||z]| = p2} > sup fe(s+v) ,for t =35s8 <t;.
'UEH]
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On the other hand, applyng Lemma 4.4 we can choose p; > 2p; such that:

(10) sup{fei(s+ou" +v) : ¢>0, vE Hy, |lou" +v||=p1} < sup fi(s+v).
veH,

Then, from (9) and (10) it follows that:

sup{fi(s+ou*+v) : ¢>0, vE Hy, jlou" +v|]|=p1} <inf{fi(s+2) :z2€ Ha, ||z]| = p2}.

Hence, f; satisfies condition (L) with respect to:

t
u0=s=E , Hi=spanfe),---,e;] , Hy=spanlej41, -],
taking eo=ej41 , Bi={u€e Hi®R'e; : |ju||<p} and

By ={ueH; : |lu|l<ps}.
Remark 4.5 .The functional f, then satisfies the Palais-Smale condition and, fort < 0 small enough, also
satisfies condition (L). On the other hand, f, € C'(H'(Q),IR), with fl(u).v = / Vu.Vv —/ flz,u)v —
a o)

/ hv + t/ v. Hence, the theorem 2.1 can be applied to obtain our theorem 1.1.
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