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Abstract

In this paper we study a linear reaction-diffusion system of the form:
us(t, z) = DAu(t,z) + Bu(t,z), t >0,

where z belong to a domain Q2 C IRY and subject to the Dirichlet boundary condition u« = 0 on
0. The main point, is that the n x n matrices D and B are not necessarily diagonalizable, but
the eigenvalues A € C of D are assuming to be such that ReX > 0 (some of them could have
zero real part). We generalize a result from [3] where they assume that the eigenvalues A of D
have strictly positive real parts (ReX > 0). Under our condition(ReA > 0) we prove that this
system generates an Cy-semigroup in an appropriate Hilbert space. Finally, we apply our result
to the following linear thermoelastic bar problem

Uit — AUz + ber
0t - 0:::: + but::

0, 0<z<1, t>0,
0, 0<z<l1, t>0

with some Dirichlet boundary conditions.
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1 Introduction

In this paper we shall study the following reaction-diffusion system with Dirichlet boundary con-
ditions
{ut = DAu+Bu, t>0, ue R, (1.1)
u = 0, t>0, z€dN, )

where Q is a bounded domain in RV, D and B are nx n matrices. One of the points that make this
work different from the work done by many authors, is that most of them assume that the diffusion
matrix D is diagonal with positive entries(see [4,8,13]). However, cross-diffusion phenomena are
not uncommon, for the case that B = 0 one can find in [3] several mathematical models in which
D is not even diagonalizable, but the eigenvalues A € C of the matrix D are assuming to be such
that Re(A) > 0. Here, we consider a matrix D so general that it could have aeigenvalues with zero
real part. We impose some condition on D and B, whigh is more general than the others authors
conditions. Namely, our main hypothesis is:
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H) If0 < A; < A2 < -+ < A, = oo are the eigenvalues of —A with homogeneous Dirichlet boundary
conditions, then we will assume the existence of a continuous function g : [0, 00] — IR such that

[eC-2D+BY|| < g(t), >0, n=1,2,3,.... (1.2)

A particular case is g(t) = Mef*, M >1, R € IR. Under the hypothesis (1.2) we prove that this
system (1.1) generates a Co-semigroup in the Hilbert space LZ(Q) x L%(Q) x L2(); that is to say,
the equation (1.1) is well posed.

Finally; as an example, we study the following linear thermoelastic bar problem

Ut — GUgy + b0, = 0, O<z<l, t>0, (1.3)
0, — 8,z + buy, = 0, 0<z<l1, t>0, )
with the following boundary and initial conditions
u(t,0) = wu(t, 1) =w(t,0)=u(t,1)=0,(¢,0)=0,(¢,1) =0, (1.4
u(0,z) = wuo(z), u(0,z)=1wu(z) and 6,(0,z) =6p(z) 0<z < 1. (1.5)

This problem has been studied by many authors, in [7] Kim show under some kind of Dirichlet
boundary conditions that the energy of the solutions of this problem decays exponentially fast,
he used the energy method, combined with a multiplier technique and compactness property. In
[5] Hansen studied a similar problem with several natural boundary conditions. He shows that
the system (1.3)-(1.4) generates a strongly continuous semigroup that can be expanded through a
Riesz basis on the Hilbert spaces of finite energy states and that this energy decays exponentially
for some kind of Dirichlet boundary conditions.

Here we treat the problem (1.3)-(1.4) as the equation (1.1) in which the matrix D has zero as one
of its eigenvalues; we prove that the system (1.3)-(1.4) generates a strongly continuous semigroup.
That is to say, this problem is well posed. Also, we prove that the eigenvalues of the infinitesimal
generator of this semigroup have negative real part bounded away from zero, which implies the
energy decay. Finally, our method can be apply to others mathematical models, see for example
[9,10,12].

2 Preliminaries

In this section we shall choose the space where this problem will be set and consider some notations.

Let Z = (L%())™ = L?(2, R™) be the Hilbert space of the square integrable functions u : Q —
IR™ with the usual inner product.

Now, we shall use some notation from [4 and 8] to write the system (1.1) as an abstract ordinary
differential equation in the space Z.

Let H=L?(Q) = L*(Q,R) and 0 < A; < Az < -+ < A, = o0 be the eigenvalues of —A with
Dirichlet boundary conditions, each one with finite multiplicity 7; equal to the dimension of the
corresponding eigenspace. Therefore
a) there exists a complete orthonormal set {¢;} of eigenvector of —A.
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b) for all £ in D(-A) = H?(Q) N H}(Q) we have

o i ad
-Af = Zx\j Z <& ik > Dik = Z)‘jEfé’

j=1 k=1 j=1

where < -,- > is the inner product in H and

Eif =) <& ik > bik-

k=1

So, {E;} is a family of complete orthogonal projections in H and

¢=S Ei, ¢eH.

i=1

c) A generates an analytic semigroup {e®!} given by

efe =Y " e M.

j=1

Now, we define the following operators

with

and

Also, we shall consider the following family of complete orthogonal projections in Z.

A:D(A)C Z— Z, Ap=-DAy,

D(A) = H*(Q, R™) n H}(Q, R™)

B:Z— Z, Bz(z)= Bz(z), = €.

E; 0 ... 0

. 0 E; ... 0

P; = diag(E;, Ej,-- -, Ej) = . .7 | .
0 0 ... Ej

Therefore, for z € D(A) we have

and

Az = i /\_-,'DPJ'Z,

i=1

e o] oo
z=) Pz, |l2|*=_|IP2l*, z€2Z.
j=1 7=1 ¢

(2.1)

(2.2)

(2.3)

(2.4)

(2.5)

(2.6)

(2.7)
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3 Abstract Formulation of the Problem

With the above notation the system (1.1) can be written as an abstract linear ordinary differential
equation in the Hilbert space Z as follows:

2 = —-Az+4+ Bz, t>0, (3.1)
2(0) = 20, 2 € D (A) . ) )
Theorem 3.1 The operator —A + B generates an Cy-semigroup T = {T (t)}t20 given by
o0
T)z= Z e(_’\J'D"'B)tsz, t>0, z2€Z2 (3.2)

i=1
with domain D (—A + B) = D (A).

Proof Suppose that z () is a solution of the initial value problem (2.7). Then, using the orthogonal
projections {P;}.,, given by the formula (2.5) we obtain

(=% Pr0)=3 %), t>0 (33)

=1 71=1
El

where 2; is the solution of the finite dimensional ordinary differential equation

..“,_ .

¥ (0) = P;2.

Therefore, z; (t) = e(=2P+B)t P, 2, Then, from (3.3) and our main hypothesis (1.2) we obtain that

2(t)=Y eMPBYEp, >0, neZ (3.5)
. 7=1
On the other hand, it is not hard to show that the family of operator
[o o]
T(t)z=) eNPBEp, >0, 2¢€2,
j=1

is a Co-semigroup whose generator is—A + B with D (-=A + B) = D (A). 0

Corolary 3.1 The spectrum o (—A + B) of the operator —A + B is given by
o(—A+B)=]Jo(-A;D+B) (3.6)
7=1
Corolary 3.2 For all 29 € D(A) the initial value problem (2.7) has a unique solution given by

2(t) =Y ANPHBEpe, £ >0 (3.7)

7=1
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4 Application

In this section we shall apply Theorem 3.1 to study the existence of the solution of the linear
thermoelastic bar problem (1.3)-(1.5), where @ > 0 and b # 0 are constants u, § denote the
displacement and the temperature respectively.

Now, making the following change of variables v = u; and w = 6, we can write (1.3)-(1.5) as
follows '

U = v U =0 U = v
Vi = QUgy — bW &< vy=atg —bw < v =auy — bw
6; = wy — bu, btz = Wrr — Uy Wi = Wgz — bz

Therefore, system (1.3)-(1.4) can be written as (1.1) in R3

zz=DAz+ Bz, t>0 0zl
z(t,0)=2(t,1)=0 (4.1)
2(0,z) =2 (z), 0<z<1

where
U Ug 0 0 0 01 0
z=|l v |, o=|v1 |, D=|la 0 0|, B=] 0 0 -b
w 8o 0 -b 1 00 O

Theorem 4.1 For ug, u1, 6o € H2 N H} there exists a unique solution (u,8) of (1.3)-(1.5) such
that
u, ug, 0y € C! (o,oo;H2n Hg) .

Moreover, there exists R > 0 such that
E (u,0) (t) < e ®*E (u,0) (0), t>0
where E (u,0) is the energy function given by
E (u,0) (t) = llw (&, Iz + lluwe (2, )13 + 162 (¢, )13 -

Proof In order to apply Theorem 3.1, we shall verify the main hypothesis (H). In fact, the eigen-
values of D are oy = a3 =0, ag = 1. Now, we shall verify (1.2), for that purpose we consider the
matrix A, = —A,D + B and compute the spectrum o (A,) of this matrix, which is given by

0 1 0
A= =Xda 0 -b
0 Ab =,

Therefore, the characteristic equation of A, is

X+ 222+ 2 (a+07) A+ 22a=0 (4.2)
4
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Hence, from Routh-Hurwitz Theorem we get that the roots of this equation have negative real
parts. It is easy to see that these roots are simple. Then, there exists a family of orthogonal
projections {g;(n)}:., on IR® which are complete and

3
eA"t!/ = Zea.—(n)tqi (n) y, teR, ye R
i=1

where a; (n)’s are the eigenvalues of A,.
Therefore we can find L > 0(L could be zero) such that

Re(a; (n)) < -L, 1=1,2,3; n=1,2,... (4.3)

Hence,
3 3
2 . — -
||6A"ty|| — Ze2Re(a.(n))t ”‘Ii (n) y“2 < Ze 2Lt ”qi (n)HZ <e 2Lt ”y”2
i=1 i=1

and (1.2) is verified.
Therefore, the system (4.1) generates a Cop-semigroup {7 (t)},, given by

T(t)¢ = i e P, £ Z, t>0. (4.4)

n=1

Now, we shall prove that the eigenvalues of the infinitesimal generator of this semigroup
are bounded away from zero, which implies the energy decay of the solutions of (1.3)-(1.4).
The characteristic equation (4.2) of A, can be written as follows

A @ ez e

Next, putting z = ﬁ, a, = “/\:2 and b, = 3= we obtain the equation

2422 4az4+b,=0 (4.6)

With limﬂ_poo a, = limn_}oo bn = 0-
Making the change of variable y = z 4+ 1 we get the cubic equation

v’ +3pny +2¢, = 0 (4.7)
where 5 3 |
a an —
2¢n = — — - bn) n = k
“=gr g Tom P 3
Hence,

1
Im qn = 2—, lim Pn = —§ and, nl'l_’n;lo q,,2l +pi = 0.

n—oo0 7 n—00
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Also, p, < 0 and
2
Do=g+p =~ (Fgad+en)+p+5%+3

(4.8)

2 3
o] ar () (at¥)e o bz (e4F)
DY { %2 am o ewm TawTo, T 27)2, > 0. .

Then following formulas for the roots y; (n), y2 (n), ys (n) of the equation (4.7) can be found

in [2] pg. 156.
y1 (n) = —2r, cosh £,
Y2 (n) = rncosh 2= + iv/3r, sinh &, (4.9)
y3(n) = rncosh 2~ — iv/3r,, sinh .

where r, = \/|pn| and coshp, = %. Then

: 1 :
=g end  lim e, =0.

Cardano’s formula:

y1(n) =/~¢u+VDa+/~a.— D
vi () = 3 {/ =g+ vVDu+ {/=4a — VD1 (4.10)
+18 {4+ VDu = ¥~0. - VDa}, i =1,2.

Hence, the roots of the equation (4.6) are given by

1
z;(n):y,—(n)—g, 1=1,2,3; n=1,2,3,...

with Re(zi (n)) < 0, and the roots p; (n), p2(n), p3 (n) of the equation (4.2) are given by
pi(n)=Xdzi(n), 1=1,2,3;, n=1,23,... (4.11)
From (4.9) and (4.10) we get the followig result.

Claim 4.1. .
A)limp ;00 p1(n) = —o0,
B) limy—y o0 Im(pa(n) = ~o0,
C)limy,o0 Re(p2(n) = —%.
In fact, A) is not hard to prove. Let us prove part B).

/3 3VDx

2 S—ga+ VDn)2 ~ I/~ + Du + {/(gn + VDn)?
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Part C). We shall use the following facts:

lim cosh Pn_ 1 and cosh— =1 +
n—o0o 3

_ qn ' q-n
(Pn - ( 7‘_3 7‘3 7‘3 - 1 - ].l

Now, we are ready to compute this limit:

. ) An
nll{{.lo Re(pa(n) = Ji}ngo {/\ Tn cosh ——3— — ?}

. 1 .
= lim A, {rn — §} + Jl’r(r)lo AnTn {cosh 3~ 1} =L, + L.

Then

and

AnTnip? 1 2
L, = n_
2 = 52 T ax9 (hm A"T"SO")

2

_ 1 . gn dn

- 2><9(nl§§o ’\T"{rgfL (rﬁ) _1"1})
1 _ -2V A\ rn\/ % —1

= 1m

2x%x 9 | nooo
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a+b a 1 1 a+b2\°
= 776 +§+J‘m*ﬂ{2—7‘\l(§‘ T )}
2 213
b2 13" _ (1 _ atb®
_ _a—{(—; +%+nhm )\n{(27) (; 3/\,1)
27
2 n312ﬂ
_ _a+b +2+lim (92) 3An
6 2 n—o0 >
a + b? a + b?

Therefore,

This completes the proof of the Claim.
Then, there exists # > 0 such that

Re(pi(n) <-8, 1=1,2,3; n=1,23,...,
and
IT (@) < e, >0 (4.12)
Therefore, the solution z(t) = (u(t),v(t),w(t))T of (4.1) satisfies
u(-),v(),w(-) € C* (0,00; H* N Hy),
u(t,0) =u(t,])=v(t,0)=v(¢,1)=w(t,0)=w(,1)=0

and
lz @)l = || @), v (@), w @) < e llzoll, t>0.

Then, taking zo = (uo,us1,00)" and changing the variable back, 6, = w, u; = v we get that
(u, 8) is the solution of the problem (1.3)-(1.5) with

u, ug, 0, € C* (O,OO;Hané)

and

o (85113 + e (8113 + 1162 (8 )3 < €7 {llwoll3 + llwall} + 16oll3}, ¢ > 0.

From here the proof can be completed. 0

Remark 4.1 Condition (4.12) follows also from Lemma 2.2 of [5], wich said that the spec-
trum radius of {T'(t) }+>0 coincides with the spectrum readius of the hyperbolic equation
- 4

utt-i-bzut:aum, 0<z<l, teR.
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