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Continuity of invariant measures for families of
- 1-dimensional maps .

Leonardo Mendoza

In this note we shall discuss 1-parameter families of one dimensional maps which
experience bifurcations , but nevertheless there exist some natural invariant measures
which vary continuously with the paramater . This is , of course ,a kind of stability , in the
sense that the outcome of evaluating continuous functions along orbits does not change
much under small perturbations of the parameter . Perhaps this is what we observe in
computer experiments ,where the picture obtained by plotting an orbit seems to be
independent of the starting point and truncation errors . A '
Let us recall some definitions in order to establish the results contained in this paper :
Let f:N— N beaCl map with N =[0,1] or S1, r> 1, and let C(N) denote the space of
all real valued continuous functions defined on N . If p isan f-invariant Borel probability
ergodic measure , the set of generic points is define as

n-1
G,=(xeN :-1n-i2.;<p(f'(x)) -—)j(pdu when n —see forallge C(N)},
and we shall say that an f-invariant Borel probability measure p is of Bowen-Ruelle-
Sinai (BRS) if it is ergodic and its set of future generic points has positive Lebesgue
measure.
The problem , posed by Bowen [1], we are interested is the following :
Suppose fi: N — N s a continuous family of CI maps, possibly with singularities, with
te [-1,1], and for each t there exists a unique BRS measure piso that m(GW) =m(N) .
Does pt vary continuously in the weak star topology ? .
The answer to this question is clearly no . However , it can be reformulated in the
following terms : Set
M +(t) ={ Zajpnj - Zoj= 1 and for each i the measure pjis BRS} ,

then we can ask if for each t there exists a measure pye M *(t) so that the function
t — py is continuous and if we write py = X oi(t)pilt) then m(UGw(t)) = m(N) . We should
pointed out that here we are using a version suggested by Wellington De Melo .

A positive answer to this question implies persistence on the output of the system
under small variations of the parameter for a given input, that means that our
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"observations” vary continuously with the parameter although there may be no structural
stability.
In this paper we shall prove that for some families of maps experiencing bifurcations,
and therefore not being structutally stable [12], their BRS measures , in the above sense,
varies continuously . These are families of Lorenz maps of the interval, generic families
of immersions of the circle and the 2-dimensional DA family . }
The continuity and persistence of the Bowen-Ruelle-Sinai measure is certainly a
sort of stability "a la ergodique”, and perhaps this is a more realistic definition than the
ones demanding metric or topologiacal conjugacy. The geometric models of the Lorenz
attractor are not structural stable, see [4], but their Bowen-Ruelle-Sinai measures vary
continuously and therefore small perturbations will not alter much the outcome of the
system. A recent paper of E.C. Zeeman [14] has introduced a new definition of structural
stability which seem to be related to our examples and the role of expansiveness in our
proofs suggests a link with Lewowicz'work [6] .
We shall divided our exposition acordingly to the examples , but first we need to recall
some definitions and results from ergodic theory ..
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§1. Entropy, Lyapunov exponents and BRS measures .
To prove our results we need some basic facts and results from ergodic theory

which we summarize in this section, for more detail information we refer to [15] .
Let us consider the measurable space N with the Borel c-algebra B and let p be

a Borel probability measure on N . The entropy of a finite measurable partition &= {Cy,
....C} of N is defined as the number

k

H8)= D -n(C) g u(C) |

i 1
with Olog0 = 0 by convention. If &= {Cy, ... ,C,} and m = (D4, ... ,D4} are finite
measurable partitions their joint partition is given by
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Evn={CnDj: 1si<k,1sjss}.

Now let f: N — N be a continuous map , suppose that p is a Borel f-invariant
probability measure and for n > 0 write &, for Evf-1Ev...vf-n+1E . Clearly H(&) = H(f1&)
and  H(En.m) < HEL) + H(Ep) . then

1
2_’1‘“ —H(EE) |
exists , we shall denote it by hy(f,€) and call it the entropy of f with respect to £ . The

entropy of f with respectto p is defined as

hp(f) = sup { hy(f.8) : & is a finite measurable partition } . '
Sometimes we shall refer to hy(f) as the entropy of .
A partition is calld an entropy-generator forp if VFiE = B mod 0 . The
Kolmogorov-Sinai Theorem establishes that if &is an entropy-generator for
H o, then hy(f) = hy(fE) . :
We shall need a lemma cocerning the upper semicontinuity of entropy for families of
maps , although we deal with non-invertible maps, for simplicity we shall prove the
lemma for homeomorphisms of compact metric spaces .

Lemma 1.1.
Let fi: X— X be a continuous family of homeomorphisms of a compact metric space X,

and for each -i<t<1 the transformation f; preserves a measure |y . Suppose there
exists a finite measurable partition & which is an entropy generator for each ¢ and
Ho(d€) =0 . Then if wy — poast— 0, we have that

limsuph (f) < h (f) .
t—»o.“tt ”oo

Proof ,
Since "€ is a common generator for all t's, we have that

1
hul(fl) = hut(f,é) = inf ;—Hut(én(ft)) ,

where & (1) =& v gv..v{™'g.

Fix o> 0 and choose n suffcientely large so that
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1
- Huo(én(fo)) < huo(fo) s

Since fyis a continuous family , uy — poast—> 0 and n is fixed
IHuo(ﬁn(fO)) - Hut(ﬁn(f,)) |- 0

ast— 0.
Therefore for small t we have that

1 1
"ol 2 H, ) -o 2 TH (& () - 20

2yt ,é)-2a=hut(ft)-20c .

Which proves the lemma .

-

If :N — N is a differentiable map we can define the upper Lyapunov exponent of f
atxas '
_ , 1 n
x (x) = limsup Flog D, .

n—oo

When the limit in the above formula exists we say that the Lyapunov exponent at x
exists and shall be denoted by y(x) . The chain rule implies that

n-1

x() = i = log | F(F(x)I .

n—-3o0 i=1

and by the Ergodic Theorem if p is an f-invariant Borel probability measure for p-almost
all points the Lyapunov exponet exists, furthermore if p is ergodic it is constant almost
everywhere, say x(x) =x, , and equals flog] ] du . Thus we can talk about the Lyapunov
exponent of an ergodic measure .

Several results link the entropy of a measure with its Lyapunov exponent, see [5],[9] for
references, in particular Pesin’s formula says that if p is absolutely continuous then the
entropy is equal to the exponent . Ledrappier [5] was the first one to obtain a converse
of Pesin’s entropy formula , see also [9] for an alternative proof .

Theorem [5].

Let f: N- N be a C2 map, possibly with a finite number of singularities . If p is an f-
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invariant ergodic probabpility measure with  hy(f) = x, >0, then p is absolutely
continuous with respect to the Lebesgue measure and therefore a BRS measure .

§2. The Poincaré maps of geometric models of the Lorenz attractor .
The Lorenz attractor [7] is an attracting set of a flow associate to a system of ordinary
differential equations in R3 . The dynamics of this flow still is not riguruous understood,
but the computer simulatios have given rise to some geometric models for which a
complete description have been obtained by Gukenheimer and Williams, [3], [4] and
also see Sparrow [13], by studying a semiflow on a branched 2-manifold which turns out
to be the suspension of map of the interval with a discontinuity where the derivative
goes to infinity. The topological class of the attractor is determined by the kneading
sequence of the end points of the one dimensional maps and the singularity, which
implies that the geometric models of the Lorenz attractor are not structually stable [4] .
Robinson [11] has shown that if a model flow is C20 the stable manifold is differentaible
and the one dimensional map satisfies the conditions listed below for a C2open
neighbourhood of this flow .The "Poincaré maps" of the geometric Lorenz attractors are
decribe by the following set of conditions :

i) g has a single discontinuity at some x=c ; .

ii) the limit of g from the left side of ¢ is 1, and the one from the right side is 0,

g9(0) <c<g(1);
iii) g is non-uniformily continuously differentiable on [0,1\{c} and there is a A > 1
such that 4’(x) /> A forall x # ¢ ;
iv) the limit of g’(x) is infinity as x appoaches ¢ from either side .
v) the inverse branches of f are Ci+' for some r> 0 .
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Picture 1

Robinson shows in [10] that for a map satisfying the above conditions with A 2 V2, there
exists a unique BRS measure.

We can define a C! metric on the set of Lorenz maps of the interval having the same
singularity at a point ¢ , by saying that the distance between two Lorenz maps equals
the supremum of the distances of their restriction to the complements of all e-
neighbourhoods of ¢. To be more precise , let us denote by di(, ) the standar C! metric
of maps well defined on subintervals and write f. for the restriction of f to the interval
[0,1] \ (c-g,c+ €), then define the C! metric on the set of Lorenz maps as

d1 (fvg) = SEUEO{ d1(f€»g£) l € > 0 } ¢

In the set of all Lorenz maps, the metric can be defined as follows : In the case that we
have no common singularity for f and g , we first fixed f and make a change of
coordinates on g, through a conjugacy h(g), so that they have the singularity on the
same point, similarly we procced fixing g to obtain h(f) . The C! metric is then defined as
the maximum of the distance of the conjugacies to the identity, and the C!distance of
maps after conjugacies .

Theorem 2.1.

There exists an open set O of C2 flows in R3 containing a C2° geometric model of the
Lorenz attractor so that for each flow ¢ e O, there exists a Lorenz map f =f(¢p) of the
interval admiting a unique ergodic measure pj absolutely contnuous . with respect to the
Lebesgue measure so that the function f — pg is continuous .

9.
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Proof :

By Robinson [10] there exists an open set O of C? flows in R3 containing a C?2°
geometric model of the Lorenz attractor so that for each flow ¢ e O , there exists a
Lorenz map f =f(p) of the interval admiting a unique ergodic measure p¢ absolutely
contnuous with respect to the Lebesgue measure. Furthermore, the proof of this
statement and [11] yields that the interval maps vary “continuously” in the C' metric.

To simplify our exposition let us consider a continuous ,in the C! metric , family of Lorenz
maps {f;} having a common singularity at ¢ and admitting a BRS measure ;. ‘Since they

are continuous in the C' metric their inverse branches vary continuously as well, and
we can apply Lemma 1.1 . Assume that 0 <t< 1antlet p, =p, be a convergent

sequence of BRS measures with t,— 0 as k— o ,say py— p . Since each py is

absolutely continuous with respect to the Lebesgue measure we have that for n
sufficientely large

=i {h () J.Iongf]dp.k}

k —o00

< Iimsup {h (f ) J.mm[log Df, | n}dy,}
k—oo _
<h (- jmm {Iog DA, n} dys .

Which obviously implies that
h (f) = ‘ log |Df du .
“( ) g |Df|

Then applying a Theorem of Leddrappier [5], we have that by uniqueness that u =g,
and the proof is completed .

§3. Inmersions of the circle and DA-families .

By Mafé [8] in the generic families of C2 inmersions of the circle, bifuracations only
occur by the appearance of a nonhyperbolic peridic points . Thus in a generic family the
bifurcation set is discrete and the only interesting cases are the one concerning the DA-
type bifurcations, otherwise one can prescribe the BRS make their changes continuous.
So we shall just describe the continuity throug the DA-type bifurcation . The standard
DA-bifurcation was introduced by Smale [12], here we shall use its 1-dimensional
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version which starts with an expanding map of the circle and bifurcates into a map
whose non-wandering set consists of a repellor and a sink . _

Let us consider a continuous family {f;} of C2 inmersions of the circle with -1 <t<1, {4
an expanding map, at t=0 a fixed point is created through a generic saddle-node
bifurcation and for t > 0 the maps are Axiom A with non-wandering set consisting of a
sink and a repellor . For t < 0 there exists a unique invariant ergodic measure p; which
is absolutely continuous with respect to the Lebesgue measure. At t = 0 the non-
wandering set Q(fo) is transitive, has measure zero and all its periodic points are
hyperbolic except the saddle-node . For t> 0 the stable manifold of the sink has
measure 1 .

Theorem 3.1.

Let {f} be a continuous family of C2 inmersions of the circle as above, then for each t
there exists a BRS measure p, which vary continuously with t .

Proof .

For each t < 0 there exists a unique BRS measure absolutely continuous with respect
to the Lebesgue measure, and they vary continuously by construction . For t >0 , the
BRS measures are the Dirac measures supported on the the unique sinks . For t=0 the
BRS maesure is given by the Dirac measure in the saddle-node point, the
nonwandering set , following Diaz and Viana, has Hausdorf dimension less than 1, and
therefore Lebesgue measure zero . Now let Hy = Ky De a convergent sequence of BRS
measures with t— O0* as k — oo , say py— p . Obviusly n is an f-invariant measure .
Since each u, is absolutely continuous with respect to the Lebesgue measure, then by
Lemma 1.1 we have that

= im {hy, () Jlog 0F, I ey }

k— oo

<h (1) - _[ log |Df,| dyt

Which obviously implies that for p its entropy equals its Lyapunov exponent, by Diaz
and Viana [2] the nonwandering set has Hausdorff dimension less than 1 and therefore
K has zero entropy and has to be concentrated in the saddle-node fixed point . For t> 0
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the BRS measure is just the Dirac measure on the sinks
Il

Corollary 3.2.

Let {f} be a generic 1-parameter family of C2 inmersions of the circle . Then for each t
there exists a measure p, which is a convex combination of BRS measures with the the
union of generic points having Lebesgue measure 1 , so that the function t — py is
continuous . _

Proof : ' *

The only case left to dicuss is when family bifurcates from an Axiom A situation where
all the BRS measures are sinks to a new Axiom A case with one extra sink . This
happens generically through the creation of a nonhyperbolic periodic point and we have
either a saddle-node or flip type bifurcation . So let {f;} be a family of C2 inmersions of
the circle where only one bifurcation occurs, say at t = 0 . For all t we define py as a
convex combination of the Dirac measures define on the periodic sinks according to
thier periods and Lyapunov exponents.This definition claerly makes our theorem work .

"
Corollary 3.3.

. The Hausdorff dimension of BRS measures is not a continuous function .

Proof :
Let us recall that the Hausdorff dimension of a measure i is defined as
HD(u) = inf{ HD(Y) | u(Y)=1}.
Then clearly for t <0 we have HD(uy) =1 and HD{uy) =0for t2 0.
Il

The 2-dimensional DA-family ({f;}, can be studied with the same arguments used above .
we recall that in surface case we start at t=-1 with a linear Anosov diffeomorphism, at
t=0 a generic saddle-node bifurcation occurs by the creation of a new  non-hyperbolic
fixed point , afterwards we have an Axiom A diffeomorhism whose nonwandering set
consists of an attractor and a source , see [2] for a complete desription of the DA-family .

Theorem 3.4.
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Let {f} be a continuous family of C2 diffeomorphisms of the 2-torus as above, then for
each t there exists a BRS measure p, which vary continuously with t .

i
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Theorem 3.4.
Let {f} be a continuous family of.C2 diffeomorphisms of the 2-torus as above, then for
each t there exists a BRS measure p, which vary continuously with t .
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