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CHAPTER 1
PRELIMINARIES

In this chapter‘we give definitions and results that are
essential to build up the theory of von Neumann algebras. We
assume that the reader is well informed about measure theory,
theory of commutative B*-algebras, operator theory 1in Hilbert
space including the spectral theorem for normal operators and
elementary theory of Banach spaces and locally convex spaces.The
reader may refer to Halmos [Hl] or Munroe [Mu ] for measure theoretic
results, Bachman and Narici [BM], Halmos mz], Naimark [Na],Riesz
and Nagy [ RN] ans Stone [St] for the theory of operators in
Hilbert spaces, Schaefer [Sc] for locally convex spaces,Simmons
[ S] for Banach spaces, Rickart [Ri ], Naimark [Na] and Simmons
[ S] for the theory of Banach algebras. One may also refer to

Dunford and Schwartz [DS].

1.1. Hilbert space

Definition 1.1.1. A complex vector space H is called a Hilbert

space if there is an inner product [.,.] on H such that H is a



complete normed linear space under the norm x|l = [x,x]i.
Throughout this chapter H will denote a Hilbert space with inner
product [.,.].

Theorem 1.1.2. (Cauchy-Schwarz) If [..,.] is an inner product. which

is not necessarily strictly positive, then
ITxsy 1) lIxllifyll-

If [.,.] is strictly positive, then the equality holds if and

only if x and y are linearly dependent.

Definition 1.1.3. A Hilbert space H is said to be separable if it

has a countable dense subset.

Theorem 1.1.4. (Parallelogram law) For x, y in the Hilbert space H,

2 2 2 2
I+ yll™ + Ik - ol™ = 2x|I” + 2 [yl

Definition 1.1.5. Two vectors x and y in H are said to be onthogonatl

(in symbols x L y or yLx) if [x,y] = O.

Theorem 1.1.6. (Pythagorean theorem) If x L y in H, then ||x+¢ ﬂlz =

Ix P+ lyll2.

Definition 1.1.7. A non-void family F of vectors in H is said to be
an onthogonal family if x,y ¢ F, x # y, then x4 y. An orthogonal

family F is said to be orthonormal if x e F implies || x||=1.

Theorem 1.1.8. (Polarization identity) For x,y in H, 4[x,y] =

2 2 2 2
x + yl|© - |lx - ylI® + ilx + diy[|© - dllx - iy]|.



Definition 1.1.9. If S is a subset of H, the orthogonal complement of
S, denoted by Sl, is defined as the set of {y:yeH[x,y]= 0 for all

x € S}. A subspace of H is a closed linear manifold in H.

Theorem 1.1.10.
(i) For any subset S of H, S* is a subspace of H.
Ly
(ii) sC s.
i1 A . .
(iii)S =S if andonly if S is a subspace of H.

i
(iv) s-= sttt

Theorem 1.1.11. (Projection theorem) If S is a subspace of H, then

H=s@®s".
1.2. Operators and sesqui-linear functionals

By an operator on H we mean a continuous linear mapping whose

domain is dlt of H and range is contained in H. If T is an operator

on H, then sup|[Tx|| = sup|Tx]= sup—%{%ﬂ— <w and sup || Tx||=|IT|| (in
IxfE1 " ix|[s 1 x#0 T Ix]-1

symbols) is then called the norm of T. As a consequence, we have ||Tx|]
ATl [l for each x e H. We denote by B(H) zhe set of all operatonrs

on H.

A continuous linear mapping f:H->€ is cailed a continuous Linear

form or gfuncitional. Norm of f, denoted by ||f]|], is given by sur[f(xﬂ

Ix[| =1
|£(x)] |

and is also equal to sur]f(x)l and sup—W;W—— . The colletion of all
<1

Ix] x£0

such f is denoted by H* and is called the dual of H.

Theorem 1.2.1. (The Riesz representation theorem) To every continuous
linear form f on H, there corresponds a unique vector Ye in H such

that

f{x) = [x,y,] (1.2.1.1)
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for each x € H and [f{[= [lys[|. Conversely, theformula (1.2.1.1)defines

a continuous linear form f on H for a fixed vector y. and Hf“ﬁ]yfn.

Definition 1.2.2. A sesqui-Linear functional ¥ (.,.) on a Hilbert Space
H is a map y:H x H->€ such that y is linear in the first argument

and conjugate Tlinear in the second argument.

If ¢y is a sesqui-linear functional on H, then the quadratic
gorm induced by ¥ is the functional § on H given by $(x)=y(x,x), for

X in H.

The sesqui-linear functional ¥ is said to be posditive if {(x)2
0, for each x in H and,is said to be strictly positive if { is posi-

tive and @(x)= 0o implies x=o.

Theorem 1.2.3. If y is a sesqui-linear functional on H, then 4y(x,y)=
Plx +y) - 0(x - y) +i¥(x + iy) - id(x - iy).

Consequently, two sesqui-linear functionals y and ¥ are equal

~

if and only if @=W .

Definition 1.2.4. A sesqui-linear functional ¥ is said to besymmetric
if v(x,y) =v(y,x), for all x,y € H.

Theorem 1.2.5. The sesqui-linear functional ¢ is symmetric if and

only if $ is real.

Definition 1.2.6. A sesqui-linear functional ¥ is said to be bounded
if there is a constant K such that|y(x,y)| <K |[x|| [y],for all x,y inH.
When ¢ is bounded, the infimum of all such Ksiscalled the noam of

Y and is denoted byHMi.

Theerem 1.2.7. The sesqui-linear functional ¢y is bounded if and only

if su Jy(x,y)|< . If y is bounded, then [[¥ll= sup [y(x,¥)].
Uxfl= 1 yy= 1 Il =)= 1




Further, [v(x,y) s [[v]| || x]|]|¥||, for all x,y in H.

Definition 1.2.8. A quadratic form  is said to be bounded if there
is a constant k>0 such that [§(x)]s klleZ,for all x ¢ H. If ¥ is
bounded, then the infimum of such k's is called the norm of ¥ and is

denoted by |[9ll.

Theorem 1.2.9.

(i) ¢ is bounded if and only if suﬁ W(x)|<= and, when¥ is bounded,
. X|[[=1

P(x) | and ¥ (x){</lD|l{|xll sfor al1 x in H.

(ii) A sesqui-linear functional y is bounded if and only if @ is

bounded and,when ¥ is symmetric, |[v| = ||3]] .

Theorem 1.2.10. If A € B(H), then the functional y,defined by ¥(x,y)
= [Ax,y],is a bounded sesqui-linear functional with[ly[=||A].Conversely,
if ¥ is a bounded sesqui-linear functional, then there existsaunique

operator A on H such that y(x,y)= [Ax,y] and [[A|| =|v]-

Theorem 1.2.11. If A€ B(H), then there is a unique operator A* in
B(H), called the adjoint of A, such that [Ax,y]= [x,A*y],for all x,
y in H.

For A,B in B(H) and o,B in €, the following hold:

(a) A**= A; (b) (aA)*=3 A%; (c) (A + B)*= A% + B*;(d)(A™})* =
-1

(A*) (e) IA*[|= [ Alls (F)||A*A]l =[[An%]| <|[AlI%5 (g) (AB)* = B*A*;

(h)|[AB[[ < [[A]l IB]|.

Definition 1.2.12. If A € B(H), A is called heamitian or self-adjoint

if A*¥= Ay normal if AA*=A*A; and unditary if AA*= A*A= T,

Theorem 1.2.13. Let A,B,C be in B(H). Then:




(i) A is hermitian if and only if ¥(x,y)= [Ax,y] is symmetric or,

equiva]ent]y,a is real.
(ii) If A,B are hermitian and o,B real, then a A + BB is hermitian.

(iii)If A,B are hermitian, then AB is hermitian if and only if Aand

B commute.

(iv) Every A € B(H) can be put uniquely in the form A=B+iC, where

B and C are hermitian.

(v) If A is hermitian, then ||A]|= surl[Ax,x]l.
X

(vi) A is normal if and only if ||Ax||s||A*x]||, for each x in H.

(vii)A is unitary if and only if A is an isomorphism of H onto itself

or, equivalently, is an onto isometric linear mapping.

1.3. Projections
Definition 1.3.1. Let S be a subspace of H. Then S C)SL= H. Hence
each x in H has a unique representation of the form x = Xp t X5, X1
A
€S, x, € S . Define Px = x;. Then P is called the projection of H

on S.

Theorem 1.3.2. The projection P on the subspace S is an idempotent

hermitian operator. Unless $S={0}L)|P||= 1 and,when S={0}, P = 0.
Theorem 1.3.3. Let P be the projection on S. Then:

(i) {z:Pz=z} = The range of P = S.

(ii) zeS if and only if |Pz| = ||z].

(iii)For x ¢ H, [Px,x]=|[PxH2.

. i Iy
(iv) I-P is the projection on S .




(v) An operator P is a projection if and only if P is hermitian and

idempotent.

Theorem 1.3.4. If Sl’ 52 are subspaces of H with P1 and Pzthe respective

projections on them, then the following are equivalent:

(1) Sl.LS

Definition 1.3.5. If P1 and P2 are two projections of H with P1P2 =

0, then P, and P, are said to be onthogonal to each other. In symbols,

we write Pll P2.

Theorem 1.3.6. If P,;, P, are projections on S, and S,, respectively,

then P, + P, is a projection if and only if Pll P,. In that case, P=

P1 + P2 is the projection on S1 C)SZ'

This theorem extends to any orthogonal family of projections.To

state the extension precisely, we need the following concept.

Definition 1.3.7. Let {Xa%xeA be a family of vectors in H. We say
that {Xa}aeA is summabfe with sum X in H, if, for each e > O0,there

is a finite set J_ (- A such that || I x, - x| <e for each finite
° oeJ, o

subset J, of A containing Jo. In symbols, we write I X = X.

1 oe A o

Theorem 1.3.8. (Cauchy criterion) {Xa} is summable in H if and

ae A

only if, for each ¢ > 0, there is a finite subset JO of A such that




|| £ x4l|<e, for all finite subsets J of A disjoint with J,- Consequently, if
a€4d

{x}
o

is summable in H, then all but a countable number of the Xy, vanish.
ochA

Theorem 1.3.9.
(i) 1If {xa}a is an orthogonal family of vectors in H, then {xa}ais summable if

and only if & |kalf <w; and,if x is the sum, then Hxh2=Z||xa|F.

(ii) (Bessel's inequality) If {xa}a is an orthonorma] family of vectors in H,then,
2
for each x in H, Zix.x 1 s ||x]|{

(119)If 2x = x, then [x,yl= Z[x,»y]; Ly.x]= zLy.x 1.

(iv) If {xa} is a maximal orthonormal family in H, then it is called an ontho-
a
nommad basis. For such {xa}a and for x ¢ H, we have x= Z[x,xa]x . The
a
converse is also true. Further,lp]f= z[[x,xa]|2,for each x ¢ H (Parseval's

identity). Orthonormal bases are also called complete onthononmal systems.

(v) Each Hilbert space has an orthonormal basis and all the orthonormal bases

of a Hilbert space have the same cardinality. This cardinality is called

the dimensién of the Hilbert space. We write dimH for dimension of H.

(vi) If {xa}a is a complete orthonormal system, then, for x,y in H, [x,y] =
2, [xx 10x sy].
(vii)If {xa}a is a complete orthonormal system , and if x L x, for each a,then

x = 0 and,conversely.

Definition 1.3.10. let {Sa} ae A be a family of linear manifolds of H. We define

TS ={x= 1§ X.,,x_ ¢€S,.1i.e,{x_} is summable with sum x}.
acA ac A O © ¢ e A

Clearly, = Sa is a linear manifold.
ae A

Theorem 1.3.11.

(i) If{S_} is a family of linear manifolds of H and IS =S, then
@y ep a



S = s S = { U S),where( U S ) denotes the linear manifold
aeA aeA® aehA ©
spanned by U S .
: ae A @
(ii) If {Sa} A is an orthogonal family of subspacesof H, then S, s a sub-
o€ o €A
space and consequently, { U Sa) = LS4
oc A N

Thus, in case (ii) of Theorem 1.3.11, we denote £ S by T (:)§1 and

ae A oae A
call it the dinect sum or Hilbert sum of {S } . Clearly, t (@ S =
“ae A ae A o
{x = I Xgs Xo € Sa(so that I ‘Ixa]F< ®) }.
o€ A o€ A

Definition 1.3.12. If {A } is a family of operators in B(H) and A is in B(H),
a I
o€

we say that {A } is swmmabfe to A if,for each x ¢ H, {A x} is summable
Yael G agel

to Ax. Then we write r A =A.
a eI o

Theorem 1.3.13. The family {Pa} of projections is summable to a projection
ael

P if and only if P, 1 PBfor a # B in I. In that case, P is the projection of

Hon 1 @P,(H).
ae 1

Theorem 1.3.14.
(i) If P1 and P2 are two commuting projections, then P= P1 + P2 - P1P2 is the

projection on T§;TTT§§; where Pi}11= S;s 1= 1,2.

(i) If P1 and P2 are two commuting projections,then P1P2 is the projection on
slf\sz, with S, and S, as in (i).

Definition 1.3.15. If A and B are two operators on H, we say A < B if [Ax,x] <

[Bx,x], for each x in H.

Theorem 1.3.16. The following statements are equivalent for projections P.,i=1,2.

(172N

(i) P1 P2.

(1) |IPyx || <] P,x||, for each x e H.



(iv) PZPIf P1

(v) P1P2= P1

Theorem 1.3.17. For two projections P, and P, of H, Po-Pq is a projec-
tion if and only if Plé P2.In that case P2-P1 is the projection on P2(H)n(P1(H»%

Theorem 1.3;18. The class of all subspaces of H is a complete lattice under the
p.o.(i.e.partial ordering) S1 < 52 if Slc: Sz. Consequently, the class of all
projections of H is a complete lattice L, with Plg P2 if P1 5= Pl' Then, for two
commuting projections P1 and P2, P1 ) P2= P.1 + P2 - P1P2 and P1 A P2= P1P2. If

{Pa} is an orthogonal family of projections of H, then V P =73 P and
(VPYH) =L (P (H)).
achA

Theorem 1.3.19. Acollection B of commuting projections of H satisfies the

following distributive law:
Suppose P is a projection of H and {Pj}j is a family of commuting projectiors

of H. If PPj= PjP for all j, then

P A(VP.) = V(PAP.).
jJ j J

1.4. Spectral measures and self-adjoint operators

Definition 1.4.1. A spectral measure on a measurable space (X,I) is a set function

E(.) defined on 1 with values in projections of H and satisfies the following
requirements:

(i) E(P)= 0, E(X) = I. (I denotes the identity operator.)

(ii) If {Mn} is a disjoint sequence of sets in I, then

E(UM )x = L E(Mn)x, for each x € H.
1



1M

The spectral measure E(.) is called a complex spectral measure if X = € and

L is the o-algebra of Borel sets of (.

Theorem 1.4.2. If E(.) is a spectral measure on (X,z), then E(MNN) = E(M)E(N)

and the range of E(.) is a o-complete Boolean algebra of projections of H.

Theorem 1.4.3. A projection valued set function E(.) on (X,2) dis a' spectral
measure if and only if (i) E(X)= I and (ii) for each pair x,y in H, [E(.)x,y] is

a countably additive set function on I or, equivalently, if and only if (i)E(X)=
I and (ii') for each x ¢ H, [E(.)x,x] is a measure on Z.

Let E(.) be a spectral measure on (X,Z). Let f be a simple function in the

sense that f = ;i] O‘ixMi’_Mi e I, aj ¢ @.We define Sxde(A)= %aiE(Mi)' If fisa
bounded jy-measurable scalar function, then f= (fI - fI) + i(f; - fé), where f1=
Ref and f,= Imf. Then there exist sequences of simple functions
f£1)+, fﬁi)' 2 0 converging pointwise respectively to £t and fii i=1,2.
Then (1im 5x f£1)+ dE - 1jm Sx fﬁl)‘ dE) + i(1im Sxf£2)+dE - lm Sx fﬁz)' dE)

exists in the norm topology of B(H) and is well-defined. This Timit is denoted by
SX fdE or SX f(A)dE(X). Note that SX f dE € B(H).

Theorem 1.4.4. Let f be a bounded Z-measurable complex function on (X,Z). Then
1§, FOOAEM)xy] = §, FO0AIER)x.y]
and

1§, f00dEM s _supl#0)].
AeX

Theorem 1.4.5. If E(.) is a spectral measure on (X,Z) and if f,g are I-measurable
bounded complex functions on (X,Z), then,for o ¢ &, the following hold:

(i) §, ofde = o §, fdE;
(i) Sx(f + g)dE= Sx fdE + Sx gdE;

(i11)§, Tde= (fx FdE)*;
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(iv) Sx fgdE= (Sxde)(fxng).

(v) If B € B(H) and if B commutes with Sxde, then E(M)B = BE(M) for each M
£ Z.

(vi) A11 such operators SX fdE are normal and commute among themselves.

Definition 1.4.6. Let A ¢ B(H). Then the spectrum o (A),the point spectrum oplAl,
the continuous spectrum o, (A), the residual spectrum o, (A) and the resolvent set

p{A} are defined as follows:

(1) o(A) ={x :(AI - &)Y ¢ B(H)).

(11) op(A)={x :(AI - A)'1 does not exist }.

A) * exists with dense domain but not continuous}.

(i11)o (A)=(x (A1

(iv) Gr(A)={l (A - A)_1 exists with domain not dense in H}.

P(A), oC(A), 6r(A), o(A) are pairwise disjoint and o(A)= OP(A) U oC(A) U

Theorem 1.4.7. Let A ¢ B(H). Then:

(i) o(A) is non-void and compact.

(ii) If A is hermitian, o(A) is real, o(A) < [-||A|l ||A|0,and]||A[| = sup |Ar|; o(A)
AEC
c [m,M], where m= inf [Ax,x] and M= sup [Ax,x].
X1 -1

(i11)If A is normal, then or(A)= f.
(iv) If A is unitary, then o(A) < {x :|A] = 1} .

Theorem 1.4.8. (The spectral theorem) Let A be normal. Then there is a unique
complex spectral measure E(.) on € with E(c(A))= I called the resolution of the

identity of A,such that A= $ A dE= S ME. If A is unitary, A= S ME. If Ais
¢ o(A) [A]=1 M

hermitian, then E(.) is a real spectral measure with E(o(A))= I and A= S AME =
m
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2 )AdE, where m and M are as in Theorem 1.4.7.(ii). In the latter case, if E=
o (A

E{(~, A]) sthen{ Eyihoe R} is called the spectral gamily of the hermitian operator

A,and {E} is continuous on the rightin the sense that if ASu ,then E x+lax
AA:;R H

as M +-thor each x € H.
Theorem 1.4.9. If A and B are two commuting normal operators with resoltutions of

the identity El(‘) and E2(.), respectively, then El(o)E2(5)= E.(8)E.(c) for all

2 1

Borel sets 0 and & of €.
Definition 1.4.10. A linear transformation A with domain a linear manifold D(A)
in H and range in H is said to be closed if, whenever {x,};c D(A)converges toa

vector x in H such that Axn+ y for some y € H, then x € D(A) and Ax= y.

The graph of A, denoted by rk, is defined as the set {{x,Ax):x e P(A)} C
H@®H. Obviously, A is closed if and only if rk is closed in H®DH.

Definition 1.4.11. If A is a linear transformation with domain D(A)in H and
range in H and if i=k (the closure of the graph of A in H@®H) is the graph of
some linear transformation R, then A is called the closune of A and in that

case, A is said to admit closure or to be preclosed.

Clearly A is the minimal closed extension of A, when A is preclosed.

Definition 1.4.12. Let A be a linear transformation with domainD (A) dense in H
and range in H. For each x € D(A) and for a given vector y € H,if the
representation [Ax,y]= [x,z] holds, then we denote by D* the set of all such
vectors y in H and define the map A*:D* -~ H by A*y= z. Since D(A) is dense 1in H,
A* is well-defined and A* is also linear as A is Tinear. A* is called the adjoint
of A. For the proof of the the following lemma the reader may refer to § 5, Nai-

mark [Na].

Lemma 1.4.13. It is assummed that the linear transformations A,B on H  have

dense domains. If D(A) < D(B) and Ax= Bx for x ¢ D(A), we write A < B.Then:
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-1

1 is dense in H, then (A™1)*= (A%)7L;

_]_)

(i) If A" exists and p(A

(i1) (A A)*= A A%, X ¢ G;
(iii)If A< B, then A* D> B*.
(iv) (A + B)* > A* + B*,

(v) (AB)* D B* A*,

(vi) (A +AI)*= A* + AI.

Lemna 1.4.14. If the linear transformation A with dense domain in H and range in
H has the closure A, then:

(i) A*= Ax;
(i1) D(A*) is dense in H;

(iii)A**= A; in particular,if A is closed, then A**= A;

(iv) A* is a closed operator for any A with dense domain in H.
Proof. Let U be a a linear operator on H(@®H, given by
U(x,y)= (iy,-ix).
Then U is clearly an isomorphism of}1()H onto itself.

Let r; be the graph of A. Let U [y= g

Then
FA*= (H@H)o,—r’A. (1.4.14.1)

To prove (1.4.14.1), the orthogonal complement of r consists of those and only
those pairs (y,z)satisfying the equation

[(y,z), (iAx, -ix)] =0
for all x ¢ D(A); i.e.,satisfying

Ly,iAx] - [z,ix] = 03

i.e.,satisfying
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[Ax,y] = [x,z].
This is equivalent to saying that y € D(A*}, A*y = z and (y,z) e fA*.Hence

(1.4.14.1) holds.

.

Consequently, from (1.4.14.1) we also obtain that rk* is closed and hence

A* is always a closed operator. Thus (iv) holds.
1 ~= C ri' = r = ur = _/
Since r'A r;\, we have A U F;\ F/'\ FA

and therefore from (1.4.14.1) we have

. , ,
Fis HON O T HOW O, = [,
Thus A*= A*. This proves (i) of the lemma.

Again from (1.4.14.1),we have

Ty= (HOW O [,

-1 =7 - 4 -
Clearly, U 1 rk= FA. Besides, U 1 ["A*= iqA*, since U 1(x,A*x) =

[iA*x, -ix] = U(x,A*x).
Hence by applying U-1 on both sides of the last equation, we get

(—";\= (H®HW) © l‘;\'*. (1.4.14.2)

If follows from (1.4.14.2) that D (A*) is dense in H. In fact, otherwise, there

would exist a non-zero vector z ¢ H which is orthogonal to D (A*), Then

’ — —

U'l(z,o).L f'A*; i.e. (0,-1z) ¢ (’A. But,as r;= r%, (0,-iz) ¢ f"ﬂ. Since A is

linear, z =0, and hence a contraction. Thus (ii) of the lemma holds.
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Thus (1.4.14.1) and (1.4.14.2 ) imply that T; = [puxs on the other hand,

E: = r’ﬁ,as A admits closure. Thus ﬂ = A**_ This proves (iii) of the lemma.

Definition 1.4.15. A linear transformation with domain a linear manifold D(A) in
H and with range in H is called an operator,and it is said to be hewmitian if
[Ax,y] = [x,Ay], for all x,y € D (A). A hermitian operator with domain dense in H
is said to be symmetric. An operator A with dense domain in H is said to be
self-adjoint if A = A*. Thus an operator may be bounded or unbounded. The situa-

tion will be clear from the context.

Clearly, an operator A on H with dense domain is symmetric if and only if

A CA* .

Lemma 1.4.16.

(a) If A is a self-adjoint operator on H, then, for a,B real,the operator aA+gI
is also self-adjoint.

(b) A symmetric operator A on H whose range RA coincides with H is a self-

"adjoint operator.

Proof.

(a) Trivial.

(b) It suffices to show that D(A)= D(A*). As A is symmetric, D(A) < D(A*). Let
y € D(A*) and let z = A*y. Since 12A= H, there is a vector y' in D(A)such
thag z= Ay'. Now, for arbitrary x € D(A), we have

[Ax,y] = [x,A*y]= [x,z]= [x,Ay' 1= [Ax,y]

and hence y = y',as RA= H. Thus y € D(A). Hence A = A*,

Definition 1.4.17. An operator A on H is said to be positive definite if [Ax,x]

[\

0, for all x € D(A).

Lemma 1.4.18. If A is a closed operator on H with dense domain, then A*A is a

positive definite self-adjoint operator on H.
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Proof. For x € D(A*A), [A*Ax,x] = [Ax,A**x]= [Ax,Ax] 2 0 by Lemma 1.4.14(iii).

Thus A*A is positive definite.

We presently show that A*A is self-adjoint . From equation(1.4.14.1) we

have

n® [+ = HOH. (1.4.18.1)

Hence the vector (0,-ix) of H()H can be written in the form (0,-ix) = (iAy,-iy)

+(z, A*z), y e D(A), z e D(A*); i.e.,0 = jAy + z, -ix = -iy + A*z

=iy - iA*Ay.
Therefore it follows that x = (I + A*A)y, so that the range of I + A*A s

H. To show that A*A is self-adjoint, in view of Lemma 114.16,it suffices to show

that I + A*A is symmetric.

Obviously,I + A*A is hermitian. So,it suffices to show that D(I + A*A) s
dense in H. Let X, L D(I + A*A). By what has been proved above, Xy = (I + A*A)yo,
for some Yy € D(A), so that [(I + A*A)yo,y]= 0,for all y ¢ D(I + A*A). In

particular, taking y = Yoo We obtain

2 2
0= [(I + A*A)y Ly = [y I + [ Ayl

which means y = 0,and hence x_ = (I + A*A)y0 = 0.

This completes the proof of the lemma.

Theorem 1.4.19. (The spectral theorem for arbitrary self-adjoint operators). For
every self-adjoint operator A on the Hilbert space H with dense domain D (A)there
exists a unique spectral measure E(.) on the Borel sets of the real linewith the

following properties:

(i) If §X= E( (-o,1]), then EAEu= E, for Asu 3 (EA is called the spectral

fumily of A.)
(ii) E(.),and hence EA,commutes with every operator T € B(H) which commutes with
A.
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(iii)7im E, x= 0, Tim E x = x,for each x ¢ H.
A > =0 A >+

(iv) Ekx is a function which is continuous on the right for arbitrary x € H.

(v) x e D(A) if and only if S >\2d|IE(>\)x||2 < oand,in that case, Ax =
S AdE(A)x, x € D(A).

-0

Definition 1.4.20. An operator T on H is said to be nommal if T is closed,densely

= 00

Y

defined and TT* = T*T.

Theorem 1.4.21. Let T be an unbounded closed densely defined operator on H. The
following are equivaient:

(a) T is normal.

(b) »(T)= D(T*) and || Tx|| =|| T*x|| for each x e D(T).

(c) There is a spectral measure E(.) on the Borel sets of € such that p(T)=

{x: f XA dE()\)x exists} and Tx= S AdE(A)x,x € D(T).
€ ¢

When T is normal, the spectral measure E(.) is unique,and E(.) is called the

resolution of the identity of T. For such T, D(T) 1is also given by
e f A lE QX F < =

Lemma 1.4.22. If A is a positive definite self-adjoint operator on H, then there

exists a unique positive definite self-adjoint operator P on H such that P2 = A.

Proof. Suppose E(.) is the resolution of the identity of A. Since A is positive

def1n1tei EA

=0 for A < 0. Let D(P) = {X:.jk d][E(A)xl|2< ~}and set
® 0
Px = J/_X dE())x
0
for x €D(P). For x € D(A),
Ax= 5} dE()) x.
0

Hence

» > [Ax,x] = [ §AdEG)x,x]

jaid[E(A)x,x]
0
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- SAdHE()\)xHZ
0
and hence x € D(P). Thus D(P) is dense in H. For x ¢ D(P),
P2x= SAdE(A)x= Ax
0

and hence D(P)= D(A) and P2

= A. Clearly, P is a positive definite self-adjoint
operator. The uniqueness of P follows from the uniqueness of the resolution of

the identity E(.) of A.

We shall denote P by A%
1.5.Banach algebras

Theorem 1.5.1. B(H) is a Banach algebra with identity under the operator norm.

It is a B*-algebra.

Definition 1.5.2. If x ¢ A, a Banach algebra with identity e, the resolvent set

p(x) = {x:(Xe - x)-1

e A}. ¢\ p(x) is called the spectrum of x and is denoted
by o(x).

Theorem 1.5.3. If A is a Banach algebra with identity e, then o(x) # @, for each
x € Aand o(x) is compact. Further, max {|Alx € o(x)} = r(x) = Tim|| xnlﬁ/n,called

the spectral nadius of x. If p is a polynomial, then o(p(x))={ p(A):x ¢ o(x)}.

(The last result is known as the spectral mapping theonrem.)
Definition 1.5.4. An element x in a B*-algebra with identity e is called heunitian
if x*= x; noamal if x*x= xx*; unitary if x*x= xx*= e.

It is known that, for an element x in a B*-algebra with identity, o(x) is

real if x is hermitian; and ||x||= r(x) if x is normal.

Theorem 1.5.5. If A is a commutative division Banach algebra, then A is isometri-
cally isomorphic to the Banach algebra of all complex numbers.
Theorem 1.5.6. (Gelfand-Naimark) If A is a commutative Banach algebra with

identity, then its maximal ideal spaceﬁnis a compact Hausdorff space under the
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weak topology induced by the functionals{ %X:x €A}, where X(M)= x(M) given by the
quotient map:A >A/M ZC: x >x(M)= x+tMc C,for M E?UL If,further,A is a B*-algebra,
then A is isometrically isomorphic to C) under the mapping: x > X and || x||=I|Xl]

= sup [R(M) |. Also o(x)={ X(M):M ¥}
M e

.

Theorem 1.5.7. (Functional Calculus) Suppose x 1is a hermitian element of a
B*-algebra A with identity and C(o(x)) is the B*-algebra of all continuous
complex functions on the spectrum o(x) of x. Then there is a unique  mapping
f > f(x):C(o(x))-»A such that the following hold:

(i) f(x) has its elementary meaning when f is a polynomial.

(11) [[£(x)= lIfll, for £ e C(a(x)).

(i11)(f + g)(x)= f(x) + g(x);

(iv) (fg)(x)= f(x)g(x);

(v) F(x)= f(x)*.

(vi) f(x) is normal; and is hermitian if f is real.

(vii)f(x)y= y f(x) for all y ¢ A for which yx= xy holds.

Theorem 1.5.8. If A is a B*-algebra with identity e,B is a closed *-subalgebra of A
containing e and if x € B, then oA(x)= oB(x) where oA(x) and oB(x) denote the

spectrum of x with respect to A and B, respectively.

Theorem 1.5.9. (Extended spectral mapping theorem) If x is hermitian in a

B*-algebra A with identity, and if f € C(o(x)), then

o (F(x)) ={f(A):x e o(x)}.

Theorem 1.5.10. Each element x in a B*-algebra A with identity is a finite

linear combination of unitary elements of A.

Proof . It suffices to consider the case in which x = x* and ||x || 1. Then

o(x) € [-1,1] and we can define f in C(o(x)) by ()= A+ <(1-2")%. Obviously

. o u + u* . . .
u= f(x) e A and satisfies x = > ;3 and u is unitary in A.
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Definition 1.5.11. By a homomorphism from a B*-algebra A with identity into a
B*-algebra B with identity we mean a 1linear, multiplicative and adjoint
preserving mapping ¥ from A into B, which carries the identity of A onto the
identity of B. In particular, if y is further one-one, then we call ¥ an

isomorphism of A onto y(A). .

Theorem 1.5.12. Suppose that A and B are B*-algebras with identity and ¥ is a
homomorphism from A into B. Then, for each x ¢ A, we have the following:

(1) o (w(x)) € o(x);

GO s [ x b

(1i1)If x = x* and f € C(o(x)), theny (fix))= f@ (x));

(iv) If ¢ is an isomorphism, thenlly (x)|| = x|l



CHAPTER 2

BASIC PROPERTIES OF VON NEUMANN ALGEBRAS

' §2.1. Some topologies on B(H)

Throughout this chapter H denotes a Hilbert space and B(H) denotes the
B*-algebra of all bounded operators on H. In addition to the norm topology 7, on
B(H), we need some more topologies. These topologies are discussed in detail in

this section.

Suppose E is a vector space over IK(=R or€). A mapping p:E—»IR+1s called a
semi-noam on E if p(x + y) £ p(x) + p(y) and p(ax)= |a|p(x),for all x,y in E
and ae K. If[" is a set of semi-norms on E, then there is a topology T on E for

which the sets of the form V(xo;p1,...,pn;e)={ x:x ¢ E, pi(x -x )< g, =

0
1,2,...ﬂ?}(w1th PpreeesPy, e, e >0)constitute a neighbourhood basisat Xo € E.

The topology tis Hausdorff if and only ifixe E: p(x)= 0 forall p el™ = {0} .

If 1 is Hausdorff and if {7 consists of a single semi-norm,then T
is the wusual norm topology. For the topology T induced by the semi-norms of [T,
(E,T) is a Locally convex space.

Notation 1. For a subset K of H, let [K] be the subspace spanned by K. Then, for
a finite subset K of H, [K] is the same as the 1ineér manifold spanned by K.More-

over, P[K] denotes the projection on the subspace [K].
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§2.1(A). The strong operator topology T

For a fixed vector x € H, let px(T)=|lTxH,for T € B(H). Then, clearly, P,

is a semi-norm on B(H). The family {Px: xe H} induces a locally convex Hausdorff

topology Tg On B(H), called the strong operaton topology or simply the  4trong
topology, It is Hausdorff, because pX(T)= 0 for each x g H implies Tx= 0 for

each x € H and hence,T = 0.

1

. n :
Sets of the form U= U(O;xl,...,xn;g)= {T'sB(H,).:(ZIITx1.||2)2 <e} where
1

x1,x2,...,xn ¢ Hand ¢ >0, form a rs-neighbourhood basis at 0. In fact,

V(O;px17°°"px ;6)={T:‘HTX1||<6, i= 1,2,...,n}cll if §< E/ﬁ]_ and uc
n

V(O;px1,...,px s €). This establishes our claim.
n

n

Notation 2. U(0O; xl,...,xn;e)= {T'eB(H):Zl|Txi|[24< 82} and V(O;xl,...,xn;e) =
{TeB(H): x; || <e, i= 1,....n}. !

In terms of convergence, T, »T(in t.) in B(H) if and only ifll]}x - Tx||+ 0,

for each x in H.

Lemma 2.1.1. With a fixed S in B(H), the mappings

(i) T->ST:B(H)~>B(H),

(ii) T »TS:B(H) ~B(H), are T -continuous. If S e B(H)1(= the unit ball of B(H)
{TeB(H):||T||s 1}, then |

(111)(S,T) »ST:B(H), x B(H) > B(H) is T_-continuous.

1
Proof. Let Kl+ T in rs-t0p01ogy and let x ¢ H. Then:
(i) Clearly, [KST@ - ST)x||s ||S|]]KTG- T)x|| > 0. Hence (i) holds.

(i) Proof is similar to that of (i).

. . <
(111)If S>S in 7  in B(H),, then ||(SaTa- ST)x || §||Sa(Ta- Dx I+ [ (S~ S)Tx || ¢

“SOL“ ”(TOL— T)XH + H(SOL_ S)TXH - O,s'ince ||SOJI§ 1.
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Note 1. If H is infinite dimensional, (a) T+T*:B(H)1+B(H)1 is not continuous
in Ts-topo]ogy and (b) the mapping (S,T) = ST: B(H) x B(H)~> B(H) 1is not
continuous 1in Ts-topology, as is shown in the following counterexamples.

(a) Let {en}r be an orthonormal basis in a separable infinite dimensional Hilbert
spaceH.Forxe H, let U (x)=[ x,e ] e, ThenIIUnx|I= |[x,en]|+A0 as n -,
since|LxH2 = ?][x,en]| . Thus U » 0 in . But, [U; e;,x] = [eq,Ux] =
[ e, x], for each x & H. Thus U;e1= e,, so that uu: eql= 1, for each n,

and hence U:-l» 0in T,.

(b) With H as in (a); let Ve = e, 4 (n>1) and Ve = 0, and extend V]1nearlyand
. n - -
continuously on H. Lgt An= Vi(n= 1,2...). Then,HAnx“ —||1il[x,e1] Anein =

Z+1|[x,e1-]|2 < g, for x € H, if n is sufficiently large. Thus Aﬁ+0'“1T§NOM

[vxe ,x] = [e ,Wx] = [en,iiz[x,ei]e1_1]

= 152[ 1][X e;l = n+‘I:l= [en+1”‘:|
so that Vxe = e .. Hence [|A* x[[2 = [l x| - || Blx.eile,, |° =
no Tn+l’ n X = ie1 =9 1'+nH
0. 2 2 .
zLx, ei]l = {Ix!I %, for x eH. Thus A* +0in 1_.
i=1 " S
Let x € H with |{x|[= 1. Let V(0; x,€) be a Ts—neighbourhood of 0, with
1
L a= = = A* .
0 <gc«< j. Further, let An,é s An’ Bn,é $ . (8§ > 0) Then
x||= A A* x|l = || x 1>¢.
I, (8, = I8 A xll= Il -
i.e.A o B 5 ¢ V(0; x; €) for any n and §. But, on the other hand, Tet
n,§ n,
V(O;X1,x2,...,xk; 81) and V(0; y1,...,ym; 52) be arbitrary Tgneighbourhoodsof

mo 2
0. Let 0 <& < &/(lyll")2. Then we have
1
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2 _ 2 2 2 2 2
1B vl “= s A vl "= 6" Dyl < ez s

ienB, oY < e,,for anym; 1'e"Bn,6 e V(05y yeeehys e,). Now, as As” 0

in T (for the fixed & chosen above),|| A 5x1“ <es for i= 1,2,...,k,if n 2
s n

’

n (e)(say); i.e., A

. . > :
o n,s eV(O,xl,...,xk,el), forn 2 no(e). Thus, in any two strong

neighbourhogds of 0, there exist operators An 5’ Bn 5 such that their product
’ ’

A 5 Bn 5 is not in the prescribed strong neighbourhood of 0. i.e., (A,B) - AB:
n, ’

B(H) x B(H) » B(H) is not continuous in To at (0,0).

Note 2. Tn = TS on B(H) if and only if H is finite dimensional. If H is

infinite dimensional, then T is strictly finer than T,-

k
2 :
Since U(05x5-+5%, 5 €)= {T:T e B(H), ( 2 1T 1| “yE < edars|| T))]«—E— 3,
j=1 1 ék w128
%“ ill
T, 2 T, If H is infinite dimensional, T # TS since themap T > T*

is continuous in Tn,and not continuous in T by Note 1.

=

If H is of dimension n, and if {ei} is an orthonormal basis in H, then

-_—

V, since,for T € Vand xeH, || T* x|| 2 _

W= {T:|| Tl|<e} > U(0se ERPPLI €/2)

1
o 2 " 2 ¢ 2
5| [T*x, e.]|"= z| [x, Te1]l < 7 IxI 75 so that [[TI] = |lT*ll = e/2. Thus
1 1
T 2 T .Hencet = 1 if H is finite dimensional. . :
s n s n _ S

The part of sufficiency in Note 2 is a particular case of the following:

-

——

”1%7;;‘and T, are two Hausdorff topologies on a vector space E  of finite
dimension such that (E,T1) and (E, T2) are topological vector spaces, then T1=’E2.
See Theorem 1.21(a) of Rudin [R].)

Theorem 2.1.2. If H is separable, then B(H), the unit ball of B(H), s

metrizable in Ts'
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Proof. Let A be a countable dense subset of H. Let{” be the family of semi-norms

P, (T)

points. Moreover, the topology T induced byl onB(H) is metrizable(see p.2Z_of R]).

|ITx||, for x & A. Then I" is countable. Since A is dense in H, [ separates

Obviously, T §TS on B(H) and -B(H)l' Conversely, let V(0; Z9see052,5€) bea

Ts-neighbourhood of 0 in B(H)1. Choose x; € A such thatllxi - 21|l< €/2, for

i=1,2,...,n. Let S € B(H), N v(o;x1,...,xn;-% ), which isa  1-neighbourhood

1S(z; -x )1 + IS x5l <e, S0 that S ¢

of 0 in B(H)

IA

;- Then, |IS z |

V(0; 21,...,Zn;g). Hence T 2 Tg On B(H)1.

Theorem 2.1.3. B(H)1 is complete under T-

Proof. Suppose {Tu}a is a Cauchy net in B(H)1 for Ts-topology. Then {txx }ods
Cauchy in H and hence 1im ]xx= Tx exists,for each x in H, as H 1is complete.
Clearly, T is linear and ||Tx|| = 1%p||TaxH stim sup [T || x|l )|}, as ||T || < 1
for all a. Thus T € B(H)

and hence B(H,) is complete under Tg-

1 1

Note 3. B(H) is topologically complete under tg in the sense that every closed

and totally bounded set Sc:(B(H),rS) is compact.

Note 4. When H is infinite dimensional, B(H) is not first countable for  the

rs-topology even if H is separable,as we see below.

. . °°. = p +
Let H be separable with an orthornormal basis {ei}1 Let Am,n [emJ
mP[en] and S= {Am,n:m’”= 12,2,...,2m <n}. If X1o XpseeesXp kg H are
given, then I |[x.,e I =|lx.I°, = 1,2,...,k. Thus, 3 |[x..e 1° =
PR ) =1 4=1 1P
k k . P
z ”xiﬂz, so that lim % | [x;2© ]| = 0. Let € > o . Choose m such that
i=1 peo 1= TP
k 5 K ) )
1,2=1|[x1,,em 1| < ¢ and ann>m with 1.):=1|[x1.,en]| < g/m. Then

k

2
k . =
% ||Am,nx1 I 1-§1“(P[em:|

o 2 k 2
+mp. Jlzlx,elell =z [[xe |
1:1 =1 J \] 'i=1 m

[hn] j
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2 2 .
m l[xi’ e 117) < €. Thus Ann € u(0; X1s%yyeeesX 56 ). Thus 0 s a strong

accumulation point of the set S.

If {Amr,n } p=1 tends to 0 in Tg» then by the uniform boundedness princi-
ple sup f|A || < . Then there will exist a subsequence {r.}? =1 aMd 2 ¢ N
r’ B

such that m. = 2, for jeN. Since ”Am,nem||=1’ Amr‘,n ¢ U(0; e,31), for each

DN JA . 3
J € L) .I-e'. mr’nr‘ + 0 1n Ts. U

rre—

¥ ..
Theorem 2.1.4. If a bounded subset F of B(H) is directed upward, then F has

the least upper bound T in B(H)+ and T is also the strong operator limit of the

net {A,A e (F, 2) } (B(H) {T ¢ B(H):T 2z 0} .)

Proof. A set F in B(H)+ is said to be directed upward if,given A,B e F, then
there is C € F such thét As<C,B £ C. Since F is bounded, there is a real

number M such that ||A || M, for A ¢ F. Given x ¢ H, 0 < [Ax,x]< [M x,x] ,
so that A £ MI,for all A ¢ F. It follows then that the increasing net
{ [Ax,x]:A e (F,2)} is bounded above in IR+ and so converges to its Jleast

upper bound. Let p{x,x)= sup {[Ax,x], A ¢ (F, 2)}}= lim [Ax,x]. Since 4[Ax,y] =
Ae (F,2)

[A(X+y)’ X+y] - [A(X -y¥), X-.Y)]-i[A(x-iy),x-iy]+1‘[A(x+1‘_y),x+1‘_y] ,

1im [Ax,y] exists in €,for x,y € H. Call it p(x,y). Since [Ax,y ] depends
Ae (F,z)
linearly on x and conjugate linearly on y,and since |[Ax,y]l| < M|x] | yl||, for

A € F, it follows that p is a bounded sesqui-linear functional on H, with || p||
S M. Hence by Theorem 1.2.10 there is a unique operator T in B(H) such that
IT]| € M and p(x,y)= [Tx,y], for every x,y in H. Since [Tx,x]= sup { [Ax,x]:A € F}
2 0, Te B(H)+ and T is an upper bounded of F. If T' 2 A,for each A € F,
and T' ¢ B(H), then [T'x,x ] 2 sup{[Ax,x]: A ¢ F}= [Tx,x], for each x € H;

i.e.,T is the least upper bound of F in B(H)+.

\%

Next, if x €¢ H and € > 0, there is an A8 in F such that [Aex,x]

[Tx,x 1- €. IfAc FandA 2 A, then (T -A) e B(H* and || (T-mx|f"

IA
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} x|| 2. (T - All [(T - A)x,x] || T - Al [(T - Ag)x,x] <

2
T = W T - A
[T - Al . Thus || (T - A)x|| < elT-Al<e (| TI +[A]Ds 2Me . Hence
T = 1im {A:A ¢ (F, 2)} 1in the strong operator topology.

§2.1 (B).The strongest or ultra-strong operator topology + on B(H)
Os

Given a sequence X= (Xi)T of elements in H such that Z||X1-|12< @ the function

[+ 2 . 1 )
PX(T)= (Zlﬂxill )¥ defines a semi-norm py ON B(H). In fact, for T,S € B(H),
1 .

‘(1 +5)
pX

N

® 2
LT, [+ [ Sx 1)
1 1 1

2
% 2 o o
ZIFX1|| + 2 Z|ﬂxil| |Sx; ]+ Al SXi”
1
1 1

I

p2(T) + py(S) *+ 20, (Tp(Sk (p, (M) +pyls))° < =,

. 2.1 2 3
since %IiTX1|l %A1 GITx AT E ElEsxll™y 2, Thus Py (T +8) < Py(T)+Py(S).

Clearly, pX(aT)= |a|pX(T),a £ C.The locally convex topology induced on B(H) by
all such possible semi-norms Py is called the strongest or ultra-strong operator

topology and is denoted by Tos® Tgs is Hausdorff, since pX(T)= 0 for all such X

impTies, in particular, taking X= {x}, x € H, Tx= 0 for each x ¢ H = and hence
T=0.
Propbsition 2.1.5. B(H) is a locally convex algebra under TOS, Also (S,T) - ST:

B(H)1 x B(H) - B(H) 1is continuous in Tos'

Proof. Since T is a locally convex topology, being induced by a family of

oS
semi-norms, the mappings(S,T) »~S + T:B(H) x B(H) »B(H) and @ ,T) - aT:6 x B(H)

o : L@ 2
> B(H) are continuous. Let X= (x;)] of elements in H with gﬂxill <o
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. . 2
If S, € B(H)1 and Ta€ B(H) ,and »1fSaS and'%meros,then pX(SaTa' ST) ¢
2 2
S(T -T)) + - < - -
(P (S, (T, = T+ (S, )TN < (PY(T = T)+ PL(S - S)" 0.1 T 7T

in Tgeo then, similarly, S,T » ST and ]15-+TS in Tos for any S € B(H).

Proposition 2.1.6. T, and Tos induce the same topology on B(H)1.Consequent1y,

B(H)1 is complete under t B(H)1 is metrizable under +t__ if H is seﬁarab]e.

os’ os
Proof. Clearly, Ty S 15 ON B(H) and hence on B(H)1. Let S € B(H)1 and let the
T g-Neighbourhood V of S be given by V={T:T € B(H), ?H(T-Sb%||2 < 52,Z||X1H2<m}=
1 1

o 0022

V(S; {x,}5 €). Choose N such that I || x.|| < &, Then W= {T:T ¢ B(H),
i1 . _ 1 8
i=N+1

N 1 2, . , |
ZIKT-S)X1|F < 7 €lisa T, - neighbourhood of § and,  for TeWO B(H)f
1
w 2 2 . X i
z]KT-S)xill < €, Thus W N B(H)1 is contained in Vr\B(H)1.Hence TS Toe on

1

B(H)1. Now the completeness of B(H)1 under Tgs follows from Theorem 2.1.3.

The last part of the proposition is a consequence of the first part and

Theorem 2.1.2.
Corollary 2.1.7. If T, ~ T strongly, then Tn - T ultra-strongly.

Proof. Since T x = Tx,for each x in H, sngTnx||< M, < = and hence,by  the
uniform boundedness principle, sHpHTnH= M < = . Now the corollary follows from

the above proposition.

Note 5. B(H) is topologically complete under Tos in the sense of Note 3. See

von Neumann [4 ] .

Note 6. If H is infinite dimensional, the wmappings T - T*:B(H) - B(H) and
(S,T) > ST:B(H) x B(H) 5 B(H) are not continuous in T g 38 is shown below.

Consequently, T, ; Tos if H is infinite dimensional.
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The transformationsA = V" in (b) under Note 1 are bounded and HAn||§1. Since

Ana-O in Tg and A; 4+ 0 in Ts,and An’ A; € B(H)1, by 2.1.6, A,~0 in Tos and

Ag 4+ 0 in Tys® Defining An,a’ Bn,a as in (b) under Note 1,for a given T4-neighbour-

hood V(0; x;e) of 0, which is also a Tos—neighbourhood of 0, An,aBn,aiv(o; X3 ),

for any n and §. If V(O;{xi}T; 51) and V(O;{yi}T;EZ) are Ejs-neighbourhoods of 0,

L]

taking 0 < 6<€2/(§Hy1|F)%, it can be shown as in (b) under Note 1 that (A,B) - AB
. 1 ’

is not continuous in Tos at (0,0).

Note 7. For infinite dimensional H,B(H) is not first countable in Ty €Ven when

H is separable.

The construction under Note 4 holds here. Let Am,n= P[em] + mP[en] If
v Hx]| < o, then Z] [x,.e ]F‘|lx|| and hence £ 3 |[x1,e ]|2= z ||x1H<iw, so
i=1 p=1 i=1 p=1 S
that 7 I [x;.e ]I <. Thus lim I | [x; e ]l = 0. Choose m such that
p=1 i=1 preo i=1
ZI [x ,€ ]|2 <e/2,for p 2m,and choose n>m with T | [x ,e ]] —57-. Then
i=1 i= 2m
E Ay il = Bl 3+ mPpg pxil?
j=1' m.ni io1 [em] [en] i
_ °£1|( re 1% e ]>(‘-’£ [x, e, Je )|
i=1 n j=1 373
- 2 . 2 2
SAN[eRO LR
00 2 2
= 5 |[xi,em]| +m v |[x e ]I
i=1 i=1
Thus 0 is a Tos-accumu1ation point of {Am H-. But 0 is not the limit of
a sequence {Am n 3 even in Ts-t0p01ogy and hence not in Tos-topo1ogy.Thus

r’'r r=l
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B(H) is not first countable in Toe

Note 8. t.= v, .= 7, 1f and only if H is finite dimensional. If H is infinite di
i > >
mensional,then T, 7 TOS i T
Clearly, T = Tog < T But, by Note 2, = T, if and only if H is finite
dimensional.  Hence Tys™ Tp when H is finite dimensional. If Ty~ Tn? then H
is finite dimensional by Note 6. It suffices to show that Tss ; T, When H s
infinite dimensional. (The result that T® Tys™ Ty ON B(H) when H is finite dimen-

sional is also obvious from the theorem mentioned under Note 2.)

Let H be an infinite dimensional separable Hilbert space and let S =

{256n2(I - PM): n¥ 1,2,..., M is a subspace of H, dim M 2 n}. If xl,xz,...,xn are
given in H, then 256n2(I - P )x.= 0, for i =1,2,...,n, and hence
[xl,...,x 1774
2 . , . . .
256n°(1 - P[xl,...,x ]) € U(O,xl,...,xn,e). Thus 0 is a strong accumulation point
of S. But 0 is not an ultrastrong accumulation point of S. In fact, Tlet {e } .
, o i=
be an orthonormal basis for H. Let x°= L e , n=1,2,... .Then Z|k°|| < 1. Let
N, N 1
A= 256n2(I-PM) € S. Let M= [f),...,f, 1.k S n, f; ,....f, an orthonormal basis inM.
Th ZIIP ||2 %o ZIIP e |f) ; §l[e £.3/%= gll 5
en, = 5T, = i =
m=1 m=1 = [f ] J"]. m=1 m- ] j=1 fJ k <n So
HPM em|l> %— cannot hold for 4n times or more. Hence there is an m' < 4n such that
1 2 1 1,2 _ 1
ﬂPM em.ns Then |[(I - Py .|| 2|| e - PMem.H 2 .Y (1-3%° = m
> 1 x 0 0 q_ 2,% "2562020|(I P)0H2 S
2 ——,and so Z[Axm, X 1= 256n°(Z[(I - PM)x > X °N = n (T - R 2
256n 1 1 1
2 2 . 1w © 2 e Tl T (hOIR §
256n | (1 - P x| 2 1(%). Hence |l AxOlF 2 = l[Axgll™ = [l 2
M :1 m m:l m=1

(Zlhxﬁlllkgﬂ)z 2 (ZI[Ax;, xr?l]|)2 2 1 by (*), where we used the hypothesis that
1 1
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20,2
ZmeH < 1.
1
Thus A ¢ U(o;{xg}T, 1). Since A is arbitrary in S, it follows that 0 is not

a T -accumulation point of S. Thus t > T .
os as # s

§2.1(C). The weak operator topology T

For x,y in H,let p_ y(T)=|[Tx,y]|, T € B(H). Then P, yis asemi-norm on B(H).

The family {pX gy eH} induces a locally convex Hausdorff topology t. on B(H),

W

called the weak opeuton topofogy. Sets of the form V(O;XI’XZ"'"Xn;yl"",yn; £)

= {T:7T EB(H):|[Txi,y1]I <e,qi=1,2,...,n},with X1sY13XosYpse e 3X Y, in H and
¢ > 0, form a base of waneighbourhoods of 0. Then Ta+ T in Tw if and only if

[T x,y] »[Tx,y],for all x,y in H.
o

Proposition 2.1.8. B(H) is a locally convex algebra in T,-topology. Further, T» T*

is continuous in Ty*

Proof. Clearly, B(H) is a locally convex space under Ty For fixed S € B(H), (S,T)

[S(Ta- T)x,y)

-+ ST and (T,S) =TS are continuous in Tw.In fact, if Ta+ T in Ty»

* =
[Ta X,¥]

= [(Ta_ T)x,S*y] = 0. Hence ST,> ST in Ty Similarly, TaS-+TS in T.

[X,TQYJ= [iay,X]-+[Ty,x]= [x,Ty]= [T*x,y]. Hence T;-+T* int,.

x B(H), - B(H) in 1 ,as is

Note 9. (S,T)> ST is not continuous even for B(H) W

1 1

shown in the following counter-example.

Consider the operators A of (b) under Note 1. As A ~ 0 strongly, A~ 0

*
weakly. Hence A; tends to zero weakly. But AnA;= I for each n and hence AnAn does

not tend to zero weakly. Note that HAn|[=[|Aﬁ||= 1, for each n.

Note 10. Tw ; T ; ToS ; Tn if H is infinite dimensional.
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Obviously, Tw s TS. If H is of infinite dimension, T=T* is not continous in

T by Note 1, but TT* is always continuous 1in T . Hence T ;'T

W s’

Note 11. TS T = Tgs™ Tn if and only if H is finite dimensional.

T, S Tc always. If’dhnd=11<§n,1et{ei}? be an orthonormal basis. Let U= U(0;x,3e)

be a TS-ne]ghbourhood of 0. Consider V= (ngl,xl,...,xl;el,ez,..,,en;e ) with
(n times)
2

. n
e' <& ForTe V,Ihx1H2= -ZlL[Txl,ei]l2< n f%— =%, Thus Ve U. If U, is anarbi-

M i=

m
trary strong neighbourhood of 0, let Uo= N Ui(O;xi;g).Then“theTw-neighbourhood
i=1

m
V_ of 0, given by V.= N V. (03x.s...36;5...,8_3 ==),is contained in U_ by the above
0 0 =11 In timed) n"Jm 0

argument. Hence T Ts (See the theorem mentioned under Note 2.)

If T~ T then, in the light of Note 10, H is finite dimensional.

Notation 3. V(So;xl,...,xn;yl,...,yn;e)= {T'eB(H):[[(T-S)xi,yi]|< gi= 1,2,...,5n}.

Theorem 2.1.9. Let H be separable. Then the weak operator topology Ty restricted

to B(H)1 is metrizable.

.
b

Proof. Let A be a countable dense subset of H. The sets V(So;xl,...,xn;yl,...,yn

€ ), where € > 0, the X; and y; are in A and ¢ is rational, form a countable base
of neighbourhood of S0 for a locally convex topology T on B(H). This topology is
induced by a countable family f~ of semi-norms of the form Py y(S)=|[Sx,y]|,x,y€ A.

Since I” is countable and separates points, T is metrizable.

Clearly, T €71 .. To prove the reverse inequality, let V be a weak neighbourhood

W
of S0 in B(H)1 given by

V= V(SO; XpseeesXp3 YyooeesYp3€ )N B(H)l'
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Choose K> max (HxiH ,HyiH) and then choose x%, y} in A such that
1 5i 2n

A

1 8 1 1 . .
by = X< g s Ny - vill< g s IklI<Ks (s ds ).

Suppose S € V(S ; xi,...,xa;yi,...,y ;2 €)NB(H),. Then

0 1°

[L(S = S )% yidls [D(S = s )xis w31l # [D(S = S )(x;= xi)s v, 1 |

+I[(S = SO)x'i, y1 - y1]l <€
Thus S € V. Hence T, T and thus T is metrizable.

Lemma 2.1.10. B(H)1 is complete under Ty
Proof. Let {T }be.a Cauchy netin B(H)’1 for 1, .Then, for x,y in H, {{Tyx,y] },is a
Cauchy net in € and hence 1&m [Tax,y] exists. Now call ]&m[Tax,y] = p(x,y) .

Clearly, p(x,y) is a sesquilinear functional. Also

[pCoy) = [1ImlT xay1) = 1im LT %3] <) x| |y ]) -

Thus p is a bounded sesqui-linear functional, with|/p||$1. Hence there exists a
unique operator T in B(H)1 such that p(x,y)= [Tx,y], so that ni+ T in Tw.Therefore

B(H)1 is complete under Ty

Note 12. B(H) is topologically complete under Ty (See von Neumann [4 ].)

Theorem 2:1.11. B(H)1 is compact under Tyt

Proof. Given x,y in H, let D y be the compact disc {d:x e @als||x || |lyll}. Let

Q= FT' D . With the product topology on Q, by Tychonoff's theorem, Q is
(x,y) € H x HXY
compact. If Te B(H);, then [[Tx,y] |s |lx|| ||y]|, so that [Tx,y]e D, y (x,y € H).

Consider the mapping Lp:B(H)1 + Q defined by y(T)= {[Tx,y]}(x y) € HxH® With T  on
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B(H)l,w is a homeomorphismde(H)1 onto a subset Qo of Q, since,Ta»—T in Ty in
B(H)1 <==>[Tax,y] + [Tx,y] for all (x,y) e H x H = w(]l) > (T) in Q. Hence, to

show that B(H)1 is compact under Ty it suffices to show that Q0 is closed in Q.

where q(x,y) ¢

A general element q of Q has the form {q(x,y)}(x y)e HxH :

Dx,y and, for fixed x and y, the projection q~q(x,y) is continuous. If q ¢ Q,»then
q= Y(T) for some T in B(H)1 and so q{x,y)= [Tx,y]. Hence such a q is a bounded
sesqui-linear functional on H, with|| q|| £ 1. Conversely, if g e Qand q is a
bounded sesqui-linear functional with || q|| < 1, then q(x,y) is expressible uni-
quely as [Tx,y] for some T ¢ B(H)1 and hence q= ¥(T), i.e.,q € Q,. Thus Qo is

the collection of all sesqui-linear functionals qon H, with ||q ||s1.1f {q hf:Q and
: a% o

g -q inQ, then qa(x,y) + q(x,y),for all (x,y) eH x H,and hence ¢ is sesqui-
a

{7aN

linear and [q(x,y)| = 1im la (xsy) | < [kI[ (]l Thus q € Q, sothatQ;is closed inQ.

This completes the proof of the theorem.

Corollary 2.1.12. If H is separable, then B(H)1 is a separable complete metrizable

space in T .
P W

Proof. H separable ==>B(H)1 is metrizable under Ty by Theorem 2.1.9 . B(H)1 is
always compact under Ty by Theorem 2.1.11. Since compactness and metrizability
imply separability (Theorem 1.8.15 of Dunford and Schwartz Par I [ ]),and since

B(H), is complete under T by Lemma 2.1.10, the corollary follows.

1

§2.1(D). The ultra-weak operator topology tg,-

[eed

If X= (x.)%

)1 and Y= (y.)

;)1 aresequences of elements of H such that ZHx1H2 and
1

z|| y1H2 are convergent, then the function py \(T)= |Z[Tx; y; 1| defines a semi-norm
1 ? 1

Py y on B(H). The family 1" of all such semi-norms induces a locally convex Haus-

dorff topology on B(H), called the ult/m-weak operator topology Tow -
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A neighbourhood basis at 0 for Ty €an be given by

V(05 {x;}5 {yg}3e) ={T:T e B(H), ]| 2Ty yill< e
where Zux.||2< © and §|Ly-H2 < o
1! 1!

. . . _ © _ © . . kS 2
Ty> T in Tow if and only if,for every X= (xi)l’ Y= (yi)1 in H with i|k4[

[ee] 2 oo
< @ and Ify]| < ws I [(T.- T)x..y.1+ O.
1] =g & 17

Proposition 2.1.13.

(i) B(H) is a locally convex algebra under LI

(ii) T = T*:B(H)» B(H) is continuous under Tow®

Proof.  Similar to that of Proposition 2.1.8.

Proposition 2.1.14. T, and 1 induce the same topology on B(H)l' Consequently,
B(H)1 is compact and complete under t_ . If H is separable, B(H)1 is metrizable

and separable in Tow

A

Proof. Clearly, Ty £ Ty Of B(H) and hence on B(H)l' To prove the reverse inequa

oW
lity, let S € B(H)1 and V be a T w neighbourhood of S in B(H)1 given by V={T: T

&

e B(H),,| Y [(T-S)x.,y. 1l < €}, with Z ]k, + ?}ly.“2< w . Choose N sufficien
17755 i 1] 1 i —

tly large so that I .(||x].||2 + ||yi|]2)< e/2. For each T € B(H),, then
i=N+1

IN

® b ® 2 2 3
LLT-S)xys 1l =2 2 Al lyg Il s 2 dixll® + lyll%) < 5
a1 B L R ‘ .

If W is a neighbourhood of S in B(H) for T,» given by

W= {T:T € B(H),| [(T-S)x; 5 yi]| < g/2N, i=1,2,...,N }

then, for T € W(YB(H)., we have

1
|§[(T-S)xi,yi]| < | E(T-S)xi,yill +] i=£+1[(T-S)xiyi]]<:%_ +

n M=

£
2

i
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A

Hence Tw S Ty ON B(H)l‘ Therefore Tow T, On B(H)l'

Corollary 2.1.15. If {An}T is weakly convergent to A € B(H), then {Anfj is ultra-
weakly convergent.

By uniform boundedness principle applied twice, sngAn|I< ©, Now the corolla-
ry follows from 2.1.14. '

Note 13. " %W ™ "~ Tos” T if and only if H is finite dimensional.

If dimH < ,then 7 = t by Note 11 and hence Tt = 1., as 1, <15, <1,

IA
A
—
—
A
]

i

T =T » then dimH < « by Note 11.

n ags

Note 14. Ty ; Tw F Tos F n if H is infinite dimensional.

Clearly, TOw S Tyt Since * operation is not continuous for Tys when H

is infinite dimensional, Tow ; Tos* Obviously, Tw < Tow"
In the counterexample under Note 8, 0 is a strong and hence weak accumula-
tion point of the subset S of B(H). The argument there leads to the conclusion
that A ¢ V=U(0;{x;}a1; {x;}f ;1), for any A € S,and V is an ultra-weak neighbour-
hood of 0. Hence O is not an accumulation point of S for Tow” Thus T, ;

T .
OwW

Note 15. B(H) is not first countable under T, if H is infinite dimensional.

The construction under Note 4, with the argument modified suitably at the

end, proves this statement. The details are left to the reader.

Note 16. The topologies Tg and Tow 2Te not comparable if H is infinite dimensio-

nal.

Since * operation is continuous in Tow and not continuous in Tg when

dimH= <, Tow‘i: 14+ Moreover, T, qﬁ:Tow by Lemma 2.1.1(iii) and the following Note

Note 17. (S,T)> ST:B(H); x B(H);is not continuous 1n Tow®
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This follows from Proposition 2.1.14 and Note 9.

Note 18. B(H) is not first countable under Tow if H is infinite dimensional.

Use the construction under Note 4 modifying the argument suitably to esta-

blish the present note.

Note 19. 1. and Ty

. (resp. T, and t_ ) can coincide on some subalgebra of B(H),

S OW

even if H is-infinite dimensional.

In fact, let H0=;30 @H, the Hilbert space of all sequences X=(x1.) of elements
i=1

of H such that HXH2 = E“X1H2< . For each T € B(H),define @ (T) in B(H,) by
1

&(T)X= (Txi)T. Let R={a(T):T ¢ B(H)} . Then, clearly, R

is a *-subalgebra of B(Ho). Then the topologies 1 . and 7, are the inverse images

under ¢ of the topologies T and T w on R, respectively. Furthermore,it is easily

verified that on R and wa= T, ON R.

Tos Ts

Note 20. If H is infinite dimensional

A11 the topologies coincide if and only if H is finite dimensional.

This follows from Notes 14, 16, 8 and 13. (< means strictly less than.)

2.2. Linear functionals on B(H)

We shall denote by La the set of all Ta-continuous linear functionals on B{H).
] * 3 . -
Hence Ln is B(H)*,. the Banach dual of B(H),and Ls’ Lw’ Los and LOw are linear sub

spaces of L When x, y ¢ H, we denote [Tx, y] by wx’y(T) for each T ¢ B(H).



Proposition 2.2.1. Wy,y € L and||wx’y||=||x|lny|L

Proof. Clearly, W y is a linear functional on B(H).

IA

Mso pwy (T)| = [ [TxyT| < [T [lIxHlyll so that W,y L APXATTY

and hence wx,y e B(H)* = Ln.

Define the operator T0 on H by T0 z = [z,x]y. T0 is linear and||T0 z|| =

|Tzox3 ] Il st zfHixdHiy s so that T {| < ||xiilyll. Thus T,
e B(H). Further,[T  x|| =X 2yl = Ity fxfl . s that | Toll =
10 1yl |

Nowa Wy o (To) | = | LTy %y 3| =[x 21yl % = (xlivl) kIl -
=N Tl IxI Iy - Hence [lw, il =[] x{| lly i

Theorem 2.2.2. Let f be a linear functional on B(H).

(i) The following three conditions are equivalent:

N
(ia) f has the formiz1 wxi’ yi’ with Xpseees X3 Yyseoes ¥ € H.
(ib) f ¢ Lw.
(ic) f e LS.

(ii) The following three conditions are equivalent:

(iia) f has the form IW sWith Xis Y5 € H(i=1,2...),

i=1 X Yy

and % ”xi||_+ Zl\yi" < o .

39
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(iib) fe Low'

(iic) fe Iy

Proof. (ia)_—, (ib) let f = Z wxi, x If T > T wearkly,[T, x;, v, ]
n n
- [T Xs yi],1 = 1,2,...,n. Hence % wxi’yi (Tu)-> f:wxi’yi(T); i.e., fis

’%—continuous. Hence f ¢ Lw.

(1b)===$ (ic) Since Ty S T Lwc: LS and hence f¢ Lw implies fe Ls'

(ic)——> (ia) Let f ¢ L- Then there is a tg-neighbourhood V¥ of 0 such
that V = U(0; Xpsee Xy ) and such that,for T e V,|f(T)| < 1 (2.2.21).By homo-

geneity we have

n
F(T) | < L (2 [ 2y% Sfor T e B(H) . (2.2.2.2)
€1
For, — el e V and hence |f (- = el )]<efor T # 0 in B(H);
2 2
(x (Txs||%)? (5 ||Tx: |52
2 Il 2T
1 " 2
ice, [f(T)< = (X [Tx; ||)E if T#£0. If T=0, f(T) = 0.
€1

Hence (2.2.2.2) holds.

Now, Tet H = 1EIC)}L Given T ¢ B(H), Tet X; = (Txl,...,Txn) e Hy.

Then M ={ XT: T ¢ B(H)} is a linear manifold in H0 and (2.2.2.2) asserts

1" 23 _ 1
that 1£(T) |5 e,({ 1T ) E = E—“XTII, T & B(H). (2.2.2.3)

We define a 1inear functional F0 on M by setting



F (X

o T) = f(T).

Then F0 is well-defined, since,if XT = XS’ then XT-S =0 so that

|£(T-5) | g-%[|XT_S]| = 0 by (2.2.2.3). Thus F (Xg) = f(T) = £(s) = F(x

y

. 1 ..
Again by (2.2.2.3), |F0(XT)| g-g HXT||, for each X M. Clearly, Fo is Ti-

TE
near. Hence by the Hahn-Banach theorem Fo can be extended to a continuous 1i-

near functional Fon Ho such that
1
[F(X)| < E||X||,for each X ¢ H .

Therefore, by the Riesz representation theorem there is a unique vector Y

in H0 such that

F(X) = [X,Y], for each X ¢ Ho’

Let Y = (yl, yz,..”yn). In particular, for T ¢ B(H),

n n
FT) = Fo(Xp) = F(Xp) = DXp Y] = 2 [T, yyd = 2w, o (7).
1 i=1 79
n
Hence f = % w .
i=1 *i* Y
(1)
iy s > ® 2
(ifa)=> (iib) let f= 3y w s Tl X, <
5 gy E]
and %[|y1||2 < w .
n | n+p
Iff = 2 w s then ||f ., -Ffl =] £ w i
"= XY wpoon ntl X§0Yi

n*p n+p n+p 2,3 (P 3
= 0 “wxi,yill‘ n§1 %1111y ;01 s nglllxill ) (nglllyill) < €

41
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if n is sufficiently large. Thus -{fn} is Cauchy in Ln so that 1im fn =
n

f e Ln' Hence, for T ¢ B(H),

n )
f(T) = lim f (T) = 1im 3 w (1) = 1[Tx1,yi] e €.

i
n " N1 %Y i=

This shows that f(T) is well-defined for T € B(H).

Let T - T ultraweakly. Then,by definition of W’
g

Mg

[Ta X3 yi] > 3z [Txi, yi]. Hence f(Ta) > f(T).

i=1 i=1

Thus f is ultraweakly continuous.

. o . * o - €
(iib) —= (iic) Since Tow € Tos? dec: Lgs' Hence f ¢ de:===> f Lgs.

(iic) == (iia) The proof is exactly similar to that of (ic)—— (ia)ex-

cept that we must take H0 =. 3 (j)H.
i=1
This completes the proof of the theorem.

Note 21.Theorem 2.2.2 will be again studied in Chapter 5, where B(H) is replaced

by an arbitrary von Neumann algebra R.

Definition 2.2.3. Let X be a vector space and let T be a total subspace of X/,
the spacé of all linear functionals of X. Then the I-towlogy of X or the weak
topology on X 4induced by T is the weakest locally convex topology on X in which

every functional in T is continuous.

Corollary 2.2.4. r is the weak topology on B(H) induced by the set of all

Tw-continuous linear functionals on B(H) and Tow is the weak topology on B(H)in-



duced by the set of a]]’qu-continuous Tinear functionals on B(H).

Proof. By Theorem 2.2.2(i), L, = f= £ w .t Xy X yl...,yn1r1H}. Thus,
if T is a locally convex topology on B(H) and if all members of\Lw are conti-
nuous in T, then 1 2 T e since,T,> Tin T => (T ) *f(T) for fel,=> [T, x:y1>
[Tx,y] for x,y in H=—=> T > T in Tw' Thus T is the weak topology induced by

L, Similarly, the second statement follows by appealing to Theorem 2.2. (ii).

Corollary 2.2.5. Let C be a convex subset of B(H).
(i) The closures of Cin T and T coincide.

(ii) The closures of ¢ in 7 and coincide.

T
ow o3
(iii) If Cis further norm bounded, then its closures in W o0 Tw and T

coincide.

Proof. (i) and (ii) follow from Theorem 2.2.2 and Corollary 2.2.4,since the clo
sure of C in a locally convex topology t on B(H) is the same as its closure in
the weak topology induced by the set of all t-continuous Tinear functionals. (See

Corollary V.2.14 of Dunford and Schwartz, Part I,[DS])

If C is norm bounded, we may suppose that ¢C c:SM = {T:T ¢ B(H),|| T || < M}

Since SM is Tw-compact by2.1.11 and Ty = Tgy ON Sy by Proposition 2.1.14,1it

M
follows that SM is closed for both Ty and Tow'* Hence the Ty (respectively, Tow)
closure of ¢ in B(H) is the same as its relative closure in SM. Again, since

Ty = Tgw 0N Sp» the T and Toy Closures of C coincide. This, together with (i)

and (ii), proves (iii).
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§2.3. The double commutant theorem for von Neumann algebras

Definition 2.3.1. Let H be a Hilbert space. A Tw—closed *-subalgebra R of B(H)
with I ¢ R is called a von Neumann algebra over H. If F < B(H).we define F* =
{T*: Te¢Fland F'= {S ¢ B(H): TS = ST for each T ¢ F\JF* }and call F' the com

mutant of F.

F' is a von Neumann algebra. Also writing F" for (F')',etc,wehave F< F".

Clearly, Fq €F, —>F)c F{. Hence (F")'<F' and (F') C(F')". Thus F' =F",

The von Neumann algebra R(F) generated by F is defined as the smallest von
Neumann algebra containing F and is the Tw-closure of the set of finite linear

combinations of finite products of element of { I}\U FUF*.

Lemma 2.3.2. Let R be a von Neumann algebra, P the set of all projections in R
and U the set of all unitary operators in R. Then R is the linear subspaceof
B(H) generated algebraically by U and is the Tn-c]osure of the linear manifold
generated by P. In particular, R = R(P) = R(U).

Proof. Since R is a B*-algebra with identity, the statement regarding U follows

from Theorem 1.5.10.

Let M be the Tn-c]osed subspace of B(H) generated by p. Then M R(P)CR.
To show fhat M = R(P) = R, it is sufficient to prove that T ¢ M if T = T*cRr. But,

b
by the spectral theorem, such T is of the form T = S AdE(3),with a, b real .
a
n
Hence T can be approximated in norm by operators of the form 3 AiEi with Ei
i=1

projections which are strong operator,and hence weak operator,limits of poly-

nomials in T, so that each Ei ¢ P. Hence T ¢ M.
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Lemma 2.3.3. Suppose that F < B(H) and E is the projection of H with range M.

Then E ¢ F' if and only if M is invariant under each operator in FiyU F*.

Proof. If E ¢ F' and T ¢ FAUF*, then ET = TE, so that T leaves M invariant.In
fact,Xx ¢ M —> Ex = x, and hence Tx = TEx= ETx € M. Conversely, suppose
that each TeF\JF* leaves M invariant. Then TEx = ETEx, for each x ¢ H,so that
TE = ETE and,since T* ¢ F\JF*, T*E = ET*E. Hence (T*E)* = (ET*E)*; j.e., ET =

ETE. Therefore, ET = TE for all TAeF'\~J F*.

Notation. When X — H, we denote by [X] both the closed subspace spanned by X
and the projection of H with range [X]. When P is a projection, M = P(H), x ¢ M
and T ¢ B(H),we shall wrfte "X ¢ P" in place of "x ¢ M", "P is invariant under T"

in place of "M is invariant under T", etc.

Lemma 2.3.4. Suppose that R is a *-subalgebra of B(H) and E = [Ry: R ¢R, y e H].
Then (i) E ¢ R'"/\R"; (ii) R = RE = ER for each R ¢ Rr. (iii)Exe[Rx] foreach

X ¢ H.

Proof.

(i)  Suppose that R, S € R, S' ¢ R' and y ¢ H. Then S(Ry) = (SR)yeE, S'(Ry) =
R(S'y)e Eand hence E is invariant under R and R'. Thus E ¢ R'MR" by
Lemma 2.3.3.

(ii) For each R in g and y in H,we have Ry € E and hence ERy = Ry. Thus ER = R
Since E ¢ R', ER = RE for R € R. Thus ER = RE = R.

(iii) Since Rx is invariant under g, [gx] = P is also invariant under R and hen-

ce PeR'. For each Re R, PR*x = R*x and hence R*(I-P)x = (I-P)R*x = 0.

Hence,for each R ¢ R and y ¢ H, [(I-P)x, Ry] = [R*(I-P)x,y] = 0 so that
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E(I-P)x = 0. Recalling that P ¢ R' and E ¢ R" we have Ex = EPx = PEx ¢P.

Hence Exe[rx].
Let R be a *-subalgebra of B(H). Then:
Definition 2.3.5. The projection E = [Ry: R € R, y € H] is called the principal

jdentity of R (the name being justified by Lemma 2.3.4 (ii)). If I € R, then
E=1. (Note that E can be I even if I ¢ g, if [Ry:y e H, R € R] = H.)

Lemma 2.3.6. Let R be a *-subalgebra of B(H) with the principal identity E.If
SeR",S=SE, xe Hand € > 0, then there exists an operator R € R such that

lIsx - Rx|| < e .

Proof. Let P = [Rx] ¢ R'. Since S € R", S leaves P invariant. Bylemma2.3.4
(iii),Exe P. Hence Sx = SEX ¢ P,as SE = S. Since Rx is a linear manifold

in H and Sx ¢[Rx], there is ReR such that ||Sx - Rx|| < ¢ .

The Temma just proved asserts that a certain Ts-neighbourhood of S meets

R. Now we prove a much stronger version below.

Lemma 2.3.7. Suppose that R is a *-subalgebra of B(H) with the principal identi-

ty E, SeR" and S = SE. Then S lies in the TGS-C]OSUFG of R.

Proof. Let € > 0. Suppose (Xi) is a sequence of elements of H such that
'%“x1.||2<oo. Let V={TgB(H):°§H(S-T)xiH2< ).

Since sets of this type form a base of‘Tds-neighbourhoods of S, it is sufficient

to prove that V meets R.

Let H0 = 1.51(:>H1., Hi = H for each i. Define the operators Vj: H0+ Hj = H

by Vj(xl’XZ"") = Xj and U1: H-*H0 by Ui(x) = (0,..,X,0,...). Let A be inB(HOL

. (i th place)
Def1ne'Aij = ViAUj. H~H.
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i jei 997
y. = V.¥Y= V.AX = V.A( £ U.vsX) = ¢ (V,AU;)V.X
1 1 je1 9 J j=1 1 .
. @ _® « (by the usual matrix
) jfl A1JVJX Now, (A1J)(xig=1 (jzl Aij xjg=1 multiplication)
= V)T = ()T =Y = (A, )" .
(j§1 AisViX¥)io (3/11)=1 Thus A (Amg’j=1

Consequently, each A in B(Ho) can be identified with an infinite matrix

(A;.), where each Aij e B(H) .(For further details of matrix representation, see

iJ
Chapter 4.) For T ¢ B(H), let T be the operator (6ij )  of B(Ho). Then

- i,j=1
SX-TX=(Sx; - Tx1.)°o ,» S0 that ||SX - i:X||2 = 2 || (S - T)x1.||2 and so it
i i=1

suffices to show that

(*) there exists an ReR such that H(g - ﬁ)X|| <eg .

Let R = [R: R ¢ R]. Then, evidently, R is a *-subalgebra of B(Ho) and rou-

tine matrix computations show that (R)'= ﬂA=(A1j) € B(Ho): Aij e R' for all i
1,J

and jl, §e(R"Y“,§ =S E. Finally, E is the principal identity of R. For this,

we note first that TFY=(yi)T € H0 and R ¢ R, then RY = (Ryi)T= (ERyif;= E(ﬁ Y)

Hence the principal identity F of R satisfies EF = Fi i.e,F < E. Suppose con-

versely Z = (‘21.){’° ¢ E. Then (z,

= E (207 = (Ezy) so that z,

i
e E,for each i. Given y in Hand R ¢ R, we may define Y in H0 by Y =

(0,0,...,0,y 50,...), Then F contains the vector RY= (04, s05RY 50,5500 ) By
(1th) (1th)
taking norm limits of linear combinations of such vectors.we find that F con

tains (0, 0,...,0,z§,0,...) and hence contains ( Z, 22..., Zk, 0, ...),for each
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~

k,and so contains Z = 1lim (Zl’ 22,...,zk,0...). Thus £ < F. Hence E = F.
k

The assertion (*) now follows from Lemma 2.3.6 with R, R, $ and X in place

of R, R, S and x, respectively.

L]

Theorem 2.3.8.(The double commutant theorem) If R is a *-subalgebra of B(H)

with the prfncipa] identity E, then for each of the topologies ¢, Tgs T and

oS

Tow the corresponding closure of R = {S ¢ R": S = SE} . In particular, when R

is a von Neumann algebra, R = R".

W

Proof. If t is one of these topologies, then R, ={ S ¢ R": S =SE} is t-closed
as the mapping T - T(I-E) is t-continuous and the topology T is Hausdorff. Ry
contains R by Lemma 2.3.4 (ii). Hence R, contains the t-closure of R.

T .

Since W £ oW
N A
Tg < Tgs

it is now sufficient to show that ros-closure of R contains Ro' This follows
from Lemma 2.3.7. If R is a von Neumann algebra, then E = I ¢ R and hence Ry =

Rf. But, as R 1is weakly closed, it follows that R" = R.

Corollary 2.3.9. Let R be a *-subalgebra of B(H). Then the following four con-
ditions are equivalent:

(i) R is g -closed.

(i1) R is r -closed.

(iii) R 1s T -C1osed.

(iv) R is TGS-c1osed.

Proof. Each is equal to Ry = {Ser": S=SE} , where E is the principal iden-
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tity of R.

Corollary 2.3.10. Suppose that R is a Tw-c]osed *-subalgebra of B(H) with the

principal identity E. Then E ¢ R.

L]

Proof. By Lemma 2.3.4 (i), E ¢ R'M R". Hence E ¢ R" and E.E = E. Hence E ¢

RYW =g,

Remarks.

(i) Since E ¢ R when R is a Tw-c]osed *-subalgebra of B(H) and since ER = RE =
R for each R ¢ R, E is the identity of R. Hence every Tw-c]osed *subal-

gebra of B(H) has an identity (not necessarily I).

(ii) For each R ¢ R,where R is a rw-closed *-subalgebra of B(H), let Rp be the
restriction of R to E(H). Then Rp ={ RE:REZR } is a von Neumann algebra
over E(H). Since R(I - E) = 0 for each R ¢ R, this reduces the study

of Tw-C]OSEd *-subalgebra of B(H) to that of von Neumann algebras.

Corollary 2.3.11. Let R be a *-subalgebra of B(H). If R has the principal iden-

tity I, then the closure of R in any of the topologies Tw? Ts® Tow and Tos is R".

Corollary 2.3.12. Let R be a *-subalgebra of B(H). Then the following condi-

tions are equivalent:

(i) RrR=Rr".

(ii) R = F' for some F < B(H).

(ii1) R is a von Neumann algebra.

Proof. (i) =—> (ii) Obvious. (ii)=>(iii)Obvious.(see 2.3.1.)(ii1) =>(i) By the
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last part of Theorem 2.3.8.

Dixmier takes (i) above for the definition of von Neumann algebras in his

treatise [1].

.

Corollary 2.3.13. If g is a von Neumann algebra, then g and g' have the same cen-

tre, namely R N\R'.
Corollary 2.3.14. If I < B(H), then I'"= R(T).

Proof. By 2.3.12,T" is a von Neumann algebra containing T .Hence R(r) <r". If
R is any von Neumann algebra containing T, then R 2 T — R =Rr" D r". Hen-

ce R(r) =r".
§2.4. The Kaplansky density theorem

In this section we study an important result due to Kaplansky, which finds

application in several situations in the following chapters.

We recall that B(H)1 denotes the unit ball of B(H).

Lemma 2.4.1.

(1) Let T =T* ¢ B(H). Then (I + T2)"L and 21(1 + 72)7! are in B(H),.

(ii) Let S =S* ¢ B(H),. Then there exists a T in B(H), such that T= T*, T
, 1 1

is in the C*-algebra generated by S and further, S = 2T(1 +T2)_1.
Proof.

(i) Since ¢(T) is real, we can define f ¢ C(g(T)) by f(t) = (1 + tz)'l. Then
(1 +t%) £(t) = F(t) (1 +t%) = 1, [f(t)|s 1 and |2t F(t)|5 1 for each t in
o(T) and hence,by Theorem 1.5.7,we have (I +T2) f(T) =f(T)(I+T2)’ = 1,
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||f(T)|| <1 and||2T f(T)I]g 1. Thus I + T2 has the inverse f(T) and (i)

is proved.

(1) Since S = S* ¢ B(H), we have o(S)< [-1, 1]. With g(t) = 2t(1 w21, g

is a strictly increasing continous mapping from [-1, 1] onto [-1,1] and

g(0)=0.Hence it has a continuos inverse f on [-1,1] with f(0)= 0.Sin-

ce f(0) = 0, fcanbe approximated uniformly on [-1, 1] by real polinomials
p, with p(0) = 0. Thus T = f(S) belongs to the C*-algebra generated by

S (without identity). Hence T* = T and IT|| S sup [f(t)] = 1.
te[-1,1]

Since s = g(f(s))= 2 ___fiil__g_ s
- 14(f(s))
s(1+ (£(s))?)

rem (Theorem 1.5.7) that S= 2T(I + T2)~! and S(I + T2)= 2T.

= 2 f(s). Hence we have from the functional calculus theo

Theorem 2.4.2. (The Kaplansky density theorem) Suppose that A and B are *-sub-
algebras of B(H), such that A B and A is Ts-dense in B. Let M and N be the

sets of self-adjoint elements in A and B, respectively. Then A, (respectively ,

1

(respectively, Nl) where X, denotes the unit ball in X.

Ml) is Ts—dense in B 1

1

Proof. First we can assume that A and B are norm closed *-subalgebras. For, if

C=A"" and D =B"" then C and D are norm closed *-subalgebras and C C D, C °

1 then,

1’

-3 -n_ ;,-ny _ -s -s _ /o-N
as A1 DAL S (A )1— Cl’ we have A1 :Dcl 301— (B )133 1°

«S - -
Thus it suffices to prove that CIID Dl. Similarly, if M = £, = F and if
£ SFy, then M DN,.
1
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Therefore, we assume that A and B are norm closed and show first that M1 is

B, ”Soll < 1,and henceby Lemma

m

- ] = *
Tg dense in N Suppose S0 e N Then S0 S0

1’ 1’
2.4.1 (ii) there is a T0 = T; in B such that S0

2v~1 . .
2T0 (I + To) . Since A s

T _-dense in B, there is a net {T } in Asuch that T - T_int_.. Hence T =~ T
S o. o 0 S o 0

‘

in Ty and, since *-operation is continuous in Ty %LT@+ T&)»—To in T, Since
-%(]x + ];) e M, we have T0 e M¥. Hence, by Corollary 2.2.5,T0 e'ﬁs. We may now
assume that Tae:M for each o and let §; = ZTa(I + ]3)'1. Then S, € M1 by 2.4.1
(i) and, for each x € H,
_ 2,-1 2,-1
“(Sa - S )x || =12 Ta(I + Ta) - 2T (T +T)) 7y x|
= “2(1 + T2)'1 [T (I + Tz) - (I + T2)T I + T2)'1 X|
a a 0 o © 0

=201 + 197 (1-1 ) (1)L x + 201472 11T )T (147D L ]l
| a a O 0 o at'o oo o’
By Lemma 2.4.1 (i) we have
sy - sxlls 2 ha -1 )ty L xllell (717 (1472) 7 x ]

P -s o ,
and hence S, S0 in .. Thus So € (Ml) . Thus M1 is T, dense in Nl'

Finally, suppose that S € B.. Let H = H@ H and identify operatorsonﬁ by

1
2 x 2 matrices (Sij) such that Sij € B(H). Let

K= ASi)t SjeArs B = ((Sj;): Syy¢B 13 = (%5 ¢ B. When ASDp,

J 1] d So
=5 U TIEY .
A DO B..For, T ¢ B=T = (T I ) with T.; e B. Since AS > B, there is anet
21 ‘22 J
(o) . (o) ..
Aijf: T1J ith A e A(1,j=1,2).

N X _ oo
Now Aa (Ay e A and{for X = (x;s X,) in Hs

(o) \ (a) 2
(Ay = Typxy + (Apy = Tpo)x

(a)
(Ag%)‘ Toxp + (Agy = Typ)%,
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- A(a) T F AT x| 8
1Ay = Typdxg + (A = Tyodxoll
(o) (o) 2
Ry = Topdxp + (g - Top)x,ll = > 0.
bl
Hence T ¢ A .
Se B and S € B. Also $*=S and |5 | = 1.

For, if X = (x5 Xo)s Y= (y1sy,) are in H, then

% y S*x y
- [0 ()
So X2 .y2 S X]_ -y2
= [ S*XZ’ y1] + [le, ‘y2]
= [ %55 Sy; 1+ [ x5 S*y, ]
X, !S*y <x1> (o Sf) ¥ o
. u;z), (s wlF N s s )] = [x. 31.
Thus S = S*,

& 2 2 2 2 2 2
1S %112 =(1s%x, 12 + s x 12 < My [l 2 #11xg 112 =X 12, so  that

Isli= 1.
Hencesby the result already proved there is a net {A% such that A% = (A%)*,
ACG = (A$?) e As |[A%)j < 1, A* S in T With S_ as the (2,1) element in the

matrix representation of A% we have S, € A.

Further Sa + S in t_, since

S
o) A(ftz)\’ 0 s

A% = ()())+ =S
s} o)t
Aoy Ry /s \s o
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(@) () * (a)
implies A11 A12 - S X A11 X
= >0
() pla) (@)= s) x g
Ar1%S As 0/ \A} )
i.e., Aé?)+ S intg i.e., S, = Aé%)+ S in T, ‘

Again, for X= (x,0),xeH,

@) (o) 2
A A
“A(G)x“ 2< 11 12 X a2 2< 2_ )
21 = @) (o) IPAT S XIS < xS =] x|
A1 A2\ o

(o) _
so that HA21[]= IS, Il 1. Thus S e ( Ay 3

This completes the proof of the theorem.

Corollary 2.4.3. (Al)_5= (A7) if A is a *-subalgebra of B(H). Consequently,
a *-subalgebra A of B(H) containing the identity 1is a von Neumann algebra if

and only if A1 is closed in one of the Tos Ty Tow and Tos topologies.

Proof. As A C AS, A1 < (AS) We assert that ( Ks)l is strongly closed. For,

1
if T e (AS)yand T > T, then |[Tx - T x||» 0,for each x € H. Hence || Tx|| =
o OLTS ¢

- 1&m HTaxl| < Tim sup HTGI|Hx|| < lx].

Thus T e ( A&S) Therefore, (Al)-%ZI( Ks)l (2.4.3.1). But A is strongly

1"
dense in-A° and it can be shown that A° is a *-subalgebra of B(H), by using the

facts that A> = A¥ and that the *-operation is Ty continuous, along with Lemma
2.1.1. Hence by the Kaplansky density theorem (‘415£5:>655)1. Now (2.4.3.1)

implies (4;)° = (&%);-
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If A is a von Neumann algebra, A> = A and hence (Al)_s= (ZS)1 = A Thus

A1 is Ts-closed. Since the unit ball is convex and bounded, by Corollary 2.2.5

(111),A1 is Tw-closed, TOW-C]OSGd and TOS-C]OSEd;

Conversely, let A1 be closed in anyone of the topologies T Ts? Tow and

Tos® Then,by Corollary 2.2.5 (1'1'1'),A1 is Ts-c]osed and hence by the firs part of

the present corollary, A; = (Al)-s= (ZS)1 and hence AS = A. In fact, if KS;ZA,

then there is a T € AS, T ¢ A. Then T € (_AS)1 and — £ A, a contradic-

Il il

tion. Thus A is a Ts—c]osed *-subalgebra of B(H) containing the identity. Hen-

ce Ais a von Neumann algebra by Corollaries 2.3.11 and 2.3.12.

Note 22.The above corollary is very effective in applications. The reader will

find its use in later chapters. For instance,see the proof of Lemma 5.5.7.



CHAPTER 3

COMPARISON THEORY OF PROJECTIONS

The basic idea f&r this chapter is that two projections E,Fina von Neumann
algebra R on a Hilbert space H should be considered to be of ‘the same size',
relative to R, if there is an operator V in R such that its restriction to the
range of E is an isomorphism of E(H) onto F(H) and such that V(I - E)= 0. Such an
operator V is called a partial isometry. Before discussing the comparison theory,
we shall study in detail some of the properties of partial isometries in §3.1

below.

§3.1. Partial isometries and the polar decomposition of a closed operator

Though the polar decomposition of a bounded operator is sufficient for the
immediate need in the succeeding sections,we study the decomposition in a more ge-

neral set up to suit the needs of §5.9 also.

Definition 3.1.1.A bounded operator V on the Hilbert space H iscalled a partial

Lsometrny if there is a closed subspace M of H such that

S lvx]) = Ik|] for all x e M

and
Vy =0 for ally e HOM.
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M is called the initial space of V and the closed subspace N = {Vx: x € H} =
{Vx:x ¢ M} is called the §4nal space of V. If E and F are projections with ranges
M and N, respectively, then E is called the initial projection and F is called

the §inal projection of the partial isometry V.

Note 1. V= FVE sinceV =V(E+1I-E)=VE=(F+1-F)VE=FVE.

Note 2. The defining conditions of V can be replaced by the condition that

Ivx]| = |[Ex||, for all x € H.

Lemma 3.1.2. Suppose V ¢ B(H), E= V*V, F= VV*_ Then the following conditions
are equivalent:

(a) E is a projection.
(b) F is a projection.

(c) V is a partial isometry.
(d)

d) V* is a partial isometry.

When one of these conditions holds, E and F are respectively the initial and

final projections of the partial isometry V.

Proof. (a)=>(c) and (b) Let E be a projection. Then (V(I-E))*(V(I-E)) =
(I-E)V*V(I-E)= 0,as V*V= E. Thus V(I-E)= 0. Also ||Vx|P= [Vx,VxI= [V*Vx,xI= |Ex|f.
Hence |Vx|| = ||Ex|| = |x]| for all x € E. Therefore,V is a partial isometry  with
initial projection E. Thus (a)=>(c). Further, as V(I-E)= 0, F - FZ= Wy* - yysyy*
= YV* - VEV*= V(I-E)V*= 0 and henﬁe F= F2. Clearly, F= F*, Thus (a) implies (b)

also.
Applying these results with V and V* interchanged, we have (b)=>(a) and (d).

(c)=>(a) Let V be a partial isometry with initial projection E. Then
[|lVvx]| = HEx||= |x]| » x € E(H) (by definition). By the  polarization identity

[vx,Vyl= [x,y], %,y ¢ E(H). Thus, for x,y € H, [V*Vx,y] = [Vx,Vy]= [VEx, VEy] =
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(Ex,Ey]= [Ex,y] and hence E= V*V= E, a projection. Thus (a) holds.

Similarly, applying the above argument with V* in place of V, we have
(d)=>(b).

This completes the proof of the lemma.
Note 3. Obviously, the initial projection of the partial isometry V is the final

projection of V* and vice versa.

Lemma 3.1.3. Let U and V be partial isometries and E be a projection of H. Then:
(i) If E s U*U(resp.(ii) If E £ UU*), then UE(resp.EU) is a partial isometry with

initial (resp.final) projection E and final (resp.initial) projection < UU*.
(resp.s U*U.)

(ii)If UU* £ V*V, then VUV* is a partial isometry with initial projection UU*
and final projection £ VV*.

(iv) If V*V < UU*, then U*V*V is a partial isometry with final projection VV* and

IA

initial projectionsVv*%. .~~~
~ Proof.

(i) (UE)* YE = EU*UE= E, (UE) (UE)*= UEU* and (UE)(UE)*UU*= UEU*.

(ii) By (i),U*E is a partial isometry with initial projection E and final projec-

tion £ U*U.. Hence (U*E)*= EU is a partial isometry with desired properties.

(iii)This follows from (i).

(iv) This is immediate from (ii).

Lemma 3.1.4. Suppose that { Va} is a family of partial isometries on H, Ea =
o€

V¥V , F =V V*¥and {E } and {F } are orthogonal families. Then V= X V

o a a aa O ey “aey ael @

exists in the strong operator topology and V is a partial isometry  with V*V=
Z E and VV*= Z Fy.

o
o €4 o € 4J

Proof. For each x ¢ H, Vax = FaVaEax so that the terms of T Vax are pairwise

o €J



59

2 2 2 2
orthogonal and I ||V, x|| = I |FVE x| = z ||Ex| ={Ex||", where E =
wed Ged @ oa wed ©

L E . Hence I V x is convergent and its sum Vx satisfies [[Vx]| =||Ex||, for
a€ed aec J

x € H. Thus V is a partial isometry with initial projection E= 3 Ea(see Note 2).
o e€d

The same argument with Vé in place of V, shows that z V; has initial
oed .

projection I F,.
@€ d

Definition 3.1.5. Given T € B(H), the nange projeccion of T is defined to be

[T(H)]= the closure of the range of T.

Note 4. [T*(H)]= [T*T(H)].
For,clearly,[T*T(H)] < [T*(H)]. Let [x,T*Ty]= O,for each ye H. Then

2
ITx|] = [Tx, Tx] = [x, T*Tx] = 0
and hence Tx= 0, whence

[x,T*y] = [Tx,y]= 0,for each y & H.

Thus [T*T(H)]J'C [T*(H)]‘L , which means [T*(H)] < [T*T(H)].

Hence the note.

Theorem 3.1.6 (Polar decomposition). Every c]dsed operator A on H with domain
dense in H and range in H is uniquely expressible in the form A= UP, where P is
a positive definite self-adjoint operator with D(P)= D(A), kernel of P= kernel
of A and‘U is a partial isometry with initial projection R{A*) and final projec-

tion R(A). (R(S) denotes the range of the operator S.)

Proof. By Lemma 1.4.18, A*A is a positive definite self-adjoint operator on H.
Consequently, in virtue of Lemma 1.4.22,(A*A)%=P exists as a positive definite

self-adjoint operator on H, with D(P) D> D(A*A).
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Let P, and A; be respectively the restrictions of Pand A to D(P2)= D(A*A).

Thus, for x eD(PZ),

IlPle2 [P x,Pyx] = [P%x,x] = [sz,x] = [A*Ax,x]

[AxoAx] = [IAx]] 2 = [pyx]| 2. .

Consequently,
HP1x|l= |h1xll for all x € D(P1)= D(Al). (3.1.6.1)
Since P;= P|D(p?)and AL = A |D(P2),and since P, A are closed operators on H, P,

and A1 admit closures and hence from (3.1}6.1) we have

1 Pxll = [IA x|l for a1l xe0(B=D(A).  (3.1.6.2)

We shall prove that 51 = P,K1= Asi.e., FFI =, and rkl = [, where T

denotes the graph of A,etcycléaylydh c Ty If rk # fR’ then there exists a
1 1

non-zero vector (x,Ax)€ r—A’ orthogonal to r; ;
1

i.e., [(x,Ax), (y,Aly)]= 0,for all y € D(Al).
This means that
0= [x,y] + [Ax, Ajy]

[x,y] + [Ax,Ay]
[x,y] + [x,A*Ay]

[x, [T + A*A)y].

Since ,from the proof of Lemma 1.4.18, it is clear that R(I + A*A)= H, it

follows that x = 0. Hence (x,Ax)= (0,0), a contradiction. Thus Al = A and

~

similarly, Py= P. Thus (3.1.6.2) assumes the form
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HPx||=]|Ax || for all x e D(P)= D(A). (3.1.6.3)

Let us define a linear operator U' as follows:

U'Px= Ax for all x € D(P)
> (3.1.6.4)
U'y= 0 for y L R(P). I

-

In view of (3.1.6.3), we can extend U' by continuity to R{P),and letus call
this extension U. Then U is a partial isometry with initial projection R{P] and

final projection R{A). It follows from (3.1.6.4) that A= UP.

To prove that R(P) = R(A*), it suffices to show that

HO R(P) = H © R(A*).

Since P and A are closed operators, N(P)= {x € D(P):Px=0} and N(A)= {x ¢
D(A):Ax= 0} are closed in H; P**= P and A**= A. Moreover, P*= P, as P is self-
adjoint. HE@OR(A*)= {yeH: [y,A*x]= 0 for all x € D(A*) }= {ye H:[y,A*x]=0=[A**y,
x] for all x € D(A*)} = N(A**)= N(A), since D(A*) 1is dense: in ‘H by Lemma
1.4.14(ii). Similarly, H©® R(P)= N(P). Since N(P)= N(A) by (3.1.6.3), it follows

¥that H® R(P)= H® R(A*).

-

It remains to prove the uniqueness of the operators U and P. If A= UP, then

A*= PU* and A*A= PU*UP= PE  P= P? where E s the projection onto the sub-

space R(P) in H. Consequently, P is uniquely fixed. Since U has initial space
R{P), the equation A= UP fixes U also uniquely,as P is fixed and U is required to

be continuous.
The above decomposition is called the polar decomposition . of the closed
operators A, which have domain dense in H.

The above result can be generalized ® closed linear transformations with

dense domain from one Hilbert space into another.
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Definition 3.1.7. A closed linear operator A on H is said to be affliated to the
von Neumann algebra Rif A commutes with all R'e R', and we then write A nR(A commu-

tes with R'e R' means R'ACAR'). If A ¢ B(H) and An R, then AeR", since R"=R.

Theorem 3.1.8. Let A be a closed operator with domain dense 1in H, and let A= UP be

the polar decomposition of A. If AnR,R a von Neumann algebra, then PnR and U

—_—

e-R; consequently, R(A) and R{A*) are in R. If A € R, then both P and U are

in R.

Proof. First we shall prove the following result (*):

(*) AnR if and only if A= U'AU'-1 for all unitary operators U'e R"',

Proof of (*). If AnR and U' is a unitary operator in R', then, by definition,

U'A AU (3.1.8.1).
as 0l e R, v lac aurt Hence vturtac utauth
ie A UAU'™L. Then au'c u'AU lur= ura.

Thus U'A 2D AU' (3.1.8.2).Hence by (3.1.8.1 ) and (3.1.8.2) we have U'A= AU'

or,equivalently, A= uau -l

Conversely, if U' A= AU' for all unitary operators U' in R', then U'AC AU'

and hence, by Theorem 1.5.10,R'A C AR' for all R' ¢ R'. Thus AnR.
Next we prove the following result:

If A= UP is the polar decomposition of A, then U and P are determined by the
following properties (**):
P is positive definite and self-adjoint, P2= A*A;

(*¥)
A= UP; and Px= 0 implies Ux= 0.
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In fact, the first two properties in (**) determine P as (A*A)%. The 1last

two properties in (**) determine U on the range of P andon {xeD(P):Px = 0}. As

U is continuous, U is determinedon R(P). As in the last part of the proof of

Theorem 3.1.6 we observe that N(P) = R(P)-L so that U is determined on N(P)=
R(Pf: This shows that U is determined on H='§T§7'€DR(P)l.

Now coming to the proof of the theorem, let A = UP be the polar décomposition

of A. If U' "is a unitary operator inR', then, as AnR,

A= UTAUTL (by (<))
= yopyrt
= oYy urpur
But (U'PU' L)%= u'Pu' ™! and hence U'PU'L is self-adjoint. Clearly, it is positive
definite. Further, as (*) implies that urAry s A*, we have
weeuhyreuh= eyl prasaur s prasu T uraue s s,
Ul lx =0 =purlx =0 =k =0 (by the construction of the polar

decomposition as in 3.1.6) = u'uy " Lx= 0.

Thus U'UU' "L and urpyrl satisfy the conditions in (**) above and hence

urpurt = p
and
] |"]- =
utuu = U,
This holds for all unitary operators U' in R' and hence by (*) PnR and

UnR.  Since U is bounded and,R" = g,as R is a von Neumann algebra, UnR is
the same as U € R . Since U*U = R(A) and UU*= R(A), both R(A*) and R{AJ are in
R . If A is a bounded operator, then P is bounded and hence PnR 1is the same

as P e R.
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Note 5The special case of Theorem 3.1.8 when A is a bounded operator on H,will
be needed in most part of these lecture notes. The simple direct proof for the

polar decomposition of A when A is a bounded operator,is left to the reader.
Theorems 3.1.6 and 3.1.8 will be needed in §5.9.
§3.2. Comparison theory .

Throughout this section R is a von Neumann algebra with centre Z,acting on

a Hilbert space H.

Definition 3.2.1. Let E and F be projections in R . We say that
(i) E is equivafent to F (relative toR) and write E~ F if there is a partial

isometry V in R such that V¥V = E and VV* = F,

(ii) EXF if there is a projection E1 € R such that E~ E1 < F.

7Y

(iii)E<FifE<Fand E } F.

Proposition 3.2.2. The relation ~ in the above definition is an ‘equivalence

relation.

Proof.
(i) E~ E,since V= E gives the equivalence.
(ii) If E~ F,U% = E,UU*=F and U € R, then U* gives that F~ E.

(iii)Let’E ~v F, F ~ G, with E= U*U, F = UU*; F= W*W, G= WW*, with U, We R .
Then (WU)*(WU)= U*FU = U*UU*U = E and (WU)(WU)* = WUU*W*= WFW*= WW*WW*= G.

Hence E ~ G, Since WU is a partial isometry by Lemma 3.1.2.
Example. When R = B(H), for two projections E,F ¢ R,

E v F <=> dim E(H)= dim F(H); EX F <=> dimE(H) < dim F(H); E £ F <=>

dim E(H) < dim F(H), where 'dim' means cardinality of an orthonormal basis.
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Lemma 3.2.3.
(i) Let E, F be projection in Rand Q a projection in Z. If E ~ F (respectively,

E £ F)QE ~ QF (respectively, QE £QF).

(ii) Let (E) F.)

o’a e g ( oo e g be orthogonalfamilies of projections in R . If Ea Ny

F_. (respectively, E

. £ F)) for each o € J then L E ~ I F (respectively,

@ aed & aed
r E. 4 F.). .
aed * aed @

o

Proof.
(i) Let V be in R such that V*V= E, VV*= El’ where E1 < F and E1= Fif E ~ F.
Let W= QV. Then W*W= QE and WW*= QE1 < QF and QE1= QF if E1= F. Hence (i)

holds.

(i1) Choose Va in R such that vava= Ea, vav;= Ga, where Ga < Fa and Ga= Fa if Ea%
Fa, for each o € J. Then V= zva is a partial isometry in R by Lemma 3.1.4,
since R is 1 -closed. Also V*Y= T E and VW*= 2 G . ThusTE ~ G < gF .

o o O o o}

This proves (ii).

Theorem 3.2.4. Let E,F,G be projections inR. Then:
(i) E4E.
(ii) E £F, F4E imply E ~ F.

(iii)E £F, F £G imply E £ G.

Hence £ induces a partial ordering on the equivalence classes of projections

in R.

Proof.

(i) Since E v E, E £ E. Before proving (ii) Tet us prove (iii).

(ii1)Suppose E~ F1 SF, FauGy s G, Fl’ G1 in R. Then there exist partial

isometries U and V in R such that U*U= E, UU*= F,; V*V= F, VV*= G,. Then W=

1’ 1°
VU is a partial isometry in R with WXW= U*Y*VU= U*FU= U*F U= U*U= E and WW*=

VUU*V*= VF,V* < VV* = G

1 1 S G. Hence E £ G.
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(i) Suppose that E ~ F1 < F, Fn Elg E. It suffices to show that El v E,Ssince,
then F ~ E; and E; ~ E and hence F ~E. Choose U,V in R with U*U= E, Uu*=F,,
V¥y= F,VV*= El' Then W= VU is a partial isometry in R, with W*W= U*FU= U*U =

E and WW*= VUU*V*= VFIV* 2 VV*= El‘ Thus W*W= E and WW* = Ez(say) p El‘

L)

Given any subprojection G of E, G € R, WG is a partial isometrywith initial
and final projections G and WGW*, respectively,as{WG)*(WG)=GEG= G and (WG)(WG)*
= WGW*. Thus G~V WGW* in R. We define En(n= 1,2,...) inductively by

E 4= WE WX(n=1,2,...). (3.2.4.1)

(3.2.4.1) holds for n= 0 if we define Ey= E, since WEW*= WW*= E,.

= 2 2
We have E EO 2 El._ E2. n+1?

n+2 2 Enes: Thus by induction En 2 En+1(n=0,l,..)(3.2.4.2).

> = * > *= -
If En z E then En+2 NEnN 2 WEn+ W= E .Hen

1 n+3

ce E

Define projections E, GO, Gl"" in R by

Eo= 1am En(1n T, topo]qu), Gn= En - En+1(n=0,1,2,...).

*= - *= - =
Then Gn 3 anw WEnN* wEn+1w E E G and so

n+? n+3 n+?

GO 3. G2 ) G4 N G6 VoL

and

le'V G3'VlG5'V el

N

Finally, since G = 1&m g(En - En+1)(i" T topology)

O M8

= ]1m(EO -

N Ense1)

= E = Eoo’
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= TG - T b + T = E,.
E=Eo+ ZG =E, *+ 206G ¥ LOnt1n B 7 21G2n s Sone1” B

This completes the proof.
Lemma 3.2.5. For each T e R, [T(H)] ~ [(T*(H)].

Proof.If T=UP is the polar decomposition of T in R, then U e R,U*U= [T*(H)] and
Uu*=[T (H)] by Theorems 3.1.6 and 3.1.8. Hence the lemma holds.

If A € R, the set {RAx:R e R,x € H} is invariant under each S € R and
each S' ¢ R! Hence the projection CA= [RAX:R € R, x € H] belongs to R'[\ R"=
Z and clearly CAA=A, since I e R. If Q is any projection in Z such that QA = A,
then QRAx= RQAx= RAx (for R € R, x € H) and hence Q 2 CA. Thus CA is the

smallest central projection Q of R such that QA= A.

Definition 3.2.6. The smallest projection CA (as in the above) in Z among central

projections Q with the property QA= A is called the central carnien or suppoit of

A.
Llemma 3.2.7. Let E,F be projections in R. Then:

WA

C

(i) ELF implies Ce £

!

C

(ii) E~ F implies CE F-

(i13)If CECF # 0, then there exist projections EI’FI inR such that 0 < E1 <E,

<
0<,F1= F and El’\JFl.

Proof.

(i) Let V be in R such that V¥V=E and VV*= Fy € F. Since V(H)= Fl(H) C F(H),

we have C.= [REx: R & R,x € H] = [RV*Vx:R ¢ R, x ¢ H]< [RVx:R e R,x ¢ H] <

A

[RFx:R € Ryx ¢ H]= CF. Hence C C

E F*

(ii) Follows from (i), since E ~ F implies E £F and F £ E.
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(iii)Since CE= [REx:R € R,xeH], CF= [RFx:R & R,x € H] and CECF #0, we can

choose R, S in Rand x, y in H such that 0 # [REx,SFy]= [FS*REx,y]. Let T=
FS*RE. Then T # 0, T ¢ R and T*= ER*SF. By Lemma 3.2.5, E1= [T*(H)] v

[T(H)]= F(say). Clearly,E; < E and F; < F. Hence (iii) holds.

1 1

Note 6.CE= C. does not imply, in general, E ~ F. e.g.In B(H),let 0 < dim E(H) <

dim F(H). Then E 4 F,though C.= C_= I. )

E °F
Lenma 3.2.8. Suppose E and F are projections in R and F;ﬁE. Then there exists a

projection P in Z such that 0 <P < C. and PE £ PF.

F

Proof. Let G= {(Ea’Fa)}ae J be a family of pairs of projections in R which is

maximal subject to the following conditions:

< , .
(a) 0< E, < E {Eoc}oc g isan orthogonal family,
(b) 0< F, s F {Fa}ae ] is an orthogonal family,
(C) E ~ F for o ed.
o a
Define E= Z E,F= ¢ F if G # p. Otherwise, define E =0 =F . Let
° 4ey 0 e g° 0 0
E1= E - Eo’ F1= F - Fo.Smce F0 " Eo < E,F,4& E so that Fo # F by hypothesis.
Consequently, Fl £ 0. Thus 0 < Fl s F and hence 0 < CF < CF. Furthermore,
1
CE CF = 0, otherwise by 3.2.7(i1i) therewould exist projections EZ’FZ in R with
1°1
< < .
0 < E2 < El’ 0 < F2 F1 and E2 " F2' Thus (E2,F2) can be added to the family G,
a contradiction to the maximility of G. Thus,with P= CF ,we have 0 <P g CF and
1
- = = = = > ( . =
PE - PE_ ' CFlEl CF1CE1E1 0. Hence PE= PE_ " PF_ (by Lemma 3.2.3(i}} £ PF; i.e,
PE £ PF.

Note 7.Inafactor R (a von Neumann algebra with centre scalars) all projections
are comparable. In fact, if E, F are projections inR and if F% E, then by the
above lemma there is a central projection P such that 0 < P £ CF= I such that PE
;éPF; i.e.,, EX F, since any non-zero central projection P in the factor R is I.

Lemma 3.2.9. For T in R _and a central projection Q of R, CQT= QC;-
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Proof. Since QCT is a central projection of R and since QCTQT= QT, QCT > CQT-Hen-

ce Q2 CQT.so that (I-Q) is orthogonal to CQT' Next, observing that C.. + I - Q

QT
is a central projection and T= QT + (I - Q)T= CQTQT + (I - Q)T= CQTT + (I-Q)T(*rQ

v

CQT)= (CQT + 1 - Q)T, we have (CQT + I-Q)2 C;. Hence QCT < QCQT= CQT' Thus

CQT= QCy-

Theorem 3.2.10 (The comparison theorem). Suppose E and F are projecti&ns inR .
Then there exist projections P, Q, R in Z such that P + Q + R= I, PE ~ PF, QOE<
QoF for each projection Q0 in Z such that 0 < Q0 £ Q and ROF.< RoE for each

projection R, in Z sach that 0 < R < R,where P,Q and R are pairwise orthogonal .

Proof. Let {Pa} be a maximal orthogonal family of non-zero projections in Z such
that PaE v PaF. If this qo]]ection 1s non-empty, take P= 1P, otherwise P=0. Then
by Lemma 3.2.3(ii) PE~PF. If P0 is any central projection with PoE a PoF’ then
P, s P lest PO(I - P) # 0 and hence PO(I - P) will be added to the family {P,} ,

contradicting the maximality.

Let {Qx} be a maximal orthogonal family of non-zero projections in Z. such

that Qa < I-Pand qu;g qu and let Q= ZQa if this family is non-empty,otherwise

IA

Q =0. Then Q< I - P and QELQF by Lemma 3.2.3(ii). If Q, is any projection in Z
with 0 < Q, < I-Pand QoEzﬁ;QOF, then Q < Q, since,otherwise,(I - Q)Q0 will be

a non-null projection in Z satisfying (I - Q)QOE £ (I - Q)QOF so that (I - Q)Q0

can be added to the maximal family {Q,} , a contradiction. If Q0 is a projection
in Z with O <Q0 < Q, then 0 < Q0 < I - P and hence Q0 ¢ P. Therefore, QoE 1 QOF.

However, Q_E= Q QE ;$QOQF= QF. Hence QOEAC QF.

Let R=1 - P - Q. If R0 is a projection in Z such that 0 < R0 < R, we claim
that R F <R E. To prove this, first note that R 4P and hence R E 1 R,F-So it
suffices to prove that ROng RoE' If ROFzg ROE, by Lemma 3.2.8 there is a projec-

. . - pa
tion R1 in Z such that 0 < R1 < CROF ROCF(by Lemma 3.2.9) and such that RlRoE"

RlROF;i.e.,RlE ﬁéRlF. Hence R1 (P + Q),a contradiction,since ng Rog R = I-P-Q.
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Thus R F < R E.
0~ o0
This completes the proof of the theorem.

Remark 1. With the notation used in Theorem 3.2.10, E £ F if and only if R=0.When
this is so, there are no projections R0 to consider. If EX F, then Q # 0. (This

is used later in the proofs of Theorem 3.2.14, Lemma 5.8.1, etc.)

Definition 3.2.11. If E and F are projections in R and E < F, we say E < F(purely)
if QE ~<QF,.whenever Q is a projection in Z such that 0 < Q £ CF'
Remark 2. With the notation in Theorem 3.2.10, QE < QF (purely). For, CQF= QCps< Q.
If CQF < Q, by taking 0 < Qo= Q - CQF <Q, QOE<( QOF; i.e, QE - CQFE <(Q - CQF)F
= QF - QF = 0,a contradiction. Hence CQF= Q. Thus QE < QF (purely) by Theorem

3.2.10.

Remark 3. If E and F are projections in a factor R , then exactly one of the

relations

holds, since one of the projections P,Q,R of Theorem 3.2.10 is I and the other two
are zero. Hence, in a factor, £induces a total ordering on the equivalence classes

of projections.

Definition 3.2.12. A projection E inR is said to be

(a) fg4nite if there is no subprojection E1 in R such that E ~ E1 < Ej

(b) Anggnite if it is not finite;

(c) properly inginite if E # 0 and QE is infinite for each projection Q in Z such
that 0 < Q = Cp.

Proposition 3.2.13. Let E and F be projections in R. Then:

(a) If E~ F and E is finite, infinite or properly infinite, then the same is

true for F.
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(b) If E is finite and F < E, then F is finite. Consequently, if E is finiteand

FéE, then F is finite.

Proof.

(a) If E is infinite, we have E ~ E1 < E. Choose V in R such that V*V=E, Vy* =
F. With W= VE1 and F1=NW*, W*W= E1 and F1= VE1V* < V(H)=F; i.e.,F1 < F.Hence
FauE A Elfu F1 < F. So F is infinite. If E is finite and if F is'infinite,

as F vE, E is infinite by the above argument and hence a contradiction Hen
ce F is also finite.Let E be properly infinite.As E “F, CE==CF by Lemma
3.2.7 and for 0<Q < CE= CF we have QE ~ QF. Since QE is infinite, QF is al-

so infinite and it then follows that F is properly infinite .

(b) For, otherwise, F m_Fl < F. Then E= (E - F) + F~ (E - F) + Fq< E. Hence E

is infinite, a contradiction. Thus (b) holds.

Theorem 3.2.14.Let E be aproperlyinfinite projection in R .Then there is a projec

tion F in R such that F < E and F ~E - F ~E,

Proof. If Q is a projection in Z and 0 <Q £ CE, then E0= QE is infinite by hypo-
thesis. So there is a projection E1 in R such that Eom E1 < Eo' Choose V in R
such that V*V= Eo’ VV*= El' If G is a non-zero subprojection of E0 in R , and if
W= VG, then W*W= G and WW*= VGV*. Hence G ~ VGV*. Define projections En(n 2 2)in-

. - . - . *e .
ductively by En+1 VEnV*. This holds for n = 0 also, Since VEOV El' Since E0 >

E1 and En+1' En+2= V(En - En+1)v*, it follows from induction that En > En+1.More-

over, the projections Gn= En-En+1 satisfy GO% Glm 62 VoL

Let (G ) be a maximal orthogonal family of projections in R containing

o’a € A
_ Y G.. G
GysGy-..(so that A is infinite) such that G < E , Gyv G . Let X=E - =, %" "o
;#3 X, otherwise it will contradict the maximality of {Ga}a A Hence by

Lemma 3.2.8 there is a projection P in Z such that PX £ PGO, 0<P <CG . Then 0 <
0
P < CGI < CQE and CQE= QCg= Q.

0]
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We have

Hence PE = I PG + PX, PXL PG ,0 <P =Q. Since cardinality of A s
O gep © ~ "o
infinite, we can partition the set A into disjoint sets B and C such that card.A=

card.B= card.C and define

Y==% PG + PX <PE
o 0

so that

PE0 - Y= I PG < PE..
oeC 0

Clearly, Y ~ PE_ and PE - YL PE . With r an element of C. card {a: a e

C, o # r)=card.A, so that PE = I PGy + PX &5 PG+ PG =PE - Y.
a€eAp aeC\{r} @

Hence by Theorem 3.2.4, PE0 ~ PE0 -Y~Y., Since P £ Q and E0 = QE, this
implies PE~v PE - Y ~ Y. Thus, if Q is projection in Z and 0 < Q < CE’ there exist

projections P in Z and Y in R such that 0 <P £Q, Y ~PE - Y ~ PE.

Let {P } be a maximal orthogonal family of projections inZ such that 0 < ng
[0}
€ C_ and such that there is a projection Y in R with Y <PE, Y v~ PE-Y ~
E o o o o o o
BIE. By what we have proved above and by Zorn's lemma, such a maximal family exists.

Let Q= CE - ng. Clearly, Q=0 by the above argument and the maximality

of {Pa}' Then CE= Lk, and E= CE

z (PaE - Ya)' Hence by Lemma 3.2.3(ii) E~E - F~ F and F gz:axE= E; i.e F

F=

E= 7 P E. Let F= Y so that E
o o

A

E.
Since E~-F v F,F < E.
This completes the proof.

Note 8. For the study of properly infinite von Neumann algebras, a result stron-

ger than the above theorem will be proved Tater in Chapter 6.
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Lemma 3.2.15. Suppose {E } is an orthogonal family of projections in R ,such that
a

{CE}is alsoan orthogonal family. If E= ZE , then CE= ZCE . Moreover, if each Ex
o
o [e

is finite (respectively, properly infinite) then the same is true for E. (If at

least one Ex is infinite, clearly E is infinite.)

2 Ex for each o and hence Q

Proof. With Q= ZCE ,Q isa projection in Z and Q 2 CE
o 0.
2 E, so that QkE= E. Thus Q 2 CE. Since CE z B2 Ex’ we have CE; CE and  hence
' o
CEQ= ZCECEJ= chx; Q,so0 that Q ¢ CE. Thus CE= Q.

Suppose each Ex is finite and E~ F £ E. Then CgiE“aC F < CﬁuE; 1.e“Earh

ran

=E so that F 2

C.F < E,. Since each E 1is finite, C £
O o,

o o Eu
E . Hence F 2 Z§1= E. Therefore, F = E and hence E is finite.
o

F=E . Thus F.E = FC
o o

Q

Suppose next that each E, 1is properly infinite. If P is a projection in Z

and 0 < P = CE’ then,for some o, PCEV # 0. Since 0< PC C and ﬁx is proper-

ES “E
o o] o
ly infinite, it follows that Pcﬁx'E = Pﬁl is infinite and hence PE is infinite.

So E is properly infinite.

Theorem 3.2.16. If E is an infinite projection in R, then there is a unique pro-

jection Q in Z such that 0< Q = CE’ QE is properly infinite and (I-Q)E is finite.

Proof. Suppose E E1 < E and let E2= E - El’ P= CEZ. Then 0 < P £ CE and CPE =

PCE= P. If Q is a projection in Z and 0< Q S CPE(=P), then 0 # Q= QP= QCE . Hen-
2

ce QE, # 0 by Lemma 3.2.9. Thus 0 # QE,= QE - QE;, so QE1 < QE. Now Q{PE)= QE ~

QE1 < QE, Thus QE is infinite so that PE is properly infinite. Thus we  have

proved the following statement(*):

~If E is an infinite projection in R, then there is a

(*) projection P in Z such that 0 < P < CE and PE s

properly infinite.

Now, by {*) and by Zorn's lemma, there exists a maximal orthogonal family {P_}

of projections in Z such that 0 < RJ < CE and RJE is properly infinite. Since-
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CBuEz P.Ce™ P by Lemma 3.2.15, for Q= IP » QE is properly infinite. If F=

(I-Q)E is infinite, then by(*) there is a projection P in Z such that 0 <P gCF=

(I-Q)CE and PF(=P(I-Q)E=PE) is properly infinite. Hence P can be added to the

maximal family {ﬁx}, a contradiction. So (I-Q)E is finite.

If Q1 is another projection in Z such that 0 < Q1 < CE’ QlE is properly infi
nite and (I-Q;)E is finite, then Q;< Q. Otherwise, Q;(I-Q) # 0 and then 0 <
the finite projection (I-Q)E, a contradiction. Then ng Q. Similarly, Q < Ql and

hence Q = Ql' This proves the uniqueness of Q.

Definition 3.2.17. If {E } is a family of projections of H, then there is a
a
smallest projection & Ex= [UEa(H)] which contains each Ej and a largest projection

é Ex =[;>E§H), which is contained in each Ea. When there are two projections E1

and E2 under consideration, we use the notation E1 v E2 and E1 A E2.

Note 9.If each Ea £ R, then each ﬁx is invariant under R’ and hence & E and A E are
o a o

invariant under R' so that VE and A E belong to R"=R.
a o a o
Lenma 3.2.18. If E and F are projections in R,then (EV F) - F ~E - (E A F).

Proof. Let T= E(I - F) and x € H. Then Tx = E(I - F)x € E and (EAF)Tx =
(E AF)E(I - F)x= (E A F)(I - F)x=0, so that Tx ¢ E - EA F. Thus [T(H)] S E -
E AF (3.2.18.1). Also, for x € [T(H)IL, 0= [Ty,x] for each y € H so that 0= [y,
T*x] for all y € H. Hence 0= T*x= (I - F)Ex = Ex ¢ F => Ex e EAF = x= Ex +
(I -E)xe EAF+ (I - E). Thus [T(H)jlé EA F+ (I -E). Consequently, [T(H)]
2 I -(EAF)-(I-E)=E-EAF(3.2.18.2). Thus [T(H)]= E - E A F by
(3.2.18.1) and (3.2.18.2). Since T*= (I - F)E= (I - F)(I-(I-E)), by the above

result we have [T*(H)]= (I - F) - (I - F) A(I - E)=(I -F) - {(I -F)'v (I-E)'}
=(I-F)-{EVF}'=(I-F)-{l-EVF}= EVF-F, where E'=1 - E, etc.

Since by Lemma 3.2.5. [T(H)]~ [T*(H)], the Temma holds.

Theorem 3.2.19. If E and F are finite projections in R, then EVF and EAF are
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finite in R.

Proof. Since EA F < E and E is finite, EA F is finite. If possible, let E V. F
be infinite. As E is finite and as EVF-F ~“ E - EAF by the above lemma, EVF-F is
finite. Thus EVF is the sum of two orthogonal finite projections EVF-F and F.Hen-
ce we way assume henceforth that E and F are othogonal finite projections in R

and that E + F is infinite in R. e
" A

By Theorem 3.2.16 there is a projection Q in Z such that Q(E + F) is properly
infinite, of course, QE,QF are finite. Hence, without loss, we may assume that E

and F are orthogonal finite projections and that E + F is properly infinite.

By Theorem 3.2.14 there exist orthogonal projections E1 and F1 inR such that

=E+F, E,~v F, v E+Fsothat Cc =¢. =¢C

E, + F .

1 1
By the comparison theorem applied to ElA F and E A Fl’ there exists aprojection G
and either G(E, A F) £ G(F; A E) or G(Fj A E) £G(E; A

E+F 1
(P+QLorG=CE+F(P+R), with P,Q,R as in _ the satd  theorem. G # 0

in Z such that 0 <G £ C

F)(take G= CE+F

as P+ Q + R=1.) We show then in the first case that GEl;é GE. Similarly, in the

second case we would have GF, £ GF. In both cases we have a finite projectionk,an

10\.

infinite projection (since E. is properly infinite and 0 < G s C.,.= C., GE, s
) e+~ CE; U1

infinite and simi]ar]y,GFlis infinite), which is a contradiction.

Suppose G(E1 AF)ZLG(EA Fl)' (3.2.19.1)

Note that E1 is orthogonal to Fl’ F is orthogonal to E. Hence E1 V F is orthogonal

to FlA E. Thus E1 VFSE+F- F1 A E. Hence E1 VF-FZE - FlA E (3.2.19.2).

Then by Lemma 3.2.18 and (3.2.19.2) we have E, -EAF~VE VF-FSE- Fl.A E.

Hence GE1 - G(E1 A F) £ GE - G(F1 A E) (3.2.19.3).
By (3.2.19.1) and (3.2.19.2), GEl;é GE.

This completes the proof of the theorem.
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Corollary 3.2.20. Suppose E~F, E,F finite in R. Then:

(i) If G is a projection inR with G2 E,G 2F, then G - E~ G - F.
(ii) There is a unitary operator U in R such that UEU*= F,

Proof.
(i) Since G-E=G-EVF+EVF-EandG-F=G-EVF+EVF-F,it su-
ffices to consider the case in which G= E V F and therefore, in Virtue of

Theorem 3.2.9, we can assume that G is finite in R.

If G-E G- F, thensin Theorem3.2.10,Q + R#0 and hence Q(G - E)<
Q(G - F),or R(G - F)LX R(G - E). We can assume the former to hold. Thus
Q(G - E)vX <Q(G - F). Since E~ F, QE~ QF. Thus QG~ X + QF <QG;i.e., QG

is infinite, a contradiction.

(ii) As E~ F, by (i),I - E v I - F. Hence there are V, W in R with V¥V = E
VV* = F, WW=1 - E, Wi*=1 - F. Then U=V + We R and U*U= (V* + W*)(V +
W)= VXV + WXV + VXW + W*W=E + I - E= I; UU*= (V + W)(V* + Wx)= VV*x + Wy* +

VW*+ WW* =F + 1 - F= 1. Hence U is unitary in R. Further,

UEU*

(V+ WE(Vx+WH

VEV* + WEV* + VEW* + WEW*

VEV*= YV*yy*= F,

=<

Corollary 3.2.21. If R is finite (i.e.,if I is finite), Ei < Fi(i= 1,2) and E1

E,, F, £ Fy,then F, - E, £ F, - E,.

Proof. E1 < Fl’ E1 v XS E2, E2 s F2, F2 W Fl' Hence, by Corollary 3.2.20, I -
FovI-Y21-F.Thenl-F&I-F, Infact, ifU:I-F,>1-Y, ° then
LU*(1 = F)b* (UX(I - Fy)= (I - F{JUUX(I - Fy)=1 - Fy and UX(I - F)U S T - F,.

By hypothesis, Elj_ I - Fl’ E2.L I - F2. Hence 1 F1 + E1 L1 - F2 + E ;i.e., I -

2’

NP Again by

IA

(F) - El):E I-(F, - E))sie, 1~ (F - E;) I-(F, - E)).
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-E,vI1-P2F

1 & - E

Corollary 3.2.20, F o = Exi.e,Fy - E, XF

1°
§3.3. Cyclic and countably decomposable projections

H will denote a Hilbert space throughout this section.

Definition 3.3.1. Suppose 6 is a *-subalgebra of B(H), I e & and X cCH. The
set Oux= {Ax: Ac@, x € X} is invariant under each Te 6 ; so the prbjection E'
= [fhx] is in G' . We say that X is a generating st for & if E'= I. We say that
X is a sepanating set fore if O is the only operator in & which annhilates each
x in X. If X consists of a single vector x, we use the terms generating vector or

totalisatorn and separating vector, respectively.

Theorem 3.3.2. If A is a *sulbalgebra of B(H), I ¢ A and X < H, then X is a
generating set for A if and only if X is a separting set for A'. If R(< B{(H))
is a von Neumann algebra, then X is a separating set for R if and only if X is a

genarating set for R'.

Proof. The second statement follows from the first if we take A=R', so that A'=

R" =R.

Suppose that X is a generating set for A, so that [Ax:x ¢ X]=1. If T' ¢ A’
and T'x= 0 for each x € X, then T'[AX]= T'I=T"', but T'Tx= TT'x= 0 for each x € X

and TeA. Hence T'[AX]= 0. Thus T'= 0; i.e, X is a separating set for A"

Conversely, suppose X is a separating set for A" With E'= [AX] we have E' ¢
A' and E'x= x for x€ X, as I € A. Hence (I - E')x= 0 for each x ¢ X. Since X is

a separating set for A' and I - E' € A', we conclude that E'= I.

Definition 3.3.3. If R is a von Neumann algebra acting on H and X < H, then
[R'X] € R"=R. In particular, if x ¢ H, then E= [R'x] is called a cyclic profec-

Lion in R and is said to be cyclic underR’'.

Theorem 3.3.4. Every projection E in a von Neumann algebra R is the sum of an



/8

orthogonal family of cyclic projections.

Proof. If E= 0, the theorem holds trivially. Hence let E # 0. Then there is anon-

zero vector x in E(H). Let us consider [R'x]. Then [R'x] 1is cyclic and 0 # [r'x]

< E. Hence by Zorn's lemma, there exists a maximal orthogonal family {E }ae I of
o

cyclic projections in R, which are majorised by E. If z Eu # E, then there is

oe I
a non-zero vector x in (E - I ﬁu) and the non-zero projection [R’x] ‘is cyclic,
ae [ ‘
orthogonal to z g}and majorised by E, a contradiction. Hence E= I ﬁx.
ae I oe I

Proposition 3.3.5. Let A be a *-subalgebra of B(H), containing I and let M CH.
Then [AM] is the smallest closed subspace N of H containing M such that Py € A',

where PN is the projection on H with range N.

Proof. Clearly,[AM] D M,as I € A and,since each Aec A leaves [AM] invariant, P=
[AM] € A'. In fact, PA*P= A*P for A e A and hence PA= (A*P)*= PAP= AP for Ac A.
Let N be a closed subspace containing M and let PNE:A'. Then, as PNEZ A', for x ¢
M, A = A, we have PNAx= APNx= Ax, so that [AM] < N and consequently,[AM] < PN.

Hence the proposition.

Proposition 3.3.6. Let M ¢ H and let R be a von Neumann algebra with centre Z.

If E'= [RM], then CE.= [Z'M]. If E= [R'M],then CE= CE.= [Z'M]. Consequently, if

M is the singleton x in H, then [R'x] and [Rx] have the same central carrier which
is given by [Z'x]. Therefore, if E is a cyclic projection in R, then CE is cyclic
in Z (under Z').

Proof. [Z'M] is the smallest closed subspace N of H containing M such that PNs 7"

= Z, by Proposition 3.3.5. (It is easy to check that Z is a von Neumann algebra.)

But, as CE' is a central projection of R'containing E' and in particular, the set

M, it follows that CE;[Z'M]= [CE|Z'M]= [Z'CE,M]= [Z'M] and hence C_, 2[Z'M].More-

E' ™
over, CEI= [RIEIy:yE H’Rl € R,]

[R'Rx:Re R,x € M,R' g R

N

[Tx:T € 2',x € M](since R'R ¢ Z' for R ¢ R and R'e R')
[Z'M].
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Hence CE.= [Z'M]. Similarly, CE= [Z'M], since R"=R and Z=R' N\ R= R'M\R".

Lerma 3.3.7. Suppose R is a von Neumann algebra over H, X, € H,En= [R'xn], Eﬁ =

[Rxn](n= 1,2,...). Then:

(i) If {Eﬁ} is an orthogonal family, then xEn is a cyclic projection in R.

(ii) If both{ En} and { Eﬁ} are orthogonal families, then there is a vector x in

H such that ZIEn= [R’x],ZIE$= [Rx].

(iii)If{ CE} is an orthogonal family, then = En is cyclic in R.
n

Proof .

(i) We may assume on multiplication by suitable scalars thatl|an= %— and define

x = Zx . Since {E!} 1is an orthogonal family, and since E!x = x , we have
Ln n nn “n

E'x= x_. For each R'e R', R'x= TR'x_ e VE_. Thus [R'x] < VE
n n 1 noogn

2 [R'E!'x]= [R'x.]= E_, so that [R'x] ;(VE . Hence [r'x]= VE_ and thus ?E
n n n 1N 1" 1M

n* However,[R' x]

—

is cyclic.

(i) If {Eﬁ} is an orthogonal family, then VEn= [R'x] from (i). But as {En} is
- w w 1
also orthogonal, VE = IE . Hence E = [R'x]. Interchanging the roles of E
and Eﬁ,we get I Eﬁ= [Rx].

(iii)If {CE} is orthogonal, then,as CE = CE, by Proposition 3.3.6,the orthogona
n n n

lity of {CE} implies the orthogonality of {En}a1 and {Eﬁ}al. Hence,by (ii),
n

(iii) holds.
Definition 3.3.8. Let E be a projection in a von Neumann algebra R . We say that
E is countably decomposable (in R) if every orthogonal family {ﬁx} of non-zero sub-
projections of E in R is at most countable. If I is acountably decomposable projec-

tion in R , then R 1is said to be countably decomposable.

Note 10. Every von Neumann algebra acting on a separable Hilbert spaceHis countably

decomposable. Every subprojection of a countably decomposable projection is itself
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countably decomposable.

Lemma 3.3.9. A projection E in a von Neumann algebra R is countably decomposable

if and only if E= [R'X ] for some countable set X of vectors in H. In particular,
every cyclic projection in R is countably decomposable. If E is cyclic, CE - is
countably decomposable in Z and conversely, if P is countably decomposable in Z,
then P is cyclic in Z;if P= [Z'x] and E= [R'x], then P= CE(i.e,every cduntably de-

composable projection P in Z is of the form CE with E cyclic inR.)

Proof. Suppose that E is countably decomposable in R. From this and Theorem

3.3.4, E= §En’ where {En} is an orthogonal family of cyclic projectionsin R.Let
1

= ! = ‘n= = ' '
En [R xn]. Let X {xn.n 1,2,...}. For each n, X, € E. So En [R xn] < [R'"X]
< E, since XCEand R'XCR'E=Eas R' 1leaves E invariant. Hence E= ZEn <

[R'X] s E; i.e [R'X]=E.
Conversely, suppose E= [R' X], X a countable subset of H. Let {Ea}aE:A be

an orthogonal family of non-zero subprojections of E in R. Then,for each «, EaE
= E, # 0. So there is a vector y in E such that E;y # 0. Hence there exist a
vector x ¢ X and an element T'e R'such that EaT'x # 0. Thus 0 # EaT'x= T'Eax,
so that E, x # 0. Let AX= {a:a ¢ A, Ea X #0}. Then A={;}{AX:X £ X}{3.3.9.1)Since

z HE}XIF < Hx]F, the set A, is countable. Since X itself is countable, it
e A
follows from (3.3.9.1) that A is countable. Thus E is countably decomposable.

The direct part of the last statement follows from Proposition 3.3.6 and

from the’first part of the lemma.

Conversely, let P be a central projection which is countably decomposable in

Z. ThenXP= iPn, P.= [Z'x ], PP =0if n#m, and[[xJ|= 1 by Theorem 3.3.4. Let
x =% 2. Then [Z'x]= P by Lemma 3.3.7 applied to Z, since Z is further abelian.
n

Let [R'x]= E. We have E < P,since R'€ Z'. If Q is a central projection of R with
QE= E, then Qx= x so that P= [Z'x]= [2'Qx]= [QZ'x]= QP. Thus P < Q. Hence P=
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CE' Note that E is cyclic in R.

Note 11.Countably decomposable projections in an abelian von Neumann algebra R are

necessarily cyclic, since R= Z.(See also Theorem 3.3.12.)

Lemma 3.3.10. Let M be a subset of H and N= [RM], where R is a von Neumann al-

gebra on H. Then [R'N]= [Z'M].

L]

Proof. Since 7'D R,[Z'M]:D N. _ Agains=-as Z' DR' [Z'M]D[R'N] (3.3.10.1).
Since,by Leﬁma 3.3.5, [Z'M] is the smallest closed subspace containing M such that
[Z'M] € 7"=17, by (3.3.10.1) it suffices to show that [R'N] ¢ Z;i.e., to show

that [R'N] is left invariant by R{JR'. Clearly,[R'N] is invariant under R'. For

R € R, RIR'N]= [RR'y:y € N,R'e RY= [R'Ry:R'eR',y € N]C [R'N], since N is inva-

riant under R . Thus [R'N] € Z. Hence the lemma.

Theorem 3.3.11. Let R be a countably decomposable von Neumann algebra. Then there

is a central projection G such that RG has a generating vector and R(I - G) has

a separating vector. If R is further abelian, then R.has a separating vector.

Proof. Let (x.)

(i) [R'xi]= E. are pairwise orthogonal, and

ilien be a maximal family of non-zero vectors in H such that

(i1) [in]= E% are pairwise orthogonal.

let E= I E., E'= I E!',F=1-EandF'=1-E'.
jeal jep!

If FF'# 0, then there is a non-zero vector y ¢ F(H)A\F'(H). Then [R'y]} E; Ry]1E"

and hence y can be added to (Xi)i c A @ contradiction to the maximality of the

family. Thus FF'= 0. Hence CFCF.= 0, for, F'(RFx)= RF'Fx= RFF'x= 0 for each R ¢ R,

X € H. Hence F'CF= 0,as F' is bounded . Thus CF.CF= 0 by Lemma 3.2.9.(CF is the

central carrier of F in R and is a member of Z.) Put G= CF. Then E= 1 - Fx1 - G;

E'=1 -F' 21 - Cpr 2 I-(I - CF)= Cp= G. As R is countably decomposable,the index

set A is at most countable and hence by proper scalar multiplication,we can assume

Ix;= x e H wichHxi[]2 < o As x,= E.x= Eix, [Rx] 2 [RE;x]= [Rx;]= Ei3 so [Rx] 2
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E' 2 G and [R'x] 2 [R’E%x]= [R'xi]= Ei’ so [R'x] 2 E21 - G. Thus Gx is a gene-
rating vector for G and (I - G)x is a generating for R'(I - G). Then x is a sepa
rating vector for R(I - G). For, if R(I - G)x= O for some Re R , then 0= R'R(I -
G)x= R(R'(I - G)x) for each R' £ R'. Hence R(I - G)= 0.

Suppose R is further abelian. Then with the above notation, [R'x]2I-G and
[Rx] > G. Since R is abelian, RC R/ Hence [R'x] 2 G. Then [R'x]= I;t.e.,x is a
generating vector for R' and hence x is a separating vector for R by Theorem
3.3.2.
Theorem 3.3.12. Let R be an abelian von Neumann algebra, acting on H. Then:

(i) Each countably decomposable projection in R is cyclic.

(ii) If R is countably decomposable, then R has a separating vector.

(iii)If R is countably decomposab]e and is also a maximal abelian *-subalgebra of

B(H), then R has a separating-generating vector Xx.

Proof.

(i) By Theorem 3.3.4 each countably decomposable projection E in R can be
expressed as E= §En’ where the En are pairwise orthogonal cyclic projections
in R. Siq:e R ii abelian, CEn= En and hence it follows from Lemma 3.3.7(iii)
that E= fEn is cyclic.

(ii)If R is countably decomposable, then, by (i), I is cyclic and hence
I= [R'x] for some x € H. Hence x is a separating vector for R by Theorem

3.3.2. ((ii) follows also from Theorem 3.3.11.)

(iii)If T' is any self-adjoint element of R', then,as R is abelianstheset{R,T'}
generates an abelian *-subalgebra of B(H), containing R . Consequently, T'e
R, as R is maximal abelian. Varying T', we observe that R'c R.The reverse
inclusion is clearsas R 1is abelian. Thus R =R’'. With x chosen as in (ii), x
is a separating vector for R and is consequently a generating vector forR'=

R by Theorem 3.3.2.
This proves the theorem.
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§3.4. Comparison theory for cyclic projections

Throughout this section R wil denote a von Neumann algebra, with centre Z,

acting on a Hilbert space H.

Lemma 3.4.1. If E and F are projections in R, with E £ F and F cyclic (respecti-

vely, countably decomposable) then so is E.

.

1S F. If F s

cyclic, choose x ¢ H such that F = [R'x]. Since V*= V*F1= V*FlF, we have E=

Proof. Choose a partial isometry Ve R, with V*V=E and VV*= F

[V*(H)]= [V*FlF(H)]= [V*Fllvx]= [R'V*le]. Thus E is cyclic with the generating

vector V*le.

Suppose F is countably decomposable. Let (E be an orthogonal family

a)a €A

of non-zero subprojectiohs of E in R. Let Ga= VEaV*. Then GaG =0 if o # B. Also

B
2_ a . . .

Ga' Ga and G; = Ga. Since Ea £ 0, Eav* # 0 and hence VEaV* # 0,asVisan isometry

on E(H) and hence on E(H) Thus {G,} ,  is an orthogonal family of non-zero pro-

G. £ F. Hence A is at most countable. Thus

Jections in R and,as G F,= VEaV*= Ga, o

o 17

E is countably decomposable.

The following theorem gives a sufficient condition for CE £ CF to imply E %

F. (See the note below Lemma 3.2.7.)

Theorem 3.4.2. If E and F are projections in R, with E countably decomposable, F

properly infinite and Cp s CF, then E < F.

Proof. Suppose E qﬁ F. By Theorem 3.2.10 there is a non-zero projection Q in
Z such that PF.< PE whenever P is a projection in Z with 0 < P< Q. In particularn
QE >QF. Then QCFF= QF £QE= QCEE= QCFCEE= QCFE. Thus we can assume that 0< QéCF.
Let QF~ G <QE. Then,by Proposition 3.2.13,G is properly infinite, being equivalent
to a properly infinite projection QF. (QF is properly infinite, for, if 0 < Q0 <
CQF= QCF= Q= CF,then QOQF= QOF is infinite) Hence by Theorem 3.2.14 there exist

two orthogonal projections G1 and H1 in Rsuch that G, + H,=G ~ G

1t H 1™ Hp-
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Since H1 is properly infinite, there exist orthogonal projections G2 and H2
in R such that

62 + H2 N Hlm 62 N H2.

Continuing in this way, we obtain an orthogonal sequence {Gn}T of projections
in R such that G~ G, s G<QE. Let {Ga}ae:A be a maximal orthogonal family of
projections in R which contains the sequence {Gn} and which satisfies the
condition G Ga:SQE. Since E is countably decomposable, A is countably infinite.
By maximality, G #g QE - I G So by Lemma 3.2.8 there is a projection P in Z,

aeA?
with0<P<C.=C,. £Q and - I G ) £ PG;i.e ,PE - I PG, < PG. Thus
G QF A O
o€ ach

P(QE
pE= = PG+ (PE- £ PG )<L PG + Pa,= P(¥6 )< PG ~ PQF= PF. Thus PE < PF,
aeA @ achA ¢ 7 1

contrary to our assumption that PE » PF for 0 < P £ Q. Hence E £ F.

Corollary 3.4.3.

(i) If E is a properly inifinite projection in R and if CE is countably decompo-
sable in R, then E ~ CE.

(ii) A1l infinite projections in a factor are properly infinite and hence are

equivalent to each other when the factor acts on a separable Hilbert space.

Proof .
(i) Take E and F in Theorem 3.4.2 as Cp and E, respectively. Then CE < But

E < CE’ so that EXL CE. Hence C. ~ E by Theorem 3.2.4(i1).

E
(ii) Since I and 0 are the only central projections in a factor, infinite projec-
tions in a factor are properly infinite. If H is separable, then I is <coun-

tably decomposable in R and hence by (i) every infinite projectien Eﬁ;CE= I.

We proceed to relate the comparison theory of cyclic projections 1in R with

the corresponding theory in R'. To this end we need the following two 1emmas.

Lenma 3.4.4. If x, y € Hand y € [rx], then there exist S, T in R and z € Hsuch
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that Sz= y, Tz= x and z € [T*(H)].

Proof. We split the argument into several stages.
(a) Since y € R x], there exist.A0(=I), Al,AZ,...,in R such that y= 1$m Anx. Pas-
sing to a subsequence, if necessary, we may suppose that ||y - Anx|[<4'n(ng 1).

With R=Ajand R =A - A ,(nz1), we have ||R x| <]y - Ax]|| +lly-A _1xl

.

n

< 4"y 4-(n-1)= 5(4™™). Hence R.x is convergent in H, with

= © 2
y= g Rx and Z 22n “RXH < o, (3.4.4.1)
0

n
Let K= {u:u € H, g 22n||RnuH2< »} . Then K is a vector subspace of H and x

e K. Define an inner product E,Jl, and the associated norm||.||1 on K, by

. ®, 2
[u,v]1= g]2 n[Rnu,an:Il, (uy, v €K).

The series is absolutely convergent,since

IA

© _2n ® _2n 2 © . 2n 2 -
[27[Rous RvI s 3 {Z 270 ([Rull® + L2 IR VI ©} < =,
as u, v € K.
2 _ 2.2 2 2 . ® 2 2
ull® = = 2%"R ull®= [ ulf® + T 2°"R ul|
1 0 1
so that

Jull s |lull,> for every u e K. (3.4.4.2)

Next observe that K is a Hilbert space under E,Jl. In fact, let (un)? be a

Cauchy sequence in (K, L,Jl). By (3.4.4.2), (un)f is a Cauchy sequence in H

and hence (un)T converges in || .| to some element u in H. Also, given¢> G
there is a P€e N such that,for 2, m 2P,
lIu2 -ullp< e

1A

For eachgqg 20 and 2 2P,

€
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(c)

a2 2 .9 2n 2
z 2 W|Rn(u2 -uw)= lim P 27 (R (u - um)H
n=o Mo =0
@ éh1 2 2
so that = IR (u, = wl” < e°. Thus we have proved that u - ue K
5 .
and || U, - uIl1 < e , whenever £ 2 P_. Hence u= up - (up -~ u)eK and uy -

U~ 0in (K[|l {). Thus (K,[,J;) is a Hilbert space.

L]

If R' £ R', then R' leaves K invariant. and (Rk ) *= (R'*)K, where AK= AlK.

For, if u £ K, then

0 2n )
L 2 HRnR'uH2 - 3 22nHR'RnuH2 < IR |l Hf < » and henceR'u ¢ K.Moreover,
o] o
IRully = IR )
For u,v g K, [Rku,v]1 = 7 22n[RnR'u,an]

(o]

= 22"[R u,R R'*v]
o n’™n

so that (Rk Vk= (R'*)K.

On the Hilbert space (K,[.,.]1),deﬁ1nelp(u,v)= [u,v]. Then,clearly, ¥ is a
symmetric bilinear form on K. Also HU4|1 < 1 by (3.4.4.2). Hence y corresponds

to a hermitian operator B on (K,L,]l) such that
fu,vI= ¥(u,v)= [Bu,v];

with |IBll = llvll 1. Since w(u,u)= [u,u]l 2 O, B2 0 and hence B?
1

exists, and [u,v]= [B%u, B%le’ u,v e K (3.4.4.3).

If ue K and B%u= 0, then [u,u]= [B%u, B%u]1= 0 and hence HuH2= 0. Thus u =0

and hence B% is an injective hermitian operator on K and the range of B% is
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> l l - - -
dense in K, as 0 ¢ oC(Bz) or 0 € p(B*).(This is so, since for normal operators

the residual spectrum is empty; and the point spectrum is empty when it is
KDl Ml - By
(K)’”'Hl) and so

1
moreover injective.Consider the linear map Bz:(K,H.H)ﬂ-(B%

N o~

1
(3.4.4.3), B* is an onto isometry map from (K,|.||) onto (B
extends to an isometry W from (M,]|.]]) onto (K,H.Hl), where M is the closure

.

of K in (H,||.]]). Choose z in M such that Wz = x (3.4.4.4).

Since K is invariant under R', so is M and hence E € R, where E is the pro-
jection from H onto M. In view of (3.4.4.2),we can consider W as a norm
decreasing map from (M,||.|]) onto (K,||.||). Thus T= WE is a normdecreasing map
from (H,|.|) onto (K,||-|]) and hence can be considered as a norm decreasing

operator T on H. We shall now show that TeR .

If u, ve Kand R' € R', then R'u € K,and by (3.4.4.3) we have [BRku,v]1 =

[BR'u,v]1= [R'u,v]= [u,R'*v]= [Bu, (R'*)Kv]1= [RkBu,v]l,since (R'*)K= (Rk)*.
1 1 1

Hence B and B* commute with Rk. Thus WR'u= Bszu= Rkau= Rkwu (3.4.4.5)for

each u € K. Consequently, for each u € M, WR'u= R'Wu.

For every a € H, Ea € M. Hence R'Ta= R'WEa= WR'Ea= WER'a= TR'a,whenever R' €

R'. Thus T e R"=R,

We have by (3.4.4.4) that
Tz= WEz= Wz= x.

If P= [T*(H)], then (I-P)T*= 0. Thus T(I-P)= 0 and hence TPz= Tz= x. If we

now replace z by Pz, we have 2z € [T*(H)] and Tz= x.

For each a € H, Ta= WEa € K so that I 22n||RnTa||2 < © . Hence sup ZnHRnTaH
o

< o, Now by the principle of uniform boundedness, SHP ZnHRnT||<oo and conse-
quently, the series I RnT is convergent in norm to some operator S in R . We

have by (3.4.4.1)
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Lemma 3.4.5. Let R be a von Neumann algebra over H, T € R, x € H. Then[rfmx] %

[r'x]. Besides, [R Tx] ~ [R'x] if x € [T*(H)].

Proof. Let E= [R'x]. Then [R'Tx]= [TR'x]= [TE(H)] and by Lemma 3.2.5 [TE(H)] ~

IN

[ET*(H)], so that [R'Tx] ~ [ET*(H)] < E. Hence [R'Tx] < [R'x].

If, further, x € [T*(H)], then x € [ET*(H)] and so R'x e [ET*(H)] for each
R'e R'. Thus E= [R'x] ¢ [ET*(H)] < E and hence in this case [R'Tx] ~ [ET*(H)] =
E= [R'x].

Theorem 3.4.6. Let R be a von Neumann algebra over H and let x,y € H. Then:

(i) [R'x] £[R'yl(in R) if and only if Rx] £<[Ry] (inR").
(ii) [R'x] ~ [R'y](in R) .if and only if [Rx] ~ [Ry] (inR").

(111)[R'x] < [R'y1(in R) if and only if [Rx] <[Ry] (inRY.

Proof. It is clear that (ii) follows from (i) since EL F, F £ E imply E ~ F.Now
(ii1) follows from (i) and (ii). Hence we shall prove (i). To prove (i) it suffi-

ces to show that, if [Rx] < Ryl, then [R'x] £[R'y].

If Rx]< [Ry], choose U' in R' such that U'*U'= [Rx] and U'U'*< [Ry]. Then
U'*U'x= x, so that [R'U'x] 2 [R'U'*U'x]= [R'x]. But,R'U'c R' and hence [R'U'X] <
[R'x]. Thus [R'U'x]= [R'x] (3.4.6.1).

U'x= U'U'*U'x ¢ [Ry]. By Lemma 3.4.4 there exist operators S and T in R and
a vector z ¢ H such that z € [T*(H)], Sz= U'x and Tz= y. By Lemma 3.4.5,[R'Sz] £
[R'z] ~ [R'Tz]. Hence,by (3.4.6.1),[R'x]= [R'U'x]= [R'Sz] £ [R'Tz]= [R'y]. Thus
[R'x] £ [ r'y].

This completes the proof of the theorem.
Lemma 3.4.7. Suppose x € H, E= [R'x],E'= [Rx] and [ABx,x]= [BAx,x] whenever A,
B € ERE. Then [A'B'x,x]= [B'A'x,x] whenever A', B'e E'R'E'.
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Proof. Obviously, it suffices to prove the lemma for self-adjoint elements
A',B'e E'R'E'. Since A'= E'R'E' for some R'e R'wheneverA'sE'R'E*, A'xe E'=
[Rx]. Hence there is a sequence Ane R such that Anx—>A'x. Since A'x, X are
in [R'x]= E, A'x= EA'Ex= 1amEAnEx, and so we may assume that Ane ERE. Then

A; € ERE and,as A'*= A', we have by hypothesis
“.A'x - A;xH2= [A'x - A¥x, A'x - A*x]
= [A'B,x] = [ARA'X] - [A'X,A%X] + [A A%x,X]
= [A'%x,x] - [A¥A'x,x] - [A'A x,x] + [A*A x,x]
;||A'x - A X" 0,
A+ A*

Thus A x >A'x and A* x ~A'x. Therefore, replacing A by —5—7——5 , We

can assume that An= A; e ERE and A'x= ];m Anxi. Similarly, we can choose

hermitian operators 'Bn in ERE such that B'x= 1Em an. Thus

[A'B'x,x]= [B'x,A'x] 1am 1§m [ka,Anx]

1am 1Em [Aanx,x]

1im 1im [B,A x,k]
no ok kK'n

1;m 1;m [Anx,ka]

[A'x,B'x]= [B'A'x,x].
Hence the Temma.

Theorem 3.4.8. Suppose x € H, E= [R'x] and E'= [Rx]. Then E is finite (res-

pectively, infinite or properly infinite) in R if and only if E' has the
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same property relative to R'.

Proof. In view of the symmetry between R and R' it suffices to prove that,
if E is finite (or infinite or properly infinite) in R, the same is true of
E' in R'. If this is not so, then one of the following situations occurs.
(a) E is finite and E' is infinite.

(b) E is infinite and E' is finite.

(c) E is properly infinite and E' is not properly infinite.

In case (a) by Theorem 3.2.16 there exists a central projection Q with
QE' properly infinite while QE is finite; in case (b) QE 1is properly infinite
while QE' is finite. In case (c), by the definition of properly infinite
projections and by the fact that CE= CE' (see 3.3.6),there is a central
projection Q with QE properly infinite and QE' finite. Thus one of QE, QE'is
finite and the other is properly infinite. Now [QE]= [QR'x]= [R'Qx]andQE'=
[RQx]. Replacing x, E,E' by Qx, QE and QE', respectively, we may suppose
that one of E,E' is finite, while the other is properly infinite. Finally,by
the symmetry between R and R', we may assume that E is finite, while E' is
properly infinite. We derive a contradiction by considering separately two

cases.
Case (i). Every projection in ERE has the form QE, with Q a projectioninZ.

" In this case any two projection in ERE commute. Since ERE= {A: Aeg R,
A= EAE}, ERE is a Tw-C]OSGd *-subalgebra of B(H). The restrictions {A|E(Hf
A e -ERE} form a von Neumann a]gebré over E(H) which is abelian,since, as
any two of its projections commute, by the spectral theorem all the hermitian

elements commute. Hence [ABx,x]= [BAx,x] for A,Be ERE. By Lemma 3.4.7,
[A'B'x,x]=[B'A'x,x] (3.4.8.1) whenever A',B'e E'R'E".
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If E' v F' < E', then F'= F'E'= F'[Rx]= [RF'x]. With V' 1in R' such
that V'*V'= E', V'V'*= F', we have E'V'E'= E'V'V'*V'= E'F'V'= F'V'= V'V'*y'=
V'E'= V', Hence V' and V'* € E'R'E'. Since x € E', by using (3.4.é.l)we have:

I X.Ilz = v ? = TVsvexGxd= [V i*Gxd= LR xGxd= ]| Fxl .

Hence F'x= x, whence F'= [RF'x]= Rx]= E'. Thus E' is finite.

Case (ii) There is a projection F in ERE which is not of the form QE, where

Q is a projection in Z.

In particular, 0 # F # CFE,since CF €Z. S0 0 <F < CFE ES CF s CE' With

F.= C

1 FE - F and Q= CF

1, we have 0 <F1 < CFE < CF and 0 < Q= CF < CF < CE .

Let F2= QF and note that CF2= QCF= Q= CFl
+ F)= CF CFE = CF E = QE, we have F1 + F2= QE= Q[R'x]= [R'Qx]. Moreover,QE
1 1

is finite while QE'=[RQx] is properly infinite,since 0 < Q < CE= CE' and E'

= CEICE= CQE' Since F1 + F2= CFl(F1

is properly infinite by our assumption. Replacing x, E,E' by Qx, QE,QE',

respectively, we may suppose that

E= F1 +AF2 where CF1= CF2= CE.

= = ' = ' = ! = =
Note that Fj FjE Fj[R x]= [R ij] [rR xj],where Xj ij, j= 1,2. Let

F3= CFj= Ce= Cpi (3= 1,2).We claim that the Fjare

finite. For, on the contrary,there 1is a projection P in Z such that 0<P <

F3= [ij],j= 1,2, so that C

Cou= CE’ and PFj is properly infinite for j=1,2. Since CPF5= PCF{= p= PCE

F J J

= PC C by Theorem 3.4.2 PFj ~ PE'.Since the PFSareproper]yinfinite,it

El= PEI’
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follows that PF1 #0# PF2. Moreover, by Theorem 3.4.6,D2’Px]q,DZ'ij],since

PFj= Uiij] v PE'= [RPx]. Thus PE ~ PFj < PF, + PF,= PE. This means that PE,

1 2
hence also E, is infinite, a contradiction. Thus Fjis finite for j= 1,2.

Since E' is properly infinite, by Theorem 3.2.14 there exist projectiors

E|

1° Eé in R'such that E!EA= 0 and E'= E! + EL~E! ~ Eé' Since F;Ii= [ij] =

172 1 271

DZij] < [ Rx]= E'ﬁ:Ej, there are projections FS inR' such that Fj v F}g Ej

and F; finite (j= 1,2)LetVi:F3+F3 be a partial isometry inR'. Since X5 €

Fj(j=1,2),we have

F5'= [Vij(H)]= [VjRXj]= [ RV&xj]
and

= [p? 1yt tyl.kyly = Pty 1=
Fj R xj] > [R ijj] > [R Vj ijj] [R xj] Fj.

ith y.= Vix., .= ty . "o 1. Si ,F n
Thus, wit Y; VJxJ we have FJ [R,yJ] and FJ [RyJ] Since (F1 2)and (F1

(FE) are both orthogonal pairs of projections, we have F1 +;F2= [r'y], F; +

F§= [Ry] by Lemma 3.3.7(iii), where y= ¥yt Y, (Or directly, [R'y] = F1 +

Far as Aly=R'y; + Alype Ry 1+ R1y,)= Fy + Fp(At e R7). [R'y] 2 R'Fjy]

= [R'yj]= Fj(j=1,2) whence [R'y] 2 Fi+ Fzg

" Since E= F1 + F2,

i.e.,FI + F§ ~ E'. This is impossible, since FI + F; is finite by Theorem

we have [R'y]= E= [R'x]. By Theorem 3.4.6,[Ry ]~ [Rx];

3.2.19 and E' is properly infinite.

We shall conclude this chapter after proving an important theorem known
as 'The Dixmier approximation theorem' which is of great use in the classifi

cation theory of von Neumann algebras. The next section deals with this
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theorenm.

§3.5. The Dixmier approximation theorem

Let R be a Von Neumann algebra, Z its centre and U its unitary group
Given A eR, let CoR(A) be the convex hull of {UAU*:U ¢ U }and fEé(A)be the
norm closure of CoR(A). In this section we will mainly prove that fﬁé(A){\ yA
is non empty.

Definition 3.5.1. If G is a projection inZ and A is a hermitian operator in

R, we define

MG(A)= sup {[Ak,x]:x= Gx, ||x|| =11

1h

mG(A)= inf {[Ax,x]:x= Gx, |||
When G= I we write M(A) and m(A), respectively. Further,we define
wG(A)= MG(A) - mG(A)
w(A) = M(A) - m(A)

and

wo(A)= 0.

Lemma 3.5.2. Let R be a von Neumann algebra with Z its centre and A a hermi-
tian operator of R. Then there exist projections P,Q in Z and an operator

U € U such that P and Q are orthogona], P+Q=1,

3
W, (3P(A + UAUX)) 5 u(A)

and

Mg(HQ(A + UAU)) = 2u(A).



94

M(A)

Proof. Let A= S A
Zm(A

AE(A) and n(A)= 3[m(A) + M(A)]. With Ey= E((-=st7]) &

let E= En(A)-o’ F= I - E. By the comparison theorem there exist orthogonal
projections P, Q in Z with P + Q= I, PEXPF and QFLQE. Choose partial iso
metries V and W in R such that V:PE-+F1 < PF, W:QF~ E1<:QE. Let U V + V¥ +

W+W*+I—PE-QF-E1-F1.

PE v Fy
Fy \* PE
QF W E,
E, W QF
I-PE-E, I I-PE-E,-QF-F,
~QF-F,

Then, clearly, U gives the equivalence of I with I so thatUis a

unitary operator in R; i.e.U e U.

Further,UPEU* = F., UF,U*= PE, UQFU*= E,, UE.U*= QF and U acts L (*)

1° 71 1° 71
as identity on I - PE - E1 - QF - Fl' J
We have A 2 m(A)E + n(A)F.
"For,
M(A) n(A) M(A)
A = S AdE(A)= S AdE(X) + S AdE())
m(A) m(A n(A)

v

m(A) {En(A)-O - Em(A)_O}

-+

"(A) {Ey(a) = En(a)-o ]
m(A)E + n(A)F,
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since Em(A)'O= 0 and EM(A)=I.

Hence PA 2 m(A)PE + n(A)PF

= m(A)PE + n(A)F, + n(A) (PF - F,)-

PUAU* = UPAU*

v

m(A)UPEU* + n(A)UF,U* + n(A)U(PF-F,)U*

m(A)F1 + n(A)PE + n(A)(PF - Fl)
by (*), since U acts as identity on (F-(F1+ QF) )H= (PF-Fl)(H).
Therefore,

1P(A + UAU*)

v

$(m(A) + n(R))PE + n(A)(PF - F) + 2(m(A) + n(A))F,
= 3(m(A) + n(A))(PE + F) + n(A)(PF - F))
2 3(m(A) + n(A))(PE + PF)
= 3(m(A) + n(A))P.

But, 3(m(A) + n(A))= 3(m(a) + MAL L M(R),

= (3 M(A) - 3 (M(A) - m(R)) + & M(A))

= 1(2M(R) - 3 W(A))
=mm-%wmy
Hence  4P(A + UAU*) 2 (M(A) - %-w(A))P. (3.5.2.1)

But A < M(A)I, so that UAU* < M(A)I. Therefore,

iP(A + UAU*) < M(A)P. (3.5.2.2)
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(3.5.2.1) == m, {P(A + UNUX)} 2 M(R) - 3 w(A).

(3.5.2.2) == ﬁ {3P(A + UAU*)} < M(A)

P

Hence wp {3 P(A + UAU%) 1< 3 w(A). .

similarly, wp, (2Q(A + UAU%)} < 3 w(A).

This completes the proof of the lemma.

Lemma 3.5.3. Let D denote the set of all mappings a: R+ R of the form a(A)=
n n

* . .= . . :
jflaJUJAUJ’ where aJ > 0, % aJ 1 and UJ e U. Then

(i) If o,B € D then oB(= aoB ) € D.
(ii) a is linear and |la||= 1 (aeD).
(iii)al(z)= z(a e Dsz € 7).

(iv) o(zA)= za(A)(a e D,z € Z ,A € R).

(v) COR(A)={a(A)1a e DhA € R.

Proof .
: L e 6
1 = * =
(i) Let a(A) _E ajUjAUj’ a; > 0, aj 1,Uj€
Jj=1 1
_ % * % -
k=1 1
(wg)(A)= T b, %
= b . U. *|J*
aB ko1 K j=1aJ UJVkAV UJ
b, I a,(UV)AUY,)
= 1 r a.(U.V u.v, )*
k=1 K j=1 3 KTk
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= Z .b . . * .b 1= .es ;=,...’
1,...n 3 KUV OAUV )%, agby > 0,31, msk=l, .00

n 2

and £ a.b,=(¥a.)(Z bk) =1
jok Y 1 1

so that oB ¢ D.

n
(ii) of{AA +uB) = I ajUj()\A+ uB)U

= xofA) + na(B)

for X,y € €, and hence o is linear.

n n
HMMH#@aﬁﬁUﬂlé%gHMPIMH,thtHMIél-

a.= 1. Hence ||al= 1.

n
Ha(I)|l= Z a,U,U%
1 J

JJJ

]
M=

n
a.Uu. *= L a.= z.
JUJzUJ z1 j z

- M3

(iii)For z € Z, ofz)=

za(A), for z ¢ Z .

i = U. *
(iv) a(zA)= T aJUJ zZA UJ

(v) COR (A)= convex hull of {UAU*= U ¢ (}

n
n
={I a.U. A U*:n arbitrary, Za.= . .
5o 99T Y>85 a0 Uye ui
= {{A):a ¢ DL

Lemma 3.5.4.Suppose A is a hermitian operator in the von Neumann algebra R
and let n€ N U {0}. Then there exists a finite orthogonal family Gl""’

Gk of projections in R with G1 + G2+...+ Gk= I and o e D such that
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we. (650(A) < (" W(A), 3= 1,2, k.
J

Proof. We use induction on n. For n= 0, take k=1, G1=I and o the identity

map on R.

Suppose that for some n, suitable Gl’ GZ""’Gk and o have been found.
For each j, Gja(A) is a hermitian operator of RGj. By Lemma 3.5.2. there

i j i . .1 . . i i . .Q.=0,
exist projections PJ and QJ in ZGJ and UJ unitary in IZGJ such that PJQJ

Pj + Qj= Gj (RGj is a von Neumann algebra on Gj(H) as RGj is weakly closed.

See the proof of Theorem 3.4.8 under case (i).) such that wP.(%Pj(Gja(A) +

J
(%)n+1 w(A) by induction hypothesis.

IN

UJ-GJ-OL(A)UB-‘)) < W "(Gja(A))

J

nlw

Similarly, wqj(%Qj(Gja(A) + U,6,0(A)UY))s @™ win).
k

Then U= % (:)Uj is a unitary operator of R with UG,=U;.

k k
For, UUk= I @uju3s= I 6= 1and U = 1.
1 1
k

UG, = (i:GDUJ.)(o RN S co)= UJ.GJ.(For details see §4.1) = Us.

With B , v in D defined by B(R)= %(R + URU*), (R € R), v = Ba
we have
PJ-Y(A)= %Pj(a(A) + Uo(A)U*)

k k
= 3P.(Z G.o(A) + U(Z G.a(A))U*)
VAP 1]

= %Pj(Gja(A) + UGja(A)U*)

= %Pj(Gja(A) + Uja(A)Ug)
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so that

+
wg (@Y () = @™ w(A) 3= 1,2,k
J
Take G1= PP...;3k= Pk’ Gk+1= Ql""’ G2k= Qk and replace a by y .Then

the result holds for n + 1 and hence the lemma holds by the principle of fi-
nite induction.

Lemma 3.5.5. If A is a hermitian operator in R and € > 0, then there exists
o e Dand z e Z such that ||ofA) - z|| < ¢ .

Proof. Let n(>0) be an integer such that (%)n w(A) < €. Choose a,Gl,Gz,...,

Gk as in Lemma 3.5.4. With aj= mG.(Gja(A))’ we have
J

)]
oW
72N
[p)]
Q
—
>
~—
IA

S [aj + ij(GJ.OL(A))]Gj

.+ .
(aJ £ )GJ

IA

by Lemma 3.5.4 and by the fact that mG(AG) < AG £ MG(AG). Hence 0 :;Gja(A)-

a.G. §E:Gj. Now summing up as j varies from 1 to k,

JJ
0 A lz( G, S
< - .G. 1,
a(A) ;%39
k
Hence |pk(A) - I a.G.||< el
1] 973

. k
Taking z= & aj Gj,we obtain the conclusion of the lemma.
1

Lenma 3.5.6. Let Al’ A2""’An be operators in R and € > 0. Then there
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exists o ¢ P and z, ,z

12Zpsn 02y € Z such that Ila(Aj) - zjlh<e for j=1,2,..,n.

Proof. We can assume that Al’ A2""’An are hermitian (if not, use real

and imaginary parts,replacing n by 2n and ¢ by 1¢).

We prove by induction on n. For n= 1, this holds by previous lemma. Su-

ppose we have found B €D, Z13ZpsesZy g in Z so that |B(Aj) - zj|] < ¢

for j= 1,2,...,n-1. By Lemma 3.5.5 applied to B(An) there exists vy in D and

z, in Z such that ||Y(B(An)) - zn||< €.

- . = R - . é . - . . s ,
Also HY(B(AJ-))‘ z5 M= lIv(B(Ay) -zl < (1B (A - 25l < e j=1
2,...,n-1, since ||y||= 1. Thus the result holds for n with o = yB and zy

ZysenesZy . Then the Temma follows by the principle of finrite induction.

Theorem 3.5.7. (The Dixmier approximation theorem). If Al’ A2"""An are

operators in R, then there exist 2152950052 in Z and a sequence me)? in

D such that

1%m ]bm(Aj) - zj||= 0 for j= 1,2,...,n.

Proof. By induction on m, we shall construct Bm in D and z§m),...,z£m) in
Z such that
* . (m) ‘ -m . _
(%) By Bl Bl(Aj) - zj ll< 27 for j= 1,2,...,n; m= 1,2,...

The previous lemma gives the starting case m = 1, when applied to Al’

Aos...,A with e=4. It gives the 'set-up'from m to m + 1 when applied to

B Bn-1 --- B(A;)n0= 1,2,...,n with e = 27(™1) Thys the construction is

possible for all me N.
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(m+1)

| < [1%; = B+ B e B1(A;

|18m+1 By - Bl(Aj) - 23

) g (o 8y () - 2 (™))

2‘(m+1) + 2‘m < 4 2—(m-1).

Sm+1 -
Thus for each j, (z§m)) is a Cauchy sequence and hence converges in
norm to some z in 7. Choose m, such that]lzj - z§m)]|<572 for j= 1,2,..,n,

ML
ifmz2 m,- Choose m, such that 2 <~§

1 . Take my= max(mo,ml). For m 2 m, and

j= 1329'--9n’ by (*) we have
18 8 - vve B8 (A) = 2. ]IS B .. B8, (A) - 2™ [ +]| 2{™ - 7 ||
mm-1 7" T271Y) R M RS ] j j

< g/2 + ¢£/2= ¢,

o]

Take o = B 8 . ... ByB . Then the theorem holds for (o ),-

Theorem 3.5.8. If R is a von Neumman algebra with centre Z and A € R, then

CER(A) meets Z.

o]

Proof. By the above theorem, there exists a sequence (um)1 inD and z e Z

such that limlbm(A) -z || = 0.

m >
But um(A) e Cop(A) by Lemma 3.5.(v) so that am(A) ~z implies z €
CoRiAS (norm closure). Hence EI-OR(A)ﬂZ# 0.

Later we shall show that for finite von Neumann algebras R(see 6.4.11)

fEﬁ(A)f\Z is singleton for each A in the algebra R.

(See Corollary on p.254 of [1].)



102

We shall close this section with two more results, which have useful

applications.

Proposition 3.5.9. Let A,B be in the von Neumann algebra R. Then Cop(A +B)

NZ < Norm closure of (Co, (A)N Z+ Co BYNZ). .

R
Proof. Let z ¢ EER(A + B)f\Z and €> 0. There exists ana ¢ D such that
[la(A+B) -z <e.
Consider aA,aB and €. Then by Theorem 3.5.8 there existsa Re D
and z; € -C—ER(OLA)(\ ZC—C—ER(A)(\ Zand z,¢ C_oR(aB)(\Z‘CEER(B)ﬂ Z such that

18(a(A) - z; || <e and |[B(a(B)) - z,|| <e¢

As ||8a(A +B) - z|| = [B{la(A+B) -z} |[s|la(A+B) -z]| <e, we have

llz - (z) + 22)|| =||[(z - Ba (A + B)) + Ba(A) - zy + Ba(B) - .| € 3¢ .

Hence the proposition.

Proposition 3.5.10. Let A € Rand ze Z Then C_oR(zA)f\ Zis contained
in z(Cop (AN D).

Proof. Let R ¢ Top(zA)\ Zand € > 0. Then there is an ae Dsuch that [[o(zA)
- R || < €. By Theorem 3.5.8, there is a g ¢ Dand R € Cop (AN 2eCog (AN Z
such that ||BlaA) - R, || <e.

Then ||z 8 @A) - R|| = ||8{a(zA) - R }||<e,|| zB@A) - zR H < |zl
Thus R - zR)[|s e(1 + {jz]|). Thus o (zA)N Z € z(To( MND)= 2 (Co, (A) N 1),

since Cop(A)N Zis norm closed.

Hence the proposition.



CHAPTER 4
ELEMENTARY CONSTRUCTIONS WITH VON NEUMANN ALGEBRAS

In this chapter we study in detail the von Neumann algebras that are
obtained as the result of

i) the direct sum of a given family of von Neumann algebras,

(

(ii) the reduction of a given von Neumann algebra,

(ii1) the dinduction of a given von Neumann algebra, and finally
(

iv) the tensor product of a finite family of von Neumann algebras.

4.1. Direct sum of a family of von Neumann algebras

Let (H) be a family of Hilbert spaces. We know that H= I (:) H,
o'aed aed o
the direct sum or Hilbert sum of (Ha) J,is the Hilbert space of elements
o€
_ s V4 . .
X= (xa)a e with x € Ha for eachace J, ang‘ka” < wsand with the inner

product given by

[x;y1 = 1 [x, y,]
€

for x= (xa)a cgr Y7 (ya)cxe J in H.
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Let T, ¢ B(H) for each a e J, with sup|| TOL||<oo.Then define T:H + H
aec J

by T(xa)a€J= (Taxa)a c We denote T byag J@Ta and it is easy to check
that T ¢ B(H).
Theorem 4.1.1. If (Ra) is a non-void family of von Neumann a]g‘ebras,with

oecd

Rq on Hy for each o e J, then

R =<{ T @Ta: sup[|TOLH<°°, Ta £ Ra‘L

o€ J aed d

is a von Neumann algebra on H= % @ Ha . The operators QB= I ®s

BI
o€ ] aed &FPC

form an orthogonal family of central projections inR and the centre of R

is given by Z={ © ®z : supl|z ||<=, z_e Z, the centre of R,} ,where §
a € ' ¢ o

¢ aed af

[lif a= B

<
LO if ot 8 and Ia is the identity operator on Ha . R is called the

dinect sum of (R)

3 z
), e and is denoted by ® R, -

aed

Conversely, if R is a von Neumann algebra on H, (Q,) A is an ortho-
[0

gonal family of non-zero central projections in R with I Q= T and Hy=
ae A

QaH,a e A, then there is an isomorphism U:H> EAG)Ha(onto) such that URU-1 =
o

ag A®RQG.; j.e., R is spatially isomorphic toa gA@RQa.

Proof. If T= 2 (DT and S= I (®S,, then clearly T+S= = (»
aeJ o o€ J a e J

(T + S)andTS= I (¥) T_S_ . Besides, T*=t (PT* . For, if x=
o o oe J @ a aed o

(x ) s ¥= (¥q) in H= I H , then [Tx,yl= =z [Tx .,y ]
aaedy -YozaEJ a€J®a d aedaaya
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T [x ,T*y J= [x,( Z @T*)y] so that T*= I @T* .
aoeJ @@ a-a oed

It is clear that g = I (:) R, is a *-subalgebra of B(H). Let T' ¢

aed
B(H) with T'e R'. Then T' commutes with I (3) 8 o I =Qz Thus T'Q=
o€ d
QBT' so-that T' leaves HB invariant. Let T =T [H Then (T! )B g defines a
bounded operator on H and ( T')(x (T X ) = (T'x ) =
@ BBEJ BBReyJ Bge J

T (:)Q T'x = T' 3 Q x =T'x where x= (xp) . Thus T'= I
BeJ g B B eJ (:> B B g Bed ~  ~ Bey (:)
T' and z T)(z T)—z T T (T T + T =
: B€J® @ @ B€J®BBEJ 8

z (:)T T' . As T'T= TT', we conclude that T T' = T' T for each RBe J.
Be J B BB B B

Hence, varying T, in R, with T = 0 » T! ‘. Thus T'= x T

€ z (:) R'. i.e ,( Z (:)R )'C 2::(:>R The reverse inclusion is

B ed oed
clear.

Hence ( = (DR )'= 2 @R
aed a aed

Since R, is a von Neumann algebra on H,» by the double commutant

theorem 1&= R& for each o0& J. Hence

z R= 1L R!'= (X R')'" (by the above argument)
anJ@a C)I.EJ@OL oEe o

which is a von Neumann algebra on H, being the commutant of a *-subalgebra

(T @rIN( I @rY"
oed oE J

of B(H). The centre Z of I @R
QEy

( Z@RIN( I Br)

ae d ae J
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) a§J®(RamR'a) = L @ Zy -

aed

Conversely, if R is a von Neumann algebra on H with centre Z and if
Qa is a central projection in R, then RQof {RQa:R e R} is a von Neumann al-
gebra on Ha= QaH' For, obviuosly, RQ, is a Tw-closed *-subalgebra of B(H)
and hence RQa is a von Neumann algebra on Ha. By abuse of notation we will

denote thisvon Neumann algebra by RQ . Since Z Q = I, with Q Q,= o fora#8,
a ae A o R
X € H can be written as

X = L Q x
ach @

2 2
and [x [|™= z[|Q x[[" and hence (Qx),.p € I Q. Recall Hy =
acA O ac A

Q Hso e A. Define the map

U:H> I@®H, by
ach

Ux = (chx.)a eA’

Then, obviously, U is an isometry and if (Qaya)a cA € z @Ha, so that
oA
aeg }|Qayd]|2< ® , then let y= onzeA Qy, in H. This is possible since

. . . . 2
h ©,
Q a}ou:/-\ is an orthogonal family of projections and ang”Qaya“ < Now

= Z = =
QBy Qs(a Qay)a QByB and hence (Qaya_)mA (Qdy)a a S° that

Qy) =Uy.

o o o€gA

Thus U is an onto isometry and hence H and T @Haare isomorphic.
ach

For -T ¢ R with sup |Tq]]< > and x in H,
& acA -
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-1 - -l
U L@TR) Ux = U OT)0x)

oA A
=it o x
oo geh
- I T
aeh O‘Qo‘x
so that U'l( z @T Q,)U= ZTyQy € R (4.1.1.1),as R is
a a . . . LY
oA o
strongly closed. Thus the map ¢ : - Z @T Q ~ I T.Q given by (4.1.1.1)
och & acA & ¢
is a *-isomorphism of I ®RQ<1 into R. ¢ 1is onto. For, since 2 Qf L
acA oA
and since R is strongly closed, T= I TQa for each T in R . Further, TQ,
ach

leaves roH invariant as Qa belongs to the centre of g, sup]|TQa||g Tll< o
A

and UL 3 (DTQIU= 1§ TQ= T
ach

aeA

Hence b @R ch and R are spatially isomorphic (i.e.there exists
achA

an isomorphism U:H +Z @Ha(onto)such that U'l( b3
oe A aeh

@Roa)u =R).

Remarks.Dixmier [1] uses m®R instead of I @ Ry and calls it the
aeA & aeA

product of (Ra)aeA

4.2. Reduction and induction

Throghout this section R 1is a von Neumann algebra acting on a Hilbert
space H with centre 7z, E is a projection in R and M= E(H). Then ERE =
{EAE: A € R} is a *-subalgebra of B(H) and m—c]osed since ERE={ A: A ¢
R, EAE= A} . The restrictions {A|M:Ae ERE } form a von Neumann algebra



108

acting on the Hilbert space M. By abuse of notation, we denote this von

Neumann algebra by ERE and callit the neduction of Rto M.

Lemma 4.2.1. If Ac R and A'e R', then AA' = 0 if and only if CACA.=

L)

0.

Proof. If CACA.= 0, then AA'= ACACA.A = 0.

Suppose-conversely AA'= 0. Recall that CA= [RAX: R ¢ R, x ¢ HJ]. SinceA'(RAx)
= RA'Ax= RAA'x= 0 for each R ¢ R, x ¢ H and since A' is a bounded operator,

A'C,= 0. Hence C

A AIC = O; i-e.,CACA|= 0.

A
Remarks. In other words, for A € R, A' & R' the following are equivalent:

(i) AA'= 0.
(ii) There is a central element z € Z such that Az= 0 and A'z= A'.

(ii)= (i) clear. (i)= (ii) if we take z = Cpi and apply the above Temma.

This modified form of Lemma 4.2.1 is generalized to pairs of n

operators from R and R' in Proposition 4.5.11.

For each R' ¢ R', the operator R'E leaves M invariant and annihilates
Mi'in H. The mapping
® :R' >~ R'E
is a *-homomorphism from R' into B(M). Thus the set {(R'E)|M:R'eR'} is a
*-subalgebra of B(M) and contains the identity E|M on M. .By . abuse of
notation we denote this algebra by R'E and call this the induction of R'

on E or on M.

Theorem 4.2.2. R'E is a von Neumann algebra and (R'E)'= ERE.
Proof. We have already observed that ERE is a von Neumann algebra on M.Let
T €B(M) such that T € (R'E)'. Let S= ToE. Then SeR" =R, for, SR'y =

(ToE)R'y= ToER'y= ToR'Ey= R'ETEy= R'E(ToE)y= R'Sy for R' ¢ R’ and for
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y & H. Hence, T=ESE ¢ERE. Thus (RE)' ¢ ERE. Conversely, for Re R and
R'e R' we have (ERE)(R'E) = (R'E)(ERE) and hence (ERE)E)(R'E). Thus ERE
= (R'E)' (4.2.1.1).

Now let T'€ B(M) such that T' e (ERE)'. We shall show that T'¢ R'E.
If this'is done, from (4.2.2.1) it follows that RE is a von Neumann algebra

as

R'E <(R'E)"= (ERE)'< RE ,

and as R'E is a *-subalgebra of B(M) containing the identity.

Let T' ¢ (ERE)', which is a von Neumann algebra on M. First let T' be

n

unitary. Since C_= [REx:R € R, x ¢ H], the set D= {IR.x,:R,s..sR. e R X7,
E p 17 1 n 1
XoesesX € M }is dense 1'n. CE(H). Define the linear transformation
¢ :D —>CE(H)
by
n n
® (LR R Ty

Then ®is norm preserving. For,

% 2. %o e, 12
o2 Rex = I £ R T

n
- & [R.T'"x,,R.T'x.]
i,j=1 1 LN | J

n
. Z_ [R,ET'x., R.ET'x ]
i,j=1 1 1 J J

n
% [ER*R.ET'x.,T'x.
i j=1[ SRIET X, xJ]

s



110

n
T VER* |
i,j=1[T ERjRiExi,T xj]

n
Z * I %T?
1.’J.=1[ERJ.R1.EX1.,T T xj]

n

£ [ER*R.Ex.,x.] (“T' is unitary)
=t T

n
L
i,3=1tRi%i Ry

n
|| X 2
_“i=1Rix1“ .

Thus ¢ can be extended uniquely to an isometry operator &' on CE(H).

Define ¥ = &' o CE. Then VYeB(H) and v CE = CEY =y,

For every R ¢ R, and X; € M, we have

n n n
)X = 3'( L = X !
y (R1=1Rixi) ® (i=1RRixi) 1_=1RR1.T X
n n
= % ' = l]_/ Z
RIRT'x; = RY(ERx,).

Hence WRCE= RWCE= RY for each R £ R. Then

YR = YR (C. + (I - cE))

~7E

W

‘PRCE + ¥ R(I - CE)

RYC. + ¥ (I - C

E R

£)

Ry.
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Thus ¥ ¢ R'. Now for x e M,
T'x=¥ (x)= V¥ Ex

and hence T'= YE ¢R'E. Hence (ERE)' c (R'E), since any operator in (ERE)'

is a finite linear combination of unitary operators.
This completes the proof of the theorem.

Corollary 4.2.3.

(a) R'E is a B*-algebra of operators.

(b) The map ¥ :R'CE > R'E:R'CE+ R'CEE= R'E is an isomorphism onto R'E and
is norm preserving. ¥ gives an isomorphism of R' onto R'E if and only if

CE= I.

(c) The centre of ERE= the centre of R'E= ZE.

Proof.

(a) is obvious, as R'E is a von Neumann algebra on E(H).

(b) ¥ 1is injective, since w(R'CE)= 0 =>R'E= 0 =>CR.CE=O(byLemma 4.2.1).
Hence R'CE= R'CR,CE= 0. Clearly, ¥ is a  homomorphism. y is onto. For,
R'E= (R'CL)E for each R' g R'. Thus R'E= ¥(R'C_) ThereforeV is an
isomorphism of R'C. onto R'E. ¥ is an isometry by (a) and . Theorem

1.5.12,as ¥ is an isomorphism between two B*-algebras. The last part of

(b) is now clear.

(c) In view of the above theorem

centre of E RE= centre of R'E.
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By (b), centre of R'E= ¥(centre of R'CE). But the centre of RC. =

Reg MR'Cp D(RARC= ZCp. If T e RC, M R'CE, then

- = ] [} !
T= R1CE RZCE’ Rls R, R2 e R'. .

Then T ¢ R AR’ and TCe= T so that
T ¢ (RnR')cE= €.

Thus the centre of R'CE= ZCE. Consequently, the centre of R'"E =

Recall by isomorphism and homomorphism we mean, respectively, *-

isomorphism and *-homomorphism only.

Proposition 4.2.4. If R is a von Neumann algebra with countable generators
and if its centre Z is countably decomposable, then R is isomorphic to a von

Neumann algebra acting on a separable Hilbert space.

Proof. As Z is abelian and countably decomposable, by Theorem 3.3.11 Z has a
separating vector x(say). Consider [Rx]= E' in R'. Then Cpo= [R'E'y:R" ¢ R',
y € H]= [R'Rx:R € R,R' ¢ R']= [2'x]= I, by Lemma 3.3.10 and by the fact that
x is a generating vector for Z'.  Hence by Corollary 4.2.3(b), R is
isomorphic to RE'. Since R has countable generators ,the space [Rx] is sepa-

rable and hence the proposition.

In Theorem 3.4.2 a sufficient condition for CE < CF to imp]y EL F
was given. We give below another sufficient condition for this implication

to hold.

Theorem 4.2.5. Let R be a von Neumann algebra and E and F be projections in
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R. Let C. sC_. If ERE has a generating vector x and FRF has a separating

F E°
vector y, then F £ E.
Proof. By the comparison theorem, there are central projections Z1 and 22W1th

2 .
£ FZ, and EZ, > FL,,.

1 2 1

2122= oand Z, + Z,= I such that EZ
(a) If P, Q are projections in Rwith PnQ and PRP has a generating vec-
tor w, then QRQ has Uw as a generating vector, where U*U= P, UU*= Q,Ue R.

In fact,

R'P is spatially isomorphic to R'Q. For, if UP= y, then U*Q= V consi

dering V:P(H)~ Q(HkNow VR'P vl

= UPR'P U* Q= R'UPU*Q= R'Q.Q= R'Qs since
UPU*= Q. Hence the respective commutants of PRP and QRQ are spatially

isomorphic. Hence Uw is a generating vector for QRQ.

(b) If P,Q are projections in Rwith P £Q, Cp= CQ and R'P has a separating

vector w € P, then R'Q also has w as a separating vector.

For,since Cp= CQ’ by Corollary 4.2.3(b) RP and R'Q are isomorphic,
under the map R'P+R'Q. R'Qw=>0 =>R'QPw= O("w €P)=>R'Pw= 0('P£Q)=>R'P=0
(" w is a separating vector for R'P)=>R'Q=0 (under isomorphism).Hence (b)

holds.

Proceeding with the proof of the theorem,let Ez,~ E;Z; s FI;. Since

ERE has a generating vector x, E21R EZ1 has le as a generating vector and
by (a) Ule is a generating vector for E121R Elzl, where U*U= EZ1 and UU* =

E1Z1' U ¢ R. Further, CE21= CElzlg

X is a separating vector for R'Elzl, it is a separating vector

Cle; but, by hypothesis,CF.g Cp- Hence
by (b), as uz,

for R'FZl. Thus UZ,x is a generating vector for FZ, RFZ, Therafore
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[(FleZle)(Uzlx)]= FZ1 ) [FleZ FZly]. Hence by Theorem 3.4.6

[(R'FZ{)(UZ)x)] % [R'FZ;¥].(4.2.5.1)

By hypothesis,y is a separating vector for FRF and hence for its sub-

L]

algebra Flezel. Hence y is a generating vector for R'FZ1 and  therefore

[(R'FZl)y]= FZ, (4.2.5.2). As observed earlier, UZ;x is ageneratingvector

for ElszElzl. Now (4.2.5.1) and (4.2.5.2) imply that FZIaQ [(R'FZl)Uzlx] =

[(R'FZ)EUZ,X]("UZ)x & E Z))= [R'E{Z .But

1 141 Ule] < E,Z.~n EZ,. Thus FZ

141 1 1% B

1) 1 1 1

EZ, £ FZ

1 Hence EZ,~ FZ,. As E22>tFZZ, it follows that F&E.

1 1 1
Lemma 4.2.6. Let R be a von Neumann algebra over H and x a separating vector

for R . If there is a generating vector for R, then R x] ~I.

Proof. As x is a separating vector for R, x is a generating vector for R ',
Hence [R'x]= I. - By.  Proposition 3.3L5,1 C[Rx] = C[R'x] = 1. Let [Rx] =
E' be inR'. Clearly, [E'R'E'x]= [E'R'x]= E'[R'x]= E'I= E', Thus x is a
generating vector for E'R'E'. If y is a generating vector for R, then it is
separting for R'. By applying Theorem 4.2.5 to E', I in R', we have I~E',

since I ¢ CE" X is a generating vector for E'R'E' and y is a separating vec-

Corollary 4.2.7. If there exist.a generating vector x and a separating vec-
tor y for a von Neumann algebra R, then there is a vector w which 1is  both

generating and separating for R.

Proof. Let E'= [Ry]. Then by Lemma 4.2.6, E' ~ I. Hence there exists apartial
*

isometry U' in R'such that utur= E', U'U'= I. Then as y is a generating vec-

tor for R', y is a generating vector for E'R'E'. . Hence y is a separating

vector for RE'
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Also, RE'y]= E'Ry]= E'. Thus y is both generating and separating for E'R'E'
and hence by (a) and (b) in the proof of Theorem 4.2.5, U'y = W is  both

generating and separating forR' and hence forR .
4.3. Finite tensor products of Hilbert spaces

Definition 4.3.1. Let Hl’H~""’HN be a finite sequence of Hilbert spaces.Let
N

® be a conjugate-multilinear functional on n=1Hn' Then @ is said to be of

Hilbert class if

(1,

(a)d (x*77,...,x is separately continuous in the variable x(n) € Hn,l s

n €N, when other variable are fixed; and

1) (2) (N)y 2
() oz el By 2y,
SRR T T T
where for each 1< n <N, (xg:))a £y is an orthonormal basis for the
n “n

Hilbert space Hn.

The following lemma shows that the property (b) in the above definition
is independent of the particular choice of orthonormal bases wused in the

definition.

(n)

Lemma 4.3.2. Let H be Hilbert spaces, 1<nsN, and Tlet (xan)as:dh

(yén)) acg be a pair of orthonormal bases for Hn' Let ¢ and y be a pair of

n
N
conjugate multilinear functionals defined on nngn' Then the following hold:
(i) If, for each n, @(x(l),...,x(N)) is separately continuous in the
variable x(n) > Hn when the other variables are fixed, then
| (x&l),...,x&N))|2= % | ®(y&1),...,y&N))|2.
Q1 se - O 1 N al,__.,aN 1 N
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(Thus if ¢ is of Hilbert class relative to the bases (xgn))a eg » (n=
n

n
(n))

o ‘o E\J(n
hn n n

1,2,...,N), it is of Hilbert class relative to the bases (y
1,2,...,N)).

(ii) If ¢ and ¥ are both of Hilbert class, the series
R 1y D

b seens ,...,x(N))
1200000y O O | N

converges absolutely and we also have

- (1) (N) (1) N)
s ¥1= ( seens v ( seeesYn )
Lo,y °‘1"'Z"°N®y°‘1 Yo ) Yoy o
Proof.
(i) First, we shall prove the result for N=2. For fixed x(z),Q ( ,x(z)) is a

continuous conjugate-linear functional on H1 and hence by the Riesz re-

2y in W, with

presentation theorem, there exists a unique vector X 1

Ild.,x(z))H =1 X(x(z))ll such that

(hs x(x(®),.1 (4.3.2.1)

where [.,.] is the inner-product of Hl' Thus by the Parseval identity

slo(x{1, x(z))l2 =2 I[xgi), x(x'2))7 2

o 1

1

- Py

(1) y(,(2)y7]2
gl by s ¥l

- (1) , (2)y 2
glicb(yal s x 7N
(1))

(1)) e g and (yq

% Ty &Y 1 %& 9

where we use the fact that (x are orthonormal
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bases in H1 and the identity (4.3.2.1). Thus

) |¢(x(i),x(2))|2 -z la(ytt), <0202, (4.3.2.2)

9 1 1

Then from (4.3.2.2) it follows that

] (1) (2) 2= (1) (2) 2
(1130%] (I)(Xal s XO2 )I al’z%l (I)(ygi s Xa2 )I . (4.3.2.3)

Arguing with (b(x(l), .), we similarly have

(1) (2))2_ (1) (2)y,2
le(x*, %= = Je(x'H, (4.3.2.4)
"‘zI tTe O‘2| y"‘z)|
and hence
Z|¢(y(1)’ X(Z))l 2_ % M,(y(l)’ y(2))|2
o, o oo a, al oy
Consequently, we obtain
O I ANt o b (4.3.2.5)
%2 ‘ 1% ! .
From (4.3.2.3) and (4.3.2.5) we obtain pX |®(xg}), ng)ﬂ 2 =
0 50 1
T |©(y&1), y&Z))iz. With the modification thatd (.,x(z)) is replaced
0Li,0tz 1 2
by ¢(.,x(2);...,x(N)) and g (X(l),-) is replaced by @(x(l),.,x(3),...,$N5
so that X(x(z)) is replaced by X x(z),...,x(N)) and X(x(l)) by X(x(l) ,

(3) (N)

X seeesX , we obtain

) ‘dx&),x%)h.”xx)ﬂz= z

al,--.,aN al ’".’dN

(1) [(2) (3) X(N))IZ-

( ] ] 9 se 3§
120, Yoy Koy Ky
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Now replacing the argument above inductively as often as necessary, we obtain
(i).

k11 | a(x (1) ..,xg&'\l\l))q’(x&i),...,x&:) | {ZI:D 0;) xg&':) l +Z|‘£’(xai),. ,>é ))] }<eo

and this implies the absolute convergence of the series def1n1ng [®,¥]. Now

writing, v (x(l),..,,x(N)) [Y(x (2) . x(N)), (1 )] by the Riesz representa-

tion theorem, where Y(x(z),..,,x( )) is a vector in H, and using the fact that

{x(l)} is an orthonormal basis in H,, we have
o) le 1

1 N N
&adx%), (5W ,x()) =
.y [X(X(Z), ’X(N))’ ( )][x(l), (X(Z)’ ’X(N))]
o %
_ [X(X(Z), ,X(N))’ Y(X(Z)’ ’X(N))]

=z q)(,y(l)s X(Z),- ,X(N))ly ( s X s sX
1 % o
Thus
(1) (2) (N (1) (N) -
o 1 Z.,“N¢(x“1 * o “’XO‘NE\P oy 0 oy ) i

L n a0, @)y T Ty

Arguing inductively, we obtain the result (ii).
N

Definition 4.3.3. Let @,¥ be two conjugate-multilinear functionals on T, Hn,both

of Hilbert class. Let o € §. Then we define



Theorem 4.3.4. The set of all conjugate multilinear functionals of Hilbert class

N
on H=m Hn is a Hilbert space under the operations in Definition 4.3.3 and the inner

1
product [,] given by (ii) of Lemma 4.3.2.

L)

Proof. C]eariy, ¢ +¥ anda @ are conjugate multilinear when ¢ and y are so. Let

{Xg?)}agd be an orthonormal basis in Hn’ 1sns N. Then

n
(1) (N)y 2 (1) (N)y 12 (1) (N)y 2
o )(xy 'aeesx g 20{|a(xg 5.t iux Y17+ xS, x ) C ke
o+ kg ) ! ot
Hence & + ¥ is of Hilbert class with ¢ and y . Clearly, ad®is of Hilbert class
if ¢ is.

It is easy to verify that
(1)),

’X

Seeo y “ee
% N % N
has all the properties of an inner-product excepting that [¢,4]= 0 ==p = O.

To prove that [¢,8]= 0 = ¢= 0, let (x(l),...,x(N))

(i)

[o,v]= zolx

be an arbitrary vector in

H with each x' '# 0. Without loss, we can assume the vector to be such thatllx(n)H

=1,1<ng N. Since any vector of unit norm can be incorporated into an orthonormal

G

basis it follows that [®,9]= O implies ¢ ceesX

now i (y{1),. .y

N .
then o(y(1),...,y"))= (o 1y s

is an arbitrary element in H, y(i) # 0 for each i,
(1) y(N)

{1) RN (1))
T

) = 0. Since ¢ is conjugate
multilinear, Q(y(l),...,y(N))= 0 if any y(1)= 0. Thus @ = 0.

To show that the set of all conjugate multilinear functionals of Hilbert class

is complete under the norm induced by [.,.], let {¢k}k be a Cauchy sequence. Then



120

Iq) (X(l),...,X(N)) _ @Q(x(l)’.”’x(N))l 2 qu)k _@2 ” 2 %HX(]) “

k
i x(i)
since, if x # 0,«——(TT———
x 7l

If x(1)= 0, the inequality reduces to equality to O.

can be extended to an orthonormal basis in Hi,(lsi <N).

Thus for fixed (x(l),...,x(N)) e H, {o k(x(1>,...,x(N))} s a Cauchy se-
(1)’. (N))

quence of complex numbers and hence converges to a unique number ¢ (x c.sX

(say). The conjugate multilinearity of O for each k clearly implies that ¢ is

also conjugate multilinear on H.
ol ., x4 My 1in g, (. 2Ny (43

(X)|<€

If fo(x)= 1Lm fk(x), x ¢ Hy, f, Tinear functionals on H , then |fk(x)—f0

if k 2 k {x), so that sup|f, (x)|< M(x), for each x ¢ H . Hence by the uniform
K

boundedness principle, sEp kallg K < «, when fk are further continuous.

Thus from (4.3.4.1) we have 1|¢(.,x(2),...,x(N))||< K' and

sgp ”@k(:,x(z),..,,x(N)

)|] < K' for some finite K'.
o(x (1) - (1) (2? ...,X(N))I < K'Hx(l) - xél)ll + 0 as x1) (1) 4, Hy. Thus
® has the property (a) of 4.3.1.

Then for each N-tuple Ml""’MN of finite sets in respective index sets

1 N 2 1 N}y 2
oF e o Ep |¢(x§ ),...,xé BWe tmr ..oz | % (xé ),...,xé ))l
1 N N 1 N k~>>aeM ane M 1 N
171 N~ N
<lim T ... T |®k (&§1),..,,&§N))|2 = 11m||¢ﬂ|2 =L (say) since
k+oo 1 N
o€ Jl % € JN

\\g(- ®d\2 <e?,x, L2k, implies that 1hn\\®|F exists and is finite. Hence ¢
0 ke k

is of Hilbert class.
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Finally,

oo, 2 M(x“)”_”xgn)_ @Mxy)”.”xm))lz =

0%[5 Ml anEMN 1 N 1
- 1) (N) (1) (N)y 2
= lim z ceegy Z | ( ( seeasXy 0) = @ (x seeesXn )|

g %€ M a ety Ppd g koo %

15 — |I° 23tk for arbitrary finite subsets M ,...M  of
¢ Jim ||<1?2 @kll <g 1 xn,s fora rary finite subsets M;,....M_
the respective index sets.

Thus ||o- ¢y ] < € 1f k 2n,.
Hence { ¢} converges to ¢ in the norm || .]| induced by [.,.] of 4.3.2(ii).

Definition 4.3.5.

(a) The Hilbert space of Lemma 4.3.4 is called the tensor product of Hl""’HN and
N

is denoted by H; COH,(®).. @ Hyor byf@ H .

N N
(b) The symbol T@Z denotes the conjugate multilinear functional ¥on nH ,de-
1 1

fined by W(x(l),..,,x(N))= [Zl,x(l)]...[ZN,x(N)], where 21 € Hf(lg i <N). We
N
also write 7, ®)... ®Z for nT=Tl@zn.

Lemma 4.3.6. Let Hn’ Zn(1 <n< N) be as un Definition 4.3.5. Let Zhg Hn,l <n <N,

o € €, Then:
N N

N
(i) 71T®Zne 71T®Hn and ||1T®Zn||=

—g =

N N N
(1) [71T®Zn’ Tlr®z;,1= nlz,. 2,0,
(1), R, ...®7, + 1, DL,..®L,_VLI®L,,©...QL =
= L,QRL,®. - ©OL,_®C, + 1O, &...Q L.
(V) Q0L,®...® o;®... QL@ ... ©).
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Proof.
N

(i) Obviously, m ®Z1' is a conjugate multilinear functional having the property
i=1

(a) of Definition 4.3.1. To show that it has also property (b) of this defini
N
tion, we argue as follows. If a Z =0, clearly = ®Zn=- 0 and (i)holds.Hence

n=1
(n))

let Zn # 0, 1< n £N. Then choose an orthonormal basis (Xa o €
n n

>

ycontaining
n

n)_ _n

Zn i H., l<ngN.  Then let x(B S
IZnI n - n ” n}
N
SR PR
di,..., Oy 1 %

N N
n)42 : 2
-z M2 e Tz)? <.

b
N

N N
Hence m()Z ¢ T@Hn and l[n @ | = =llz] .
1 1

—3 =

(ii) Let{x(an)}a ey

be an orthonormal basis of Hn,(lg n<N). Then
n n n

N N~
[71T ®1z,; 7{®zn]

N
(x,l,;..,aN 1{ [Zn, xa(n) ] [XOLr(]n)’ Zr']]
n

( 2 fz, x(n) ] [x(n), 2'1)(due to absolute convergence)
) anE Jn n o n CXn n

¥
—3 2=
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[z,Z1,

L]
- g =

Hence (ii) holds.

(i1i) and (iv) easily follow from Definition 4.3.5. .

This completes the proof of the Temma.

4.4. Finite tensor products of von Neumann algebras

Definition 4.4.1. Let Hn’ (1= n £N), be Hilbert spaces and Ane B(Hn), (12 n
N

£ N). If ¢emy Hn’ then the Tinear transformation A defined on the set of con-
1

jugate multilinear functionals ¢ by the equation
(A<I>)(x(1),...,x(N)) = ‘D(AI X (1),...A* X (N))

N
is denoted by the symbo]nlrl@An or by A1® ®AN.

Lertma 4.4.2. Let Hn’ (1 £n 2£N), be Hilbert spaces and Zne Hn’ (12 ns N)

Let An’ An eB(Hn) and a € €. Then:

N N N N
(i) m@A_is a bounded operator on m®H _ and|| T®A |[= wilA_||.
L 1" L

N N N
(1) (@A) (@A) = 7®(A, A))-

N N,
(1) (r @ Ay)* = 7 A

N N N
(iv) (T{®An) (Tlr ®1) = T{@(Ahln).

V) A @ @A DA DA D ... DA, +
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A OR  OAOA B ... ®A
=A A .. ®A_ DA+ ADA Q.. OA.

Vi) Ay ® - QA @ - ®Ay = 0(A D ... DA D ... D Ay)

Proof. We shall prove the lemma in the following order (ii), (iv), (i), (iii) ,

(v) and (vi).

N N
(1) (T®A) DA o x(1) . x(N)y
1 1

N
- @A) ¥ (M x M) (say)
1

syt x (R x (N (by Definition 4.4.1)

1 N
N * *
- ® &) 8 0 x W x My

1)

soa Ay x ek ay M)

1 N A X
so((a, A" x D,y AT x M) - ﬂ@(A AR

and hence (ii) holds.
N N
(V) G @MGE z )1, k)

N
= (1T @ An) 0] (x(1)9~-~9x(N)) (Say)
1

=1z, AY x(Dy . [Zy, Ay x (N)4
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N
- ® (2NN,
1

Hence (iv) holds.

(i) From (ii) and by finite induction,
N
-‘11T®An= AOI® .. ODI®AL®I®... D ...
(1 ® ® I © A).

N N
To show that m(X) A, is a bounded operator on m (:) H.» thus it suffices to
1 1

show that Ay ® I ... ® I is a bounded operator.
N
For (I)E,’Iil' @ Hn,

(A 1@ @De (1, xM) =5 @] X1, <) Ny,

On the other hand, @(x(l), x(z),...,x(N)) = [X¢(x(2) . X(N)), x(l)] for
(2) |

fixed vectors x ,...,x(N), by the Riesz representation theorem. Thus

(A1C)Z[QD... &I) o (x(l),...,x(N)) = @(AI x(l), x(z),...,x(N))

*

- (1)
i [Xé(x(z),...,(N))’ A

= [A X ,x(l)].
%@, M) (4.4.2.1)
2 _ (1) (N)y,2 :
Now, || @] © = Z|¢(Xa1 ,...,xaN )| =, where (xai)aiEJi is an orthonomal ba-
sis in Hi'
2_ 3 X , xt1)q,2
2] %= Oi’--'-’“nltﬂxgz)’ 0y 7o 1 (4.4.2.2)
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«(1)
A, X
0‘2"--50‘!\1 Zo‘1 e ‘P(Xg),---’ (l\z) oy "

Thus (A, ®1®-.. ®De || 2

Lo llA; X I
Otz,..., OLN 1 Q(xéz),“.’xéz))
Z

[[7AN

A, 5 PANCN O o’

230 Xy laeee
2 N

2 2
= {[All° 1l e[| by (4.4.2.2).

Hence (A, (®)1x ... I) @ is of Hilbert class and ||A1 POIx...® 1|
Thus

II1T O Al <

To prove the reverse inequality, let o< < 1. Let X, € Hn be a unit vector

A Il

A (4.4.2.3)

—a =

such that ]]An x|z (1 - a)llAnIi.

Then by Lemma 4.3.6 and (iv)

N N
H'f@ An)(T® X)H_H“® An %nll

) A
= 7 Ay Xull
7% 7
N N
2 (1- oy,
N
while m®) x_ is a unit vector. This shows that
1
N N
”? () A llz T Al (4.4.2.3)

Then by (4.4.2.3) and(4.4.2.4) 4| ® Al = T HA il -



(iii) If (A1®I®..®...®I)* - (A ®I®..®@1), etc, then
(A, ® ... @A) = (1? I1®... 0 A ®I®...Q1)
=111:(1 ... OLE®1IE® ... ® 1)
A DA ® . © A

Thus it suffices to show that

BMOI® ...ON-LRIE .. I

N
Now, for ¢, ¥ in 7 @ H,and A=A I ® ... ® I we have
1
- 1 (N 1 N
[o¥] =, | o () (1) . ,xaN))\P(xél),...,xéN) )
= D@ M)y, xgi>][xw(x<z>, . <N>),x(1) ]
Y N | %2 N %2 oN

(in the notation of the proof of (i) above)

- L [XA® (x(z),...,x(N))’ X\y(x(z),...,x('\l)):I

A T o % o
= LA Xox(2), . x(N)ys Xy, (2) 0 ((N)y] (by (4.4.2.1))
G aeees Oy ) N a9 oN
= z |:ch(x(z),...,x(N))’ AI Xw(x(z),...,x(N) ):I
A %2 N o oN
1 1
ST D@ <N>), x! )][x( VM X2 )]
Upsenes o 2 o2 ON
) s oD, (N\) oy (D, <)
Ty 9 ON @1 %2 ON

1’ N

[cb,(A I ® ... ®I) .

127
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s (A ®@I®..OD=ARIE..O!
(v) A ) . @AN)+A ® ... @A%@...@AN)}d)(x(l),...x(N))

* xN) (since @ is additive in
N each variable)

(A @ R + AN ... ©4y) o(x{1), . N,y

Hence (v) holds.

- <I>(A1 x(l), (A + Al )x(i),...,A

N
(vi) We have to make use of 4.4.1 and the fact that each dem (:)Hn is
T

conjugate-multilinear.
This completes the proof of the lemma.

Lenma 4.4.3. Let H , (1 £ n £ N), be Hilbert spaces and 1et {xén)& cg be anor
n n'n

thonormal basis for H . Then the set {x @ @x }

J
N aJ €
1<jsN
N N
of vectors is an orthonormal bas1s for n ® H - In part1cu1ar, m (X Ho s se-

1
parable if each H_ is separable; @H —[x (1. .®x :x(1 )eH1’ 1 <=1 EN]'

Proof. xXV® ... ® xuN ,x(i ® - ®x

(1) (1) (N) (N)
[xOL1 o) ] ... [XaN . Xuﬁ ]

0 if 0‘1(1) # u;.("), (i =1,2....N),

N .
(1) (N)), _ (i) -
G ® e @ =Tl

and

Thus these vectors form an orthonormal system. We have to prove complete

-~ N
ness. If it is not complete, then there is a non-zero vector ¢ ¢« (:) Hn such
1
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that  [o, xél) D...% x(g:)] = 0 for all ap,....ay. (4.4.3.1)
1

But, '
[o, xé?@ e ® x(g:)]

B L @(xé}),...,xéz)) (xéi)C)...Q) Xé:)) (x(1) ..,xéq))

ai >

Ol'll’ s Oy 1 N
= z <I>(X(}),.-.,x(':‘)) ﬁ [X(i), x(i)]
Uy Oy O] N1 Y
- (1) (N)
= ¢ (xOL1 ""’XaN ). (4.4.3.2)

Now (4.4.3.1) and (4.4.3.2) together imply that

Fel?= = oM xM)Zoo; sep =0
Olyseesly 1 N

Definition 4.4.4. Llet Hn’ (1 £n £N), be Hilbert spaces and Rn, (1 £n £N),von

Neumann algebras on Hn’ respectively. The smallest von Neumann algebra of opera

N
tors on 111 ® H  containing the setYh = {A1®A2®... @Ay AjeRys 1=1,1,..0,N}
N
of operators will be denoted by “®Ri or, by the symbol, R1®R2®...@RN and
1
will be called the tensor product of the von Neumann algebras Rl”"’RN' Since
N
the algebra generated tgrgﬁt is a *-subalgebra of B(n(:)Hn) with identity by 4.4.
N 1 |
2, it is obvious that ¢ <:>Ri =$)?1" = weak closure of Mt (See 2.3.11.)
1

I

Lemma 4.4.5. Let Hn be a Hilbert space and Bn = B(Hn) for 1 <n < N. Then B

N N
m (X) B is the algebra of all bounded operators on H = = (X) H_.
1 1
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Proof.  Since B is a von Neumann algebra, if we show that B' = ¢, then B = B" =

B(H), as the commutant of € is B(H). Suppose T e B'. Let {xén)} be an or-
n a.ed
non
thonormal basis of Hn’ (1 £nsN). Let Moo sy and kl""’kN be two given
N-Zuples of elements from the indexing sets of the orthonormal bases. ° Let

A

- (n) _ _(n) (n) _ 4
An £ B(Hn) such that An Xp o= X An Xy | = 0 if o # m (1 £nsN).

n n n

(n) _ ,(n) (n) -4 ;
Let Bn € B(Hn) such that Bn xmn xkn R Bn xan 0 if o # m s (1 £nsN).

Then T commutes with A, ®... ©A  and B; ® ... ® B,.
Now, (A, (® . ® AN)(xr1(11) ®...® xrf]:)) 1)® - Ay x(N)
= xn(11 ®...® me)
and A, (%) . ®A maps all the other vectors of the basis x(1)® . x o ) onto

zero. Thus (A (O (O AY T (1)® L@ x N))
A, @ ® AN)(xrs]i)@...@ me ))
(xlﬁi)@)...@ xé]:))

[I7aN
o

and (A1 ® ...®AN) T (xé”@...@ xé:))= 0 if o, # ms s (1 <
If T(x 1)® .® x(N)) S E o Xy D®...0 x(N), then

(1 (N) (1) (N -
@ @x (A1®...®AN)(zca1,...,aN o ®...Ox -

1 N
= Cm ses e oMy x'$'1)® ® xélN)

Thus

T(xn(q) ® .- ® xél:)) =C Xé,?@ e ® xr$1:)‘ (4.4.5.1)

ml,...,mN
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Similarly, we have in general

(xé?@... 3 XéNr)J) = Cq 1) ®-.. © x| ). (4.4.5.2 )

Lo
Consequently, by (4.4.5.1)
B, ® - ©8) Tl @ ©xy)
I ® X

But, (B; (® ... )BT =T(B; @ ...® By) and hence
(B,®... @By T (x 1)® .® (N)) T(Bl®...®BN)(xn(]1)®..®xrgN))
1 N

= 1 (1) (N)
®--- K X ')
1 N
=Cp .. )()... ® xé )
1 N
by (4.4.5.2).
Thus C _ . .
Myseeesly = Ckl,...,kN and this holds for all m, € Ji’ ki € Ji (i =
1,2...,N) and hence the constants C, o = some C, so that T = CI.

100
This completes the proof.

Lemma 4.4.6. For each n, (1 < n < N), let Hn be a Hilbert space; let q](o)be

dense in Bn in the weak operator topology for 1 <n s N. Let T be an
N
operator on H = = (X) H, such that T commutes with each operator of the form

I®-.- ®1I ® Ar(10) ®I... ®I, Ar(]o) £ Br(]o), (1 £n <N). Then T commu

tes with all operators of the form I @ ... ) A/®I®...®T with A <B .

N
Consequently, T g(ﬁ<:>3n)'.
1
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Proof. We suppose, for simplicity of notation, that n = 1. The details of the

remaining cases follow exactly on similar lines.

Let x(M, y(M) pe 4p K, (1502 N). If xél) S ox1) gy K,  then
1 - ) @ <@g <™
D O @ @@ KM s pas ko e
tence TV @ ... xXM ) -1 @ @ <M
T P e A OO L TR (4.4.6.1)

as k »>®. Then [ T(xé”@,.. ® xN), yl(<1)®...®y(N)]—>[T(x(1)®... ®xN),
YW@ . @yM1 s x|(<1) x> x{1), y,gl) >y, since sgpll.vlgl)ﬂ < o
Also by (4.4.6.1) there exists a bounded operator S(X(Z),“_,X(N); y(z),...,

y(N)) on H, such that

1
rxP®...o M),y Ve...@ yV;
- s(82),. XN @) Ny () (L) (4.4.6.2)

Since T(A1®I®...®I) = (A1®I®...®I)T for each A, sBl(o),

A, ® 1 ® ... o6 @...@ M),y Pe...© ¥
- 1ste®, L W () 0y (D) ()

-6V @.. @ M), Wy Ve y? @..@ v
= [S(X(Z),...,X(N); _y(z)’._."y(N)) X(l), AI y(l)]

= 1A, s(x{8) . k(M) (2)

,.--,y(N)) x(l), y(l)]-

Thus [S(x(z),...,x(N); y(z),...,y(N)) A1 x(l), y(l)]
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) [Al S(X(Z)""sX(N)B y(2)_..’y(N)) X(l), y(l)] for all x(l), y(l) in

Hl' Hence

S(x(z) x(N); y(z),...,y(N)) for

S(x(z),...,x(N); y(z),...,y(N))A1 = A

1

let A = 1lim A (weakly), A ¢ B(o). Then
[0 (o} e}

all A, 89 For AcB i

1771 1’
s, 2y L) (),

lim [A, S(x(z),...,x(N); y(z),...y(N)) x(l), y(l)]

0.

= 1im [S(x(z),.w.,x(N); y(z),...,y(N)) A, x(l), y(l)]
(o}

= s, kM (2 Ny (1) (1),

(1) (1)

for all x'*/, y in Hl' Hence

as(x () M@ Ny (@) N (@) (N (4.4.6.3)

for all A ¢ Bl'

Using (4.4.6.2), again for Ac B,
TA®1 ®...0xYe...e xM), Vg WWa... @y

- [T(Ax(l) ® X(Z)(:)...(:> x(N)), y(l)(:) y(Z)(:)__.(:) y(N)]

= [S(X(Z)s"-sx(N); y(2)9--'sy(N)) Ax(l)s y(l)]

= [S(x(z),...,x(N); y(z),...,y(N)) x(l), A*y(l)] (by 4.4.6.3)

6 @ 1@ @), e @00 M

=[A ®I ®...® I)T(x(1)®...® x(N)), y(1)®...® y(N)],
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. (1) (N) ' . .
Since { xO‘1 (:)...(:) xaN }s a; € Uiy (1 <1 <N), is an orthonormal ba-

N
sis for'nC)Pup the above equality implies that

1
TA I ®-.-©0)=0@QI ®... ® DT

for all A eBl.

Now, by Lemma 4.4.2 (ii) and by the above part,

N
TA® .. &) A T(Tlr IQI®... ©A®...0 1))

N
TU®® 8 O ® 1T
(A ®... © AT, A, B,

(:)Bi' (See  Definition

and hence T commutes with the von Neumann algebra =
i=1

N
4.4.4.) Thus T e (m &) B,)".
i=1

IN

Corollary 4.4.7. Llet Hi,(l < 1 £ N), be Hilbert spaces; Rss (1 £1 £N), be von
Neumann algebras of operators on Hi and let Mi generate the von Neumann algebra

Ri’ If R is the von Neumann algebra generated by the operators of the form

T® ...OI,..,1®... NI ®.0... ® Ty With T. ¢ M., then
R=R ® ... © Ry

Proof. Let Ni be the *-algebra generated by Mi U M: with identity, (1 £ 1 <N) .

Then R; is the closure cf N; in the weak operator topology by Corollary 23.11.Now

I® - ©OT; ® ... @I &, T, eNy;, (1

IN

i <N).

Let S be the von Neumann algebra generated by

L={l1 Q@ ... ®T, ®... 0 L,T,e N;, 1<isNI.
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Since Ni is dense in R; in the weak operator topology, by the above lemma and by
the double commutant theorem, S = Rl@... @ RN Thus g > Rl@... @ Rys as
R contains y obviously. That R <Ry ()...(:) RN is clear. Hence the corollary.

Theorem 4.4.8. Let R be a von Neumann algebra on Hn’ (1 <n<N), Hn a Hilbert

N
space. Then R=m (X) R, is a factor if and only if each R, is a factor.
1

Proof. If B, € R, belongs to the centre Z1 of Rqs then, by Lemma 4.4.2 (ii),

1
B 1 ® ... ®1I=8"and its adjoint commute with every operator of  the
form T ® ... @A @ ...® I, ... ,A eR;» 1<1<N,and hence with the

von Neumann algebra r. Thus B' and B'* belong to the centre 7 of R. Hence, if
Ry is not a factor, then g is not a factor. Similarly, if R; is not a factor for
some i, (1 < i < N), then R is not a factor. Thus g is a factor only if each Ry

(1 < n<N), is a factor.

A

N
Suppose, conversely, each Ry, is a factor. Let T be an operator on (:) Hn’
1

lying in Z, the centre of . Then T commutes with every operator in R and every

operator in R'. Thus, in particular, T commutes with every operator of the form
I ... ® Ai ® ... ... I, A; & Ry»
I ®... ®A® ... QI Al e Rps (1gi

Let ﬁi be the *-algebra of all linear combinations of products A'i Ai’ Ai eR;

N).

IN

A% e R%- Then T commutes with all operators of the form

I® ... ®A ® ... ® I, forall A, ¢ &;. The weak closure of g, is a

, g} N
von Neumann algebra on H, and is ﬁ;. Hence T e(r (:) ﬁ{)', by Lemma 4.4.6.
1
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If S ¢ ﬁ%, then S commutes with each A.e R; and each AleR!. Thus
S € R; f\Ri so that R C R, MR:. Clearly, Ri(\Ri C Ry, Thus R; = RinRIE so
~ N o
that R; = (Rif\ Ri) = (¢I1)' = B(Hi). Hence by Lemma 4.4.5, Y (:) R, =
N
B(TT@ H-). .
1 i

: N
Thus T e B(mw (:) Hi)' = (I so that the centre Z of R =¢§I. Hence R is a
1

factor.

A

=
g
-

Corollary 4.4.9. If Zi is the centre of the von Neumann algebra Ri’ (1 <1

N
on H., and if Z is the centre of = = ) R., then
i

L, ® ... ® 1 CI.

If Z = GI, then equality holds.

N
Note: The equality holds always, without any restriction on Ri; i. e, T <:>Zi
1

= Z. This will be proved later in §5.9. ( See Corollary 5.9.11)

Lemma 4.4.10. Let Ri be von Neumann algebras of operators on Hilbert spaces Hi
for 1 <1 sN. LetR =gy & ... (:) Ry- Then R is countably decomposable if

and only if each R (1 <4 ¢ N), is countably decomposable.

Proof. Let each Ri be countably decomposable. Then R% has a countable genera-

ting set X.,(i= 1,2,...,N), by Lema 3.3.9. Let X = {xr(]")}:_l. Consider Y =
j =

{ %1 ) ® x(N)} where n n, are positive integers. Then, as R.

n, . ny 120Ny . , ;

has Xias a generating set,the closed subspace K =
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[Ai xgi)() Aé xgz)C) e ® A& xgz): xgj) eX,s 1514 s N]

N
. . (1) (N) ;
T.lr (O H,. Otherwise, there exists a vector x ... ) x # 0 in

N (i
i)
T (:) H; orthogonal to K.  Then, for x-"/ e X., (1

1 i
[A; xr(mi) ®-... ® Ay xr(]:), x(1)®... ®© x (M)

[Ai xé;), x(l)] - [A& xﬁz), x(N)].

Consequently, s [R%X.]= Hi’ for i= 1,2,...,N, we have
i

I

i <N), and Ai e R

0

0= [y(l), x(l)] - [y(N), x(N)] for arbitrary y(i) e H,.

Then 0 = Hx(l)ll2 e le(N)Ilz, taking y(i) - x{1),

Thus  x{1) ® - ® x") = 0, a contradiction.

Thus R; () ... ) Ry has Y as a generating set which is utmost counta-
ble. But, as R'D Ri (:) cen (:) Rﬁ, R is countably decomposable. (Indeed R'
= Ry ® ... ® Ry- This will be proved later in  §5.9).

Conversly, let R = R, ® ... & Ry be countable decomposable. Let

(Ea)a cA be an orthogonal family of projections in Ri' Then it is easy to ve-
i

rify that {I ® ... ® E, ® ... ® Lince Ai} is an orthogonal family of

projections in R and hence by hypothesis on R, Ai is at most countable. Hence

R.s (1 £1 £ N), are coubtably decomposable.

4.5. Matrix representation for operators on Hl(:) H2.

Lenma 4.5.1. Let H1 and H2 be two Hilbert spaces with (ei)isJ an orthonormal ba-

sis in H2. Then H1 (:) H2 is isomorphic to § (:) Hl' Conversely, if H =
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z (:) H., where H are closed subspaces of H which are pairwise orthogonal and
ied

each of which is isomorphic to some fixed Hilbert space Hl’ then H is isomorphic

= L2(g) =
to Hy (X) H,, where Hy = L() = {(A;); 5 A €8, éJl A% <)

.

Proof. Since (ei)ieJ is an orthonormal basis in H2, obviously H2 is isomorphic

to Lg (J). Define U, : Hy » H, ® H, by U =x @ e;. Then clearly, U; is

linear by (iii) and (iv) of Lemma 4.3.6. Further,Ui is inner-product preserving,

as  [Uix Uyl = [x ® e;ny ® 5] = [x.y] [ey, o]

= [x.y]
since Hei||= 1. Thus U, is an isomorphism of H, onto UiHI' Being U, isome-
tric and H1 complete, U1H1 is a closed subspace of H1 (:) H2. Call U1H1 = Hi'

Since [Uix, ij] =[x ® e ¥ ® ej] = [x,y][ei, ej] =0 ifi# j,i Hi}i c
is an orthogonal family of closed subspaces in H1 (:)H2 and each of them is iso-

morphic to Hy. Let K = Z‘J(:) Hi. If K#H (O H,, Tet z # 0 be an element
ie

in H1 (:) H2, orthogonal to K. If {xa}aeA is an orthonormal basis in Hl’ then

by hypothesis, zJ.b%l (D) ei} ( But by Lemma 4.4.3, this means z = 0 ,

a,i)eAx J
a contradiction. Thus K = H1 ) H2.

Now define the mapping U as follows:

U:Jz@H—»z@H

1ed

U {(x;)

-l-iEJ}-_- Z x.i®e.i9 X_iEHl fOY"leJ.

igJ
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Then, clearly, U is a linear isometry and onto. Hence U is an isomorphism

and thus H1®H2 is isomorphic to ¢ ® Hl'
J

Conversely, if H= 2 (& H let x= I X.,x; € H,,be the unique
ie d ieg ! 1 !
representation of x ¢ H. If Ui is the isomorphism of Hi onto H

.i,

then define U:

1,

H > H ® H, by Ux = igJ(Ui x:)® e, {e.} jeganorthonormal basis in H,= Hf
(9). since £ fJU, x)® e:ll?= = |Ix.]l%<o, I (U, x.)@® e. eH H
2i5J11 i ieg | 1-EJ11<’D1 1®2

- 2 2 2 .

and [[Ux]| “ =l = (U. x)® el © = Ik, |F = ||x , since [e., e.] = &, . .

20 O® &l = g = S E A
Clearly, U is linear. U is onto. For, if zLU(H), and if (xa acA 1S an  ortho-
normal basis in Hl’ then X, X e; = u(o, ..., U;I X, 2 0 ...) as U, is onto for

each i. Thus Z.l(Xa X ei)(a,i)eAx] and hence z = 0 by Lemma 4.4.3. Thus U is

an isomorphism of H onto H1 ® Hy, where H, = Lé ).

2

This completes the proof of the lemma.

Notation. Throughout this section and the next one the following notation is used.

H= Hl(:)H2= z C)I%i (identified by the isomorphism in Lemma 4.5.1)where  each
ied
Hi is isomorphic to H1 and J is the index set of an orthonormal basis {e;} in H2'

If we define U1.:H1 +H by Ui(x)= X (:) €ss then Ui is an isomorphism of H1 wﬁthlJ1H=

H, (say). Then U.x= x ® e; 1s jdentified with (x j» Where X = x ® e; and X ;=

iie
o for j # i. We define the linear transformation U’%‘:H'*H1 as follows: U?(H C)H1)=

o and U?(x()e1)= x. Then U$U1= I on H1 and U1U$= P, = Pi (say) on H.

Hy

Let TeB(H) . Define Tij= U:.‘TUJ- £ B<Hﬂf) . Given T € B(H), naturally Tij are well

defined by T for i,j e J. Moreover, for TeB(H) and xcH we have
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2 2 2 2
™[“= £ ||P.Td|“= T ||usP.TH|"=  Z||U%TH| =
™ ieg * ieg t7 ieJ

- ¢ |z wte®s gz |z T e

iEJJEJl J i€J J€EJ Jj

Y P.= I, T is bounded and U’{Tx= U’{P].Tx. Consaquently,

i = U%
since Tij UiTUj’ 5 &%

Tz T..U*x”z = |l % [Iml? 1412
i€J jeJ 13

for xe H and

tl= inf{c: 3 || = Ti.U’j?tz < A% xe B .

ied jeg
Moreover,
Tx= T( ¥ P.x)= ¥ TP.x = X PiTPjX
jeJd jed i,jed

= T U.UFTU.U*x= T T OULT..U%x (*%)
o ;U% T. . :
i,jed 130 jegjeg il

for x ¢ H. Thus (Tij)’ with Tij= UgTUj, determines T uniquely by (%*%).

Motivated by (*), we say that a matrix (Tij) of operators on H1 is bounded 1f

there is a constant C such that

2|z o (k)
1eJ jed

for all x € H= H1®H2. Then we define
H(Tij)H = inf{C:C as in (***)},

Affirmation. Given a bounded matrix (Tij) of operators on Hl’ there exists a uni-

que operator TE B(H) such that Tx= L T U.T..U%x, x € H and || T|]=|k T..)||. Mo-
ier jeg t 133 ij

reover, Tij= U’{TUj, i,jed.

By (***) ,

— X5 5 e5%1395%
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exists for each x € H and Si:H ->H1 is a bounded linear transformation with HSlH <

llery ol = Hesay). Again, by (w9, Tx= .2 UiSix exits for each xeH andT:H~His

a bounded operator with |[T|| < M. Now, for fixed i ,j e J we have

P. Tx=U. S. x =U,(.T .T. .U%)x, x € H
i i i J
o o (o] o

P. TU., x=U_T, . U* U, x, x€H
1 J 1 1, 3]

1
o “o o oo "0 -0

I
[ws]

i.e., U, (U* TU, )x . T, .U U, x, xe¢ H, »
o Yo J Yo Todo do Jo

(o] (o] (o] (o]

1

Since Ui :H1+ H is injective, it follows that

and hence the matrix (Tij) corresponds to T € B(H). Moreover, by ( *#) we also have
Bl = ller, ) I

Thus by the foregoing discussion we conclude that there is an one-~to-one co-
rrespondence between the operators T in B(H)= B(Hl® H2) and the collectionof all
bounded matrices (Tij) of operators on H1 , the correspondence Te¢( Tij) being gi-

ven by ( *¥*), Moreover, ”FH =H(Tij)” and Tij= U?_T Uj,i,j e J.

Thus T el Hl ®H2) can be represented by a bounded matrix( Tij) of operators

and conversely. By abuse of notation we shall write T=( Tij) with T.. =

on H
1]

1
UFTU;, 1,5 € J.

If H, is finite dimensional, i.e., if J is finite, then any(T..) of operators
2 1]
on Hl defines an operator in B(H1®H2). But, when J is infinite, this does not

hold as (Tij) has to be bounded to define an operator in B‘(H1 ®H2).
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following matrix representations:

T1 <:> Tz = (Aij Tl)’ where kij ¢ € and the matrix (Aij)‘is bounded.

Proof. Let -[T2 ej, ei] = Aij' Then T2 e ;- .Z_ Aij ess for x ¢ H

1€dJ 1

LT, ® 1) x @ e;)
U, (T1x® T, ej)

(T @2 ags &)

*

*

[
— % -

*
U'I ( I }\kJ(Tlx® ek))= AijTlx .

ked
Thus (Ty ®Ty)i5 = A5 Ty IF Ty = IHl, then IHl ©OTy = (43 IHl). If T, = 1H2,
= 5. .. = (§.. Oss) i ; ; -
then Aij 613 Hence Ti QIH (613 Tl) ( jj) is bounded by the discussion pre

2
ceding. the lemma.

Lemtma 4.5.4. T ¢ B(Hl()rh) commutes with ijr for all i, j € J if and only if

T is of the form T =T C)I for some T, € B(H,).
1 H2 1 1
*
Proof. Let T commute with all UiUS. Let o €J. Then Tij =U; Uy, s
* *

*Ty,.= U* *y, = ifi#3J. .. = UTU U*U, = i
UoPuUiTUj UOLTL{XU‘.Uj 0 ifi#Jj. And T]J Ua UaU1UJ Tua1f
i =j. Thus Tii = Taa for all i. Let T1= Taa' Then, clearly, T= (SijTl) and
hence T= TIC)IH by Lemma 4.5.3.

2
Conversely, writing UiUS in matrix, we have
0 U, Ut - I
o Ui Y5 Ys T Sui Ss5ely (4.5.4.1)

1
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Thus, if (S ) = U_iU*’ then S(X = 60*16JBIH1 . (4542)

oR J 3]

Since T1®IH2 = (855 1),

(T @1y U5 = (26,0 Ty Syl g

(TlsocB )OL,B ’

* _
(U;u5) (T1®IH2)' (E Sar Srg T1)o,g

(S(XBT]_ )CI 9B

But, for all o, 8 in J, Sa T = Tlsa

B 1

with U1.U3 for all i, j €J.

by (4.5.4.2). Hence T1®IH commutes

B 2

Definition 4.5.5. If K is a subset of B(Hl)’ M(K) will be the set of all T =

(Tij) in B(H1®H2) with Tij e K for i, j £J with card .J = dimension of H,sand

D(K) will be the set of all {T = (51.3. S) : SeKi.

Lemma 4.5.6.
(@) D(K)' = M(K') where K'= (KUK*)'; (b)p(K)"= D(K").
If {o,IH} C_K, then

1
(c) M(K)' = D(K') and

(d) M(K)" = mM(K").

Proof. Suppose T ¢ B(H), where H = H1®H2. Let T = (Tij)' If Te p(K)', then

for S ¢ KUK*,
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(T X8:.8) = (6..5) (T..).

ijh g ij 1J
. = . ST .
1-€- é 1a6a S S 61as‘dJ
. _ .. *
i.e., Tijs STij for all i, j €Jd, S € KUK*. ‘

Thus Tij e K' and hence T € M(K'). Conversely, if T belongs to M(K'), by

retracing the above steps we obtain T € D(K)'. Thus (a) holds.

Next we shall prove (c) and then deduce (b) and (d). Replacing K by K' in
(a) we have D(K')' = M(K") D M(K). Thus D(K')= D(K')"cM(K)". (4.5.6.1)

If K2{0, IH}, let T = (Tij)’ T ¢ M(K)'. First we have M(K)'cp(K)*' = M(K') by
1

(a), as D(K) c M(K) (when{o,IH}<: K) . Thus Tij e K', for all i, j € J. Since
1
KD (0,1, }» from the matrix representation of uiyg (see 4.5.4.1) itisclear
1
that UiUS eM(K) for all i, j ¢ J. As TeM(K)', T commutes with UiUg for all

i, j e J. Hence, by Lemma 4.5.4, T is of the form T = T, @I, , whose matrix re-
2

presentation is (Gij Tl), with T, ¢ K'. Thus T ¢ D(K'). Therefore, M(K)'cD(K'),

1
(4.5.6.2). Clearly (c) follows from (4.5.6.1) and (4.5.6.2).

As p(K)' = M(K') by (a) and as KE;{o,IH} , replacing K by K' in (c) we ob-
1
tain M(K')'= D(K").

Then,by (a),D(K") = M(K')' = p(K)" and hence (b) holds.

Finally, by (c) and (a) we have M(K)" = (M(K)')' = (p(K"))' = M(K") as

K:){o,IH }.  Thus (d) holds.
1
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Corollary 4.5.7. If R is a von Neumann algebra, then

D(R)"

it

M(R'); D(R)"

D(R);

M(R)"

D(R'); M(R)"

M(R).

In particular, D(R) and M(R) are von Neumann algebras.

Definition 4.5.8. Let R be a von Neumann algebra of operators on a Hilbert spa-

ce H, and let ¢ be themap T > T (X) I

1 of R into R (:) ¢H2, where H2 is another

Ha
Hilbert space. Then by Lemma 4.5.3 {T (¥) IH : TeR}=D(R) and is a von
2

Neumann algebra (by Corollary 4.5.7 or by direct verification). Besides, & (R)=

R X GHgndc1ear1y ¢ is an isomorphism of R onto R (:) g, - ¢ discalled the
2
amplidication of R onto R (¥) €, » acting on H, ® HZ,(Notation: C, = eI, )
2 2 2

Lemma 4.5.9. The operators of B(Hl(:>H2) which commute with operators of the

form IH1 QDTZ, T, € B(H2), are of the form Tl(:)IHz’ T e B(Hl)’ and conversely.

Proof. Let K aH .
1

0(B(Hy)) by Corollary 4.5.7. Thus by Lemma 4.5.3, operators

Then { IH1 @Tz: T, ¢ B(Hy))} = M(K) by Lemma 4.5.3. Thus

M(K)' = D(K")

that commute with IH1®T2 are of the form T1®IH2, T, € B(Hy).

Conversely, with K = B(Hl)’ Tl()IH2 £ D(B(Hl)) by Lemma 4.5.3. Since by

Corollary 4.5.7, (D(B(Hl))' = M(EH ), operators that commute with all T ® Iy
1 2

are of the form IHl()Té, T, € B(Hz), by Lemma 4.5.3.



147

Theorem 4.5.10. Let R be a von Neumann algebra of operators on the Hilbert spa-

the algebra of scalar operators @IH on HZ' Then:

ce H, and €
2 2

1 H

(i) RQ® a = D(R);
(1i) R@B( H2 = M(R);
(iii) R® G = R'(® B(Hz))'. Consequently, (R (%) B(H2))' = R'(:}CHZ. (Thus

the commutation theorem for tensor products of two von Neumann algebras
holds if one of them is B(Hz) or EH . The validity of the commutation

theorem in the general case is dealt with in §5.9).

Proof. (i) follows from Lemma 4.5.3. (iii) R'(X) B(H,) = The von Neumann al-

gebra generated by {R'®¢C, . € ® B(H,)T.
2 M

Hence (R' (::) B(H,))*

But, (¢, (X) B(H,))
1
Thus  (R' (X) B(H,))'

R (%) aHZ)'(\(aHl ® B(H,))".
) (::) GHZ by Lemma 4.5.9.

®R' & mHz)-{"\(B(Hl) ® GHZ). Now, an operator

T C) IHzcommutes with ' (X) €, if and only if T, e R" = R. This can be easi-

2
ly seen by using matrix representation (see 4.5.3). Thus

R' ® ¢H2)'f\(B(H1) ) GHZ) =R® &Hz. Consequently, (R' (X) B(H,))'

R ® B> so that (R B(H)' =" & Gy, This proves (ii1).

(1) (R® B(H,))' = (R ® GHZ) (by (ii1))
=p(R') (by Lemma 4.5.3)

so that RQ) B(H2) =p(R')" = M(R") = M(R) by Corollary 4.5.7.
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This proves (ii).

The above theorem has the following elegant application. The following pro-

position generalizes Lemma 4.2.1.

S

Proposition 4.5.11. Let R be a von Neumann algebra of operators on a Hilbert spa-
ce H with centre Z. Let Tij¢ R T%j e R', for i,j = 1,2,...,n. The following

conditions are equivalent:

n
(i) kil T1k kJ =0 for i, j = 1,2...,n.
(ii) There exist zij’ (i, = 1,24...,n), in Z such that
n n 1 1
k . 1k kJ =0, kzl Zik Tkj = Tij for i1,j=1,2,...,n.
Proof. (ii) = (i) For,
iT‘k TLJ: k (z Zkzz

]
™

DI T 2 )Thy

0 , i,j=1,2...,n

n
(i) => (ii) Let K = t@H. Then we shall identity K with H (:) Lé (J), card.
1

J=n. Then S ¢ B(K) has the matrix representation S = (Sij) i,§=1,2...,n, Sij

¢ B(H). By Theorem 4.5.10, T = (T e R() B(H,), where H, = L2(J)

ij)i,j=1,2...,n 2 (¥

and T' = (T;J)1,J 1.2, e R (:>B(H2). By hypothesis (i), TT' = 0. LetP =

{projections E'e R'(:)B(HZ)Z TE' =0}, Then ~ P# ¢ as [T'(K)] e P. Let

E, be the supremum of the members of P. Then E [T(x)] = [T'(K)] and E, T =T
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Since Eé can be obtained as the strong limit of a net of projections {rom P,TE& =

0. Thus, if E0 = (Zij)i,j=1,2...,n with Zij e R then TEO = 0 means
n n
kzl Tik ij =0, i,j=1,2...,n and Eo T' = T' means kil Zik Tkj = Tij i,j=1,1...,n.

.

The proof will be complete if we show that 245 € R, as they are already in R' .

For this it suffices to show that for every hermitian operator R' in R', 2335 R

R' 2355 1,3=1,2...,n. Let S' =R ® IHZ.C]ear]y, S' is hermitian. TS'El =

S'TE', = 0, since S' ¢ R! ® cﬁ = R® B(H,))" by 4.5.10 (iii). Hence
2

] t ] ] ] 1 1 . ] ] > -

[s'E.(K)] e P. Thus, [S'El (K)]CE[(K) so that EGS E. = S'Eg. Taking  ad

joints, EéS'E6= S'Eé. Thus EéS' = S'Eé. With the matrix representation of

S', this means Zij R' =R Zij’ i,j=1,2...,n. Thus, Zij e R.

This completes the proof.

4.6. Some spatial isomorphism theorems for Neumann algebras.

_ .2 . _ . .
Let H2 = LE (J), J an index set. Let H = Hl(:)Hz, where H1 is a Hilbert

space. Let P.: H~>H. = {x ® e;:x € Hy}. Then P. € GHl() B(Hz), as tts ma-

. T * -~ *
trix representation is given by Pi, Ua Pi u Ua Ui Ui UB

o,R R

8 S 4y
o1 1

Thus P, be]ongst012(> B(Hz) = (R (:) GHZ)' for any von Neumann algebra R

on Hl' The partial isometries Uj U? = Uij’ which admit Pi as initial projection

and Pjas final projection, also belong to €, (:)B(Hz) (by their matrix representa-
1
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tion) and hence to R (X) B(Hz) = R' & GHZ)'.

Theorem 4.6.1.

(i) P (R (:>B(H2))Pi is spatially isomorphic to R and (R'(:)GH )Piis spatially
2

.

isomorphic to R', where R is a von Neumann algebra on Hl'

)

(ii) Let R be a von Neumann algebra on a Hilbert space K, (E be an orthogo-

i’ieyd

nal family of equivalent projections in R with Ei =I. lLetoedJ and
ied

let H1 = Ea(K), and H, = LE(J). Then R is spatially isomorphic to the von

Neumann algebra (EaR Ea) ()B(Hz) on Hy @H2 and R' is spatially isomorphic

to R Ea® aHz.

Proof.

(i) By Theorem 4.5.10 (i), R'(EDGH = p(R'). The isomorphism Ui maps H1 onto
2

)

Hi’ so that if T ¢ R', then UiTU; has the matrix representation (TaB

:*,*=66 T.
where TaB UaU1TU1UB o iB

Thus U.TU* =
Thus U, Ui (aid 616T>

(854 8 IHI)(aaBT)

(T®IH2)P1 = Pi(T®IH2) by (4.5.4.2)

*
sothatUiTUi

where Pi : H-~» Hi js the projection on Hi'

Restricting U? to Hi’ which is then U;l,
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-1 _ =
uTust = T, Py =P (T, ).
2 2
Thus R' is spatially isomorphic to (R'(Z)@H )Pi' Hence its commutant p" =
2
R is spatially isomorphic to
(r @FHZ)Pi) '= P1.(R @@Hz) P1. (by Theorem 4.2.2)

= Pi(R @)B(Hz))Pi (by Theorem 4.5.10 (iii) ).

Let H1 = Ea(K), withae J fixed. As E, ™V Ess i ¢J, there exist partial

isometries U . and U*. in R such that
al al

ai’ o i
Ugi : E.(K) » Ea(K).
Clearly, UailEi(K) is an isomorphism of Ei(K) onto Ea(K). Call the iso-

morphism Vi' Thus Vi: Ei(K) - Ea(K).

Since I E.,= I, each x in K has the unique representation x = § E.X
ieg ! ied
Let { e;} 1.Edbe an orthonormal basis in H,. Let H; = ® ey: x e Hy I

Then by Lemma 4.5.1, H, @H2 =L GDHi. Thus

: @E ()

ieyg

K

I @H, = H ®H,

ied

where V (I E1. X) T (V1E1X}®e1‘ for x € K. Clearly, V is an isomor-

ied
phism of K onto H; @H,.

Let T e R, and tet (Tij) be the matrix representation of VTV"EB(HfQJHZ),

= * ‘1 . .
Then Ti' Ui(VTV )UJ where Uj.H

; = (E4(K)  H.. Thus U =

1 J
-1

* = *
VUOLJ.ED[H1 and Ui Uai v Consequently,
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o= ux Lyt
T = UV OmThw
= (U;iquj)Ea
= * TU. . i *
Ea(Uoﬂ aJ)Ea (since Uoﬂ K > Ea(K))
e ERE ‘
a o
as U* ., U ., T are in R. Thus VTV'1 e (ERE ) @ B(H,) o) that
oi o a o 2°°

-1
VRV'" c(E_ RE )(®B(H,).(4.6.1.1)

Let T' ¢ R'. Then the matrix representation (T%j) of vVl s given by

1 = 1 "1 '1 ' -].
N . = U*. .E
T1J U1 (VT'v )UJ UO“V VT'V VUOLJ a
= UXT'Ug 5Fg = T'0%; U
= (S'ijTIEOL
1 "1 _ 1 1 '1 '
so that VT'V' ™ = (‘Sij T'E,). Hence VT'V " ¢ R EOL®(IH2 o) that

| -1 ' ] -1 ' \ '
RVTCRE ® 8y - Thus (VRV)' D (R E D) cHz) . Hence by  Theo-

2

rems 4.2.2 and 4.5.10,  VRV'!

D(EREG)E B(H)).  Now (4.6.1.2)
(4.6.1.1) and (4.6.1.2) together give VRV'1 = EaREa® B(Hz) and hence R
is spatially isomorphic to EaREoc® B(HZ)' Consequently, R' is spatially

isomorphic to R'E, @@H . This proves (ii).
2

Theorem 4.6.2. Let R and S be von Neumann algebras on Hilbert spaces H1 and Hz,

respectively. Let E ¢ R and F ¢ S be projections with ranges M and N, respecti-

vely. Then EQ)F is a projection in R®S and has its range ( EQ)F) (H1®H2) =

MGN.

Further,

(EQF)(R®S)EXF) = EREQ FSF,
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R'®S")E®F) = REGS'F.
Proof. E(® F is hermitian and idempotent by Lerma 4.4.2. Hence EQ)F is a pro-

e e (1) (2) :
jection in R®S. If { X } aedl’ {xa } OL&]Zar‘e orthonormal bases in M and N,

.

respectively, then { x (1)®XB(2)} is an orthonormal basis in
- * (0s8) €dy X 3,

(1) (2)y . (1) (2) .
MEN by Lemma 4.4.3. Now (EQX)F) (xa @ Xg ) =E X, ® F X =
x(l)@ x{2) and hence (E@F) leaves MEN pointwise invariant. Also, if x and
o B ‘ ) ?

y are in H, and Hy»s respectively, with x 1L Mory 1 N, then (E®F)(x®y ) =

1
Ex Q)Fy =0. These facts together with Lemma 4.4.3 give that (E®F)(H1®H2)

= MEN.

Since R@S is generated by the set of all operators of the
form R, @S, + R, @S, + ... + R (WS, with Ry ¢ R, S, 8(i=1,2,...,n), (E®F)
(R®)S)(EQ@F) is generated by the collection of all operators of the form

n n
(EQF)(Z R, ®S1.)(E®F)= £ (ER;E)GO(FS.F) which belong to EREQOFSF. Thus
1 i=1
n

(EQF)(R®S)(E@F) CERE (X) FSF. Conversely, L (FREY@ (FSF) =
' i=1

(EQ) FX; R1.®S1.)(E®F)3(E®FXR®S)(E®F) and hence EREQFSFC(E® FX R S)
1
(E@F). Similarly, (R')S')E®F) =R'E®S'F.

This completes the proof of the theorem.

Theorem 4.6.3. Let H1., ie J, Kj’ J € A be Hilbert spaces with Ri’ SJ. von Neu-

man algebras on H1., Kj’ respectively, for all i € g, j e A. LetR = 3% ®Ri on
iey
H= 5 MH, and s = £ (DS, on K= 3z ®DK,. Then HEK is canonically identi-
i€g ! jeA Y jeA Y
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fied with z ® (K, ®K:) and R S s identified with
(i,3)edx A !
% C)(RiQDS.).
(i,i)e Ix A J
Proof. Let {x' } 5. be a complete orthonormal set in H.,i e J and {y‘j} be
o QE i 1 B Beh.,
J

a complete orthonormal set in KJ., J € A. Then {X; = (6 1 }, ied, ae & is

of Xa o, B€J1-
by

N J_
clearly an orthonormal basis in H and {Ya (cSOLB Yy

OL,BSAj}’j e A, ae Aj is

an orthonormal basis in K. Then by Lemma 4.4.3 {X, ®Yg : i ¢ J, jeh acd,
. . : : : i
B € Aj } is an orthonormal basis in H®K. For fixed i € J, j € A, {x;®y8 ‘o €J1.,

B ¢ A.}is an orthonormal basis in H1. ® K.. Hence,if U: X @(H, ®K.)» H
! ) (i,)e axA 13
;

R i Ja_ J s o a s sy
1sg{venbyU(6ﬁ.,§jja xOL@yB ) = Xu ®YB ,0 € J_i,BeAJ., i,i'ed, j.j'e A

and is extended linearly and continuously to all elements, then
X J i '
[U((SiQ,(SJm Xa® ‘YB)’ U(‘Si%ﬁj'm XO“@ yJ]
=yl J it J'
[Xa®YB R Xa'®YB' ]

iy, vl -
[XU.’ XUI][YB’ YB|] - (SOL(X‘ CSBB‘ 6..,6....

Thus U preserves orthonormality of the basis vectors. Clearly, U is onto. Hen-
ce U transforms the given orthonormal basis of z@(Hi ) KJ.) onto an orthonormal ba-
sis of HX)K. Hence U is an isomorphism. (This isomorphism, which is so natural

is called the canonical jsomorphism.)

Let Ei : H -~ Hi’ FJ. : K~ Kj,(i e J, j € A),be the canonical projections .

Then by Theorem 4.6.2,E, ®FJ. is a projection on H & K with range H, ®Kj' Sin-
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ce HRK = z @(&% ® KJ.) on identification,

E. ®F, = I. Sin-
(i,d)ed x A

z .
(i,j)e dx AT I

ce Ei.® Fj is the identity on H1®KJ., Ei ®Fj € Ri ®Sj (considering the restric-

tion of Ei®Fj on H; ®Kj)' Since R =Z®R1., E;

= £ ®6,; I,eR" and F, =
Jjed H HJ' ) J

z @6\].2 IK € S'. Also these operators belong to R and S respectively. Hence

Leh 2

E1.®FJ. is in Z, the centre of RQ) S, as 21®22CZ by CoroHary 4.4.8, whe-

re Z1 is the centre of R and Z2 that of S. Thus we have:

(1) E®Fez.

(ii) | Ei®F.} is an orthogonal family of projections in R & S .
3 (4,3)ed x A

(iii) z E.®F, = I.
(i,j)edx A ' I

Hence by the converse part of Lemma 4.1.1, R ®S is spatially isomorphic to

: RGS )E; QFy) = z RE. @ SF.) (by Theorem 4.6.2).
(1,j)€JxA®(®S)(‘®J) (i,j)eJxA®( 1® J)(.Y eorem )

But R= ¢ ®R., E, = £ ®s,. I,, so that RE.= Z @61.3. RJ.. Thus REi is

jed i i jed iJ HJ jed
spatially isomorphic to Ri' Hence R S is spatially isomorphic to
z C)(RiQDSj).

(i,j)edx A

This completes the proof of the theorem.
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