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Fixed Point’s Theorems for w — ¢— Contractions

Jose R. Morales

Using the notion of w—distance on the metric space, (M,d), we get some generalizations of
results of Browder [3], Boyd-wong [2], Mukherjea [18] and Matkowski [14].

Introduction

In 1996, O. Kada- T. Suzuki- W. Takahashi [13| introduced the concept of w—distance on a
metric space and using this notion they improved the Caristi fixed point theorem [4], Ekeland’s
e—Variational Principle [10] and proved a fixed point theorem in a complete metric space which
generalize the fixed point theorems of Subramanyan [24], Kannan [12]| and Ciric [5].

T. Suzuki- W. Takahashi [25] using the notion of w—distance on a metric space proved a fixed
point theorem for set-valued mapping a complete metric space which are related which Nadler’s
fixed point theorem [19] and Edelstein’s theorem [9].

T. Suzuki [26] using the w—distance gave another fixed point theorems which are generaliza-
tions of the Banach Contraction Principle and Kanan’s fixed point theorem.

Y. J. Cho - N. J. Huang - L. Xiang [6] introduced new classes of generalized contractive
type set-valued mappings and weakly dissipative mappings and they proved some coincidence
theorems for these mappings by using the concept of w—distance.

M. Hiromichi [11] in his thesis used the notion of w—distance and the concept of fixed point to
characterize the mathematical structure of space metric completeness and finite dimensionality
of Banach spaces.

The author in [16] and [17] gave other results referent to fixed point theorems.

Recently S. Park [20], using the w—distance concept, improved the equivalent formulation of
Ekeland’s Principle in various aspects and moreover, as a simple application, he gave an extended
form of a fixed point theorem of Downing-Kirk [8].

Finally in this article our end is to generalize some fixed point theorems for
(p—contractions using the concept of w—distance on a metric space.



1 Preliminares
Throughout this paper, we denote by N the set of positive integers, by R the set of real number
and Ry = [0,+00).

DEFINITION 1.1 Let (M,d) be a metric space. Then a function p : M x M — [0, +00) is called
a w—distance on M if the following conditions are satisfied:

w 1.- p(x,2) < p(z,y) +p(y, 2) for any x,y,z € M.
w 2.- For any x € M, p(z,-) : M — [0,4+00) is a lower semicontinuous function.
w .- For any ¢ > 0 exists 6 = d(e) > 0 such that p(z,z) < § and p(z,y) < 0 imply that
d(z,y) <e.

The metric d is a w—distance on M. Some other examples of w—distances are given in [13],
[25] and [26].
NotATION 1.1 By W (M), we denote the set of all w—distances p on M and it is clear that
W (M) # 0.

In [13] we found an example which show that p is not symetric, p(x,y) # p(y,x) for all
z,y € M, so we denote by Wy(M), the set of all w—distances p on M that are symetric. It is
clear that Wy (M) # 0.

The following results are crucial in the proof of our theorems. The next result was proved in
[13].

LEMMA 1.1 Let (M,d) be a metric space and let p be a w—distance on M. Let (o) and (By) be
sequences in [0, +00) converging to 0, and let x,y,z € M. Then the following hold:

a.- If p(zn,y) < an and p(zy, z) < By for any n € N then y = z. In particular, if p(z,y) =0
and p(z,z) =0 then y = z.

b- If p(xn, yn) < ay, and p(zy, 2) < By, for any n € N, then (y,) converge to z.
c.- If p(zp, xm) < ap for any n,m € N with m > n, then (zy) is a Cauchy sequence in (M, d).

d.- If p(y,zpn) < oy for any n € N then (z,,) is a Cauchy sequence in (M,d).

The following result can be found in [26].

LEMMA 1.2 Let (M,d) be a metric space, let p be a w—distance on M and let (z,,) be a sequence
m M.
Suppose that
lim sup{p(zn, zm), p(Tm,zn)} = 0.

N—0 m>n

Then () is a Cauchy sequence in M. In particular the following hold:



a.- If lim sup p(xn,zm) =0 then (x,) is a Cauchy sequence in M.
n—oo m>n

b.- If lim sup p(xm,xn) =0 then (zy) is a Cauchy sequence in M.

Nn—00 m>n

The following definition is due to T. Suzuki - W. Takahashi [25].

DEFINITION 1.2 Let (M,d) be a metric space and let T' be a mapping from M into itself. We say
that T' 1s a w — B—contraction if there exists a w—distance p on M and k € R, 0 < k <1 such
that

p(Tz, Ty) < kp(z,y) (1.1)
forall x,y € M.

It is clear that if p = d we get that T is a Banach contraction, (in short, B—contraction). In
[25] we found the following result.

THEOREM 1.1

Let (M,d) be a complete metric space. If a mapping T from M into itself is a w — B—contraction
then T has a wunique fized point xg € M. Moreover the xmy satisfies

p(xo,x0) = 0.

It is clear that theorem 1.1 generalize the well known Banach contraction principle and for
another similar results see [16].

In [17] the author introduced the following,

DEFINITION 1.3 Let (M,d) be a metric space and let T' be a mapping from M into itself. We say
that T is a w — BR—contraction if there exists a w—distance p on M and a monotone decreasing
function o : Ry — [0,1) tal que

p(Tz,Ty) < a(p(z,y))p(z,y) (1.2)

forall x,y € M.

REMARK 1.1 1.- Ifa(t) =k for allt € R where 0 < k <1 we get (1.1).

2.- If p=d then we get
d(Tz,Ty) < a(d(z,y))d(z, y) (1.3)

for all x,y € M, which is the Rakotch’s condition, [21].

The author in [17] proved the following,



THEOREM 1.2

Let (M, d) be a complete metric space and let T : M — M be a w — BR—contraction then there
exists a unique z € M such that z =Tz and p(z,z) = 0.

2 w — p—contractions

Various concepts of comparison functions have been defined and intensevely studied in connection
with the contraction mappings, see Rus, A. I. [22], Berinde, V. [1]. We are going to use the notions
of ¢p—comparison function to define the concept of w — ¢p—contractions.

DEFINITION 2.1 (BOYD-WONG - [23 )] A function ¢ : Ry — Ry is called p4—comparison
function if:

Al.- ¢ is upper semicontinuous function.

A2.- For each t >0, ¢(t) < t.

DEFINITION 2.2 (MUKHERJEA - [18 )] A mapping ¢ : Ry — Ry is called ¢p—comparison
function if:

B1.- ¢ is a right continuous function.
B2.- For each t >0, ¢(t) < t.

It is well known that if ¢ : R, — R, is monotone increasing function then ¢ right upper
semicontinuous iff ¢ is right continuous.

Therefore if ¢ : Ry — R4 is monotone increasing function then the definition 2.1 is equiva-
lent to definition 2.2.

DEFINITION 2.3 (BROWDER) [3] A mapping ¢ : Ry — Ry is called a pc—comparison if:

C1.- ¢ is right continuous.
C2.- For each t >0, ¢(t) < t.

C3.- ¢ is monotone increasing.
Thus definitions 2.1, 2.2 and 2.3 are equivalent if ¢ : Ry — R, is a monotone increasing
function.
LEMMA 2.1 If ¢ : Ry — Ry is a wo—comparison function then lim ¢™(t) = 0 for alln € N
n—oo

and for each t > 0.

Proof
See [22].



DEFINITION 2.4 (MATKOWSKI - [15 )/ A mapping ¢ : Ry — Ry is called a ¢p—comparison
function if:

D1.- ¢ is monotone increasing.
D2.- lim ¢"(t) =0 for each t >0, n € N.
n—oo
From lemma 2.1 it is clear that if ¢ : Ry — R, is a po—comparison function then ¢ is
(pp—comparison function.

LEMMA 2.2 Let p: Ry — Ry be a ¢op—comparison function then

a.- @(t) <t forallt>0.
b.- ¢(0) =0.

Proof
See [22].

EXAMPLE 2.1  1.- Let ¢ : Ry — Ry be a mapping defined by p(t) =at, 0 <a <1, te€R,.

It is clear that ¢ is a oA — (¢B, Yc, YD) —comparison function.

t
2.- Let ¢ : Ry — Ry be a function defined by ¢(t) = T3¢ t € Ry, Also ¢ is pa —

(¢B,c,ep)—comparison function.

Now we introduce the notions of w—p—contractions which generalize the well known ¢ —contraction

DEFINITION 2.5 Let (M,d) be a metric space. A mapping T : M — M s called a w —
wA—contraction, (respectively w — pp— contraction, w — pc— contraction, w — pp—contraction), if
there exists a pa—comparison, (respectively ¢ p—comparison, pc—comparison, @ p—Ccomparison)
function such that

p(Tz,Ty) < ¢(p(z,y)) (2.1)
for all x,y € M.

The author in [16] introduced the following,

DEFINITION 2.6 Let (M,d) be a metric space with a w—distance p on M and let T : M — M
be a mapping. Then

a.- An element x € M is w—asymptotic reqular for T if

lim p(T"z, T""'z) = 0. (2.2)

n—oo



b.- T is w—asymptotic regular if all element x € M are w—asymptotic reqular for T.

c.- Two elements x and y of M are w—asymptotic equivalent under T if

lim p(T"z, T"y) =0 (2.3)

n—oo

Now we have the following result,

PROPOSITION 2.1 Let (M,d) be a metric space and let T : M — M be a w — pp—contraction.
Then
a.- T 18 w—asymptotic reqular.

b.- Each two elements x,y € M are w—asymptotic equivalent under T'.

Proof

Since T is a w — pp—contraction there exists a w—distance p on M and ¢p—comparison
function such that

p(Tz,Ty) < p(p(z,y))
for all z,y € M.

a.- Let x € M be an element of M. Let x,, = T"z, n € N. Then we have p(z,,Zni1) <
" [p(x, Tx)]. If follows that
lim p(T"z, T""'z) =0
n—oo

for all x € M. Therefore T is a w—asymptotic regular.

b.- Let =,y € M be. We have that

p(T"z, T"y) < ¢"[p(x,y)]

for n € N, so
lim p(T"z,T"y) =0, neN
n—oo

Therefore x and y are w—asymptotic equivalent under T

3 Main Results

In this section using the w—distance p on (M, d) we give some generalizations of some well known
fixed point theorems.

The following result generalize the Boyd-Wong’s Theorem, [2].



THEOREM 3.1

Let (M, d) be a complete metric space and let T : M — M be a w — @ o—contraction. Then T
has a unique fized point.

Proof

Since T is a w — ¢ 4—contraction there exists a w—distance p € Wy(M) and
pa—comparison function such that

p(Tz, Ty) < ¢(p(z,y)) (3.1)

for all z,y € M.
For an © € M we put x,, = T"z, n € N and a,, = p(zp,, p+1). Then for n > 1,

an = p (T2n-1,Txn) < @(p(Tn-1,2n)) = pan-1) < an- (3.2)

So that the sequence (ay,) is decreasing. Let a = li_>m ap. Then a = 0, since that (3.2) implies
n—oo

that a < ¢(a) which is a contradiction and consequently

Jim p(zn, 2p41) = 0.

Thus, for € > 0 there exists an ng € N such that Vn > ng
p(wn,xn-i—l) <e-— <p(£).

Put K(zy,e) = {x € M| p(z,x,) < e}. It is clear that K(zp,c) C X is a closed set and for
any z € K(xp,e) we have

p(Tz,an) < p(Tz,Tan) + P(Txn, zn) < (p(2,2n)) + P(Tns1, Tn)

< ple) +(e—9le) =5,

so K(xp,¢) is invariant under 7', which implies that for m > n > ng, p(zn,xm) < 2e.

Consequently by lemma 1.2, (z,) is a Cauchy sequence in (M, d), hence there exists z € M
such that z,, — z.

Since p(xy, -) is a lower semicontinuous function

p(ajn: Z) < lim infp(mn, wm)

m—00
and it follows,

lim p(z,,z) =0.

n—oo

On the other hand,

p(-Tn, TZ) = p(txn—la TZ) < (P(p(-rn—la 2)) < p(xn—ly z)



hence
lim p(z,,Tz) =0,
n—oo
so by lemma 1.1, Tz = z.
Now p(z,2) = p(T'2,Tz) < ¢(p(z,2)) < p(2,2) and p(z,2) = 0.
Finally, if y = T'y then

p(z,y) =p(Tz,Ty) < ¢(p(2,y)) < p(2,y)

and p(z,y) = 0 so z =y, from lemma 1.1

In similar way we can show the following generalization of a Mukherjen’s theorem [18].
THEOREM 3.2

Let (M,d) be a complete metric space and let T : M — M be a w — @p—contraction mapping.
Then T has a unique fized point.

Now we give a generalization of a Matkowski’s result [14].
THEOREM 3.3

Let (M,d) be a complete metric space and let T : M — M be a w — pp—-contraction. Then T
has a unique fized point.

Proof

Since T' is w — ¢p—contraction there exists p € W (M) and a ¢ p—comparison function such
that

p(Tz, Ty) < o(p(z,y)) (3:3)
for all z,y € M.
and define z,, = T"x, n € N then by (3.3) we have

P(Tn, Tni1) < ¢" (p(x, Tz))

and hence lim, o0 p(@p, Tnt1) = 0.
Form > n

lim sup p(zn,Zm) =0

so by lemma 1.2 (z,,) is a Cauchy sequence in (M, d).

In view of completeness of M there exists z € M such that z,, — z. The rest of the proof
follows since in the theorem 3.1.

The following result generalize



COROLLARY 3.1 Let (M,d) be a complete metric space. If a mapping T from M into itself is
a w — B—contraction then T has a unique fixed point z € M. Furthermore the point z satisfies

p(z,2) = 0.

Proof

Taking ¢(t) = kt, 0 < k < 1, t € Ry and since T is a w — B—contraction there exists
p € W(M) such that

p(Tz,Ty) < kp(z,y) (3.4)
for all z,y € M.

The conclusion follows from theorem 3.3.

THEOREM 3.4

Let (M,d) be a complete metric space and T : M — M is a mapping such that for some
meN T™ is a w — pp—contraction. Then T has a unique fized point in M.

Proof

Since for some any m € N, T™ is a w — ¢p—contraction there exists p € W(M) and a
(pp—comparison mapping such that

p(T™z, T™y) < ¢(p(z,y)) (3.5)
for all z,y € M.

Thus by theorem 3.1 there exists a unique z € M such that z = T™z and it follows that
z="Tz.

The following result generalize the theorem, of Chu-Diaz, [7].

COROLLARY 3.2 Let (M,d) be a complete metric space and T : M — M is a mapping such that
for some m € N, T™ is a w — B—contraction. Then T has a unique fized point in M.

Proof

It is clear.

The following result is a generalization of Browder’s fixed point theorem [3].
THEOREM 3.5

Let (M,d) be a complete metric space and let T : M — M be a w — pc—contraction. Then T
has a unique fixed point.

Proof

Since T is a w — pc—contraction there exists p € W(M) and a ¢c—comparison function such
that

p(Tz, Ty) < ¢(p(z,y)) (3.6)



for all z,y € M.
By lemma 2.1 we have that

lim ¢"(t) =0 forne Nand t € Ry.

n—o0

Now we apply theorem 3.3 to get the conclusion.

Now we consider the following

EXAMPLE 3.1 Let M = [0,1] C R be a complete metric space with the usual metric. We define a
w—distance p on M by
0 if =0
plz,y)=q y—z if 0<z<y
3r—3y if z>y

for all x,y € M.
Let ¢ : Ry — Ry be a function defined by

0 if t=0

1
<t<—, n=1,...
n

It is clear that,

a.- @ is increasing function in Ry .
b.- Forallt >0, ¢(t) <t.

c.- lim ¢"(t) =0 fort > 0.

n—oo

d.- ¢ is not upper semicontinuous from the right.

e.- @ is not continuous from the right.

Thus we have that, ¢ is a pp—comparison function but is not p 4—comparison function neither
wp—comparison function.

Suppose that T : M — M is a mapping which satisfies (3.3) and we see that all assumptions
of theorem 3.3 are full filled and this theorem generalize the theorem 3.1 since @ is not upper
semicontinuous.
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