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1. INTRODUCTION.

It is well known that the notion of the modulus of convexity plays a
very important role in the so-called geometric theory of Banach spaces.
It appeared to be the tool allowing to classify Banach spaces with regord
to their geometrical structure. Moreover, the modulus of convexity is
very useful in the fixed point theory. Many facts concerning this notion
and its applications may be found in E+,6,7,11], for example. Recently
K. Goebel and T. Sekowski IB] have proposed an interesting generalization
of the classical modulus of convexity. Namely, using the concept of
Kuratowski measure of non-compactness they defined the so-called modulus
of noncompact convexity. With help of this modulus they proved a few

interesting facts from the geometric theory of Banach spaces.

This paper is the survey of results concerning the modulus of non -
compact convexity which were obtained recently. In the Section 2 results
due to Goebel and Sekowski [8] are presented. Sections 3.4 and 8 are the
collection of the results stated by the author in |:1] . Apart from

that Sections 5,6 and 7 give some new results obtained by the
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author.
2. NOTATION, DEFINITIONS AND SOME KNOWN RESULTS.

Let (E,|| .|| ) be an infinite dimensional Banach space let B(x,r),
S(x,r) denote the ball and the sphere centered at x and of radius r.
For simplicity we will write B,S instead of B(8,1). and S(B,1). IfX isa
subset of E and x € E then X, conv X, dist(x,X) will denote th; clo -
sure or the convex closure of X and the distance from a point x to X,
respectively. Analogously dist(X,Y) will denote the distance between

sets X and Y. By B(X,r) we denote the '"ball' centered at a set X and

with radius r, i.e. B(X,r) = y B(x,r).
xeX

For a bounded set X, the symbol a(X) will denote the Kuratowski

measure of noncompactness:

a(X) = inf IE >: X can be convered with a finite number

of sets having diameters smaller than J.
The Hausdorff measure of noncompactness will be denoted by y(X):

x(X) = infl} > 0: X can be covered with a finite number of balls

of radii smaller than e].

In the sequel we will use first of all the following properties of the

function x:
(1) x(X) = 0 <> X is compact.

(2) X c Y= x(x) < x(Y).

(3) x(x) = x(Conv X) = x(X).



(4) x(AX) = [A] x(X), A € R.
(5) X (x+Y) < x(x) + x(¥).

(6) X (x+X) = x(X)

(7) x(B(x,v)) = x(s(x,v)) = v

Let us notice that the function o possesses also the properties (1)-(6)
and a(B(x,r)) = a(S(x,r))= 2r. For further properties of these. measu-

res we refer to |}ﬂ.

Recall that the classical Clarkson modufus 0§ convexity of the

space E I}] is the function &: <0,2> » <0,1> defined by

6E(€) = inf l]- x;y : X,y € B, '!X'Yliz.eJ
The coefgicient o4 convexity of E is undestood as
e (E) = suple §g(e) = 0]
The space is called unigomly convex if g, = 0.

The notion of the modulus 0§ noncompact convexity was defined in

[8] in the following way
XE(E) = inf[1-dist(8,X): X € B, X = Conv X, a(X) > €] .

Actually, X :<0,2> » <0,1> and is a nondecreasing function. Moreover,

§E(€)_5 KE(E) for any Banach space E. It was shown in I}ﬂ that this

inequality may be strong for some spaces.

- Y
Similarly the number g](E) = sup|e: AE(E) = 0] was called the
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coefficient of noncompact convexity and spaces with g = 0, X~uméﬁo/zn1€y

1
"\
convex. Obviously e](E) f_eo(E) and in the case of Day space D, for

example, we have el(D) = 0 and €O(D) =2 [8].

The main results proved in [}ﬂ may be summarized in the below gi-

ven Theorem.

-

THEOREM 1. If %,(E) < 1 then E is reflexive and has normal structu-

re.

In what follows we shall use the notion of the modulus of noncom-
pact convexity defined with help of the Hausdorff measure of noncompac-

tness |1].
A:<0,1> > <0,1> , A (e)=inf[1-dist(p,X):X € B, X=Conv X, x(X) > ¢].

In the similar way as previously by EI(E) we denote the coefficient of
noncompact convexity of E (with respect to the modulus A). We say that

E is A-uniformly convex if € = 0.

Let us notice that the well-known dependence X(X) < a(X) > 2 x(X)

(cf.[2]) yields

Y Y]
B (e) < A (e) < A(2e) , €€ <0,1>

for any Banach space E. Hence

v
€

](E) <2¢g

e, (€) < 1

The last inequality permits us to formulate the following.
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THEOREM 2. |If e](E) < 1/2 then the space E is reflexive and has nor-

mal structure.
3. CONTINUITY OF MODULUS OF NONCOMPACT CONVEXITY.

This section is devoted to showing that the modulus of noncompact

convexity AE(e) is continuous on the interval <0,1>.

We will need the following result proved by De Blasi in the case

of the so~called measure of weak noncompactness [3].

This proof may be adopted withou changes for the measure X .
LEMMA 1. x(B(X,r)) = x(X) + r, for any r > 0.

The main result of this section is contained in the following.
THEOREM 3. The function A is continuous on the interval <0,1).

PROOF. At first notice that the function A is nondecreasing on the

interval <0,1>. Further, fix €. & <0,1) and take arbitrary

1
€, g(el,l). For n > 0 (sufficiently small) we may choose a set X

contained in B such that Conv X, = X, x(X;) > €, and

(1) I~dist (e,x])

I A

A(e]) +1n .

Next, putting k =(l-ez)/(1—e]) we see that k € (0,1). Consider the

set Y = k X Actually x(Y) = k x(X]) and

1

dist(6,Y) = k dist(e,X]),

dist(Y,s) > 1-k,
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so that if we take the set X2 = B(X],l-k) we can easily verify that

= X, and

< B, Conv X2 2

X2
(2) dist(8,X,) = k dist(e,X]) - 1+k.
Moreover, in view of Lemma 1 we infer
x(X)) =k x(X)) + 1k > ke, +1-k=c¢, . .
Now by (1) and (2) we get
1- dist(e,XZ) = 1-k dist(6,X;) + 1-k=
= k(1-dist(6,x,)) + 2(1-k) < k(a(gq)+n)+2(1-k).
Hence
A(Ez).i k(A(e]) +n) + 2 (1-k).
Finally, keeping in mind that n was chosen arbitrarily,we have
A(ez)_g k A(e]) + 2(1-k)
what implies
Mey) - Aley) < k A= Aley)+2(1-K)=
= (1-K) (2= Ale)) < 2(1-k) = 2(epe))/(1=€) .

Thus the proof is complete.

Let us mention that our method of proving depends mostly on the

result of Lemma 1. Because we do not know if the equality



_7_

a(B(X,t)) = a(X) + 2t is true, we are not able to tell something about

the continuity of the function X .
4. THE CASE OF REFLEXIVE SPACE.

Throughout this section we will always assume that E is a reflexi-
ve Banach space. This assumption permits us to deduce that for nonem-
pty, closed and convex subset X of E and for any y € E there is at
least one x € X with the property dis(y,X)=|| y-x|| [10]. We show below

that this fact has some significance in order to obtain additional pro-

perties of a modulus of noncompact convexity.

Let us suppose that a number ¢ € (0,1) is fixed. Take an arbitra-

ryn >0 and a set X €B, X = Conv X, x(X) > € such that
(3) 1-dist(6,X) < Ae) +n .

Next, let k be on arbitrary number in the interval (0,1). Choose x £ X
with the property dist(8,X) = || X|| and consider the set
X; = kx +((1-k) /]| x|} x. Then x(x;) > k € and

dist(@,Xl) = k dist(6,X) + 1-k .
Moreover, X, C B. Further we have

dist(8,X)= %-(dist(e,xl)+ k-1)
what by (3) allows us to infer

1- Ae) < dist(6,X) +n= %-(dist(e,xllf k-1) + n.



and finally

Alke) < k Ale).
Thus we can state our next result.

THEOREM 4. If E is a reflexive Banach space then AE(E) is a subhomoge-

neous function i.e. .
A(ke) < k A (g)
for any k, € € <0,1> .
From the above theorem we may deduce some simple corollaries.
COROLLARY 1. A(e) < € for any € € <0,1>.

COROLLARY 2. The function A is strictly increasing on the interval

< EI(E)7]>'

Indeed, for t, < t, <1t EI(E)’ if we put in Theorem 4 = ty

k = tl/t2 we have
Ar) < (t,/t,) A(t,)
what implies A(t,)/ Alty) > t,/t; > 1. Thus A(t;) < Alt,).

COROLLARY 3. A(tz) - A(t])_z (tz-t1)/ A(t1) for any t,,t, e(s](E),l >,

COROLLARY 4. The function € »~ A(e)/ € is nondecreasing on the inter-

val <0,1> and A(e] + ez) z_A(e]) + A(ez) provided &, + e, < 1.



We omit simple proofs of the two last corollaries.
5. A RESULT IN REFLEXIVE AND SMOOTH SPACE.

Throughout this section we will always assume that E is a refle-

xive and smooth Banach space.

It is well known that if E is a reflexive space then every linear
and continuous functional f € E* attains its norm on the unit sphere S
(cf. [j(ﬂ; the reverse assertion is also true according to the famous

theorem due to James).

Furthermore, let us take f € E*, || f|l= 1. For an arbitrary d>0

consider the hyperplane Xd =|} e E: f(x) = d] . Then for x € Xd
[x]] > £0) = d
so that

dist(e,xd) > d.

On the other hand there exists X, € S such that f(xo) = 1, Consider

y = d-x_. Obviously fly) = df(xo) d so that y € X Apart from that

4
ll vyl = d and finally

|
(=X

dist(e,Xd) =
The similar statement is also valid for the half-space

+ -
Xd = L} e E: f(x) z_d]
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SO we cah write
dist(e,X;) = d.

v
Further let us consider the function A]: <0,2> » <0,1> defined by the

formula

K](s) = inf.}-diSt(G,X):X=X; NEB, alx) > e] .

where the infimum is taken also over all d > 0 and f € Ex, || f]l = 1.

Obviously we have

K (e) <& (e)

Suppose now that for some € € (0,2)

"\ _
Next take n > 0 such that X () +n < A](E) and consider the set A €B

being convex and closed, a(A) > € and such that

1- dist(0,A) f_K (e) +1n .

Then for any set A, = X: n g, u(AI) > & we have

() 1-dist(8,A) <X () +n < Xl(E) <1 - dist(e,A).
Next let a € A be such that dist(8,A) = !|6|l. Consider the ball
B||e||= B(@,H 9“) . In view of the assumption that E is smooth we in-

fer that there exists exactly one hyperplane X([ell tangent to B” 6”
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at the point a le]. Let Xﬁ eil be the half-space associated with
x“ GH . OFf course Xﬂ GH contains the set A and for the set

Ay =X+ N B DA we get
Il ell

dist(e,Xﬂ o) = dist(8,A) = dist(6,A,).

Moreover, a(A;) > a(A) > e. But the last facts contradict to (4) and

the proof is complete.
Now we can st-~te the folllowing theorem.
THEOREM 5. if E is a reflexive and smooth Banach space then
K(e) = &, (o).

Let us remark that similar result is also true if we make uce of

the Hausdorff measure X, so we can write

A(E) = A] (8) ’

where Ai(s) is defined in the same way as K](e) (only with o replaced

by X).

6. COMPUTATION FOR A HILBERT SPACE.

In this section we apply the result of the previous one in order

to calculate the modulus of noncompact convexity in a Hilbert space.

Let us assume that H is a real Hilbert space with the scalar pro-
duct (.,.). Actually H is reflexive and even uniformly smooth [10] .

Next, let us fix d €(0,1), Z € S and consider the hyperplane and the
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hal f-space

>
]

[}
L2
1]

f 1
2y

q l:x € H: (z,x-dz) x € H: (z,x) =

v

>
fl

x € H: (z,x-dz) > é] = |x € H: (z,x) >d
Denote A, = X n_B—, A+= X+n§.

in order to calculate the diameter of the Ad let us take x € Ad
such that x € S and consider the vector y = x - dz. Then y is ortho-
gonal to dz so that according to Phytagorean rule we have ]|y|L=/1—d2.

On the other hand Ay C A: B (dz,v1-d2) so that we obtain

diam A, = diam At = 2/4-d% .

d d

Let us note that the set AO = Ad - dz has the same diameter as Ad' Mo-
reover, this set lies in the hyperplane F = [}:(x,z) = d]. Hence A0
may be treated as the unit ball in F. On the other hand it is known

that codim F = 1 what allows us to deduce that

a(Al) = 2/1-d°

(5) ala) = a(a,)

and similarly

1-d% |

(6) x(a) = x(a,)

Iin what follows let us take a number € > 0 and put d = 1-82.

Consider the sets Ag and Ad defined as above. Then

(7) dist(0,A%) = dist(6,A,) = d = /1-¢°.
d d
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Finally combining (5), (6), (7) and Theorem 5 we state that the moduli

of noncompact convexity in a Hilbert space H have the form

1- V1-e2 ¢ 6 <0,1>,

AH(E) A](e)

X (e) = K. (e)

€ \2
H ] 1/1(5) , € & <0,2> .

-

The last result agrees with the formula for the modulus of noncom-
. 2 . . .3
pact convexity in the Hilbert space £° which was obtained in [8]. Mo -

reover, let us remark that
A, (e) = XH(ZE) = &, (2¢)
for € € <0,1> (cf.[7]).
7. SOME APPLICATION.
Now we will assume that E is A-uniformly convex Beznach space.

Let us denote by S* the unit sphere in the dual space E*. By vir-
tue of Theorem 2 the space E is reflexive so that for every f € S$* there
exists x € S such that f(x) = || x|]| =] f|]| = 1. Further, fix f g $x.
Take an arbitrary f; € $* and a number ¢ & {(0,1> and assume that

|[f-f1lL§ €. Let x, € S be such that f(x]) = 1. Next consider the set

1

Ao =X NB=[xeB: flx) >1 - €]

Let us notice that in view of ineguality

1-F(x,) = [F0e)=FUx ) < |1 Fy=fll < e
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we obtain that X; € Ae'

Taking into account that A is increasing and continuocus on the

interval <0,1> we con infer that

(8) x(ae) < 871 (e).

In what follows let us take an arbitrary sequence (fn) € S* which
converges (in the sense of the norm in E*) to the functional f & S$%,
Let (xn) be a sequence contained in S such that X denotes an arbitra-
ry element of S in which the norm ot f_is attained (n=1,2,...). Then

we have.
THEOREM 6. The sequence (xn) is relatively compact.

PROOF. Denote €, = [[fn-fll, n=1,2,... Let us construct the sequence

of sets Ae according to the previously described method. Without less
n
of generality we may assume that (en) is nonincreasing.

Then (A€ ) is a sequence of sets being nonempty, closed and con-
n
vex. Moreover, it can be casily proved that A8 > Ae for n=1,2,....
n n+1

Apart from that appliying (8) we get

X(Aen) <a7le).

Thus taking into account the continuity of the function A and A(0) = 0

we can deduce

tim x(a_) = 0.

n-e n
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o0
Hence the set A, =N AE is nonempty, convex and compact. Moreover
n=1 n

x({x1,x2,...,}) = y({ X 2% 1) j_X(An)

ne1’c"

for every n, what implies that x({x .}) = 0. This statement fi-

19%gs
nishes the proof.

.

Let us remark that denoting by x an arbitrary element of § in
which f attains its norm we cannot deduce that the sequence (xn) conver-

ges to X.
Nevertheless we have the following assertion.

THEOREM 7. |If we additionally assume that E is strictly convex then

]
X

lim x
nwo "
PROOF. Because of the fact that dist(G,A8 ) = 1—€n we deduce that

n
A,<€ S. On the other hand x € A . Thus in view of strict convexity
of E we obtain that A_={x} (cf. [10]). Hence lim x_ = x what gives

noo

the thesis of our theorem.

8. STABILITY.

As we have established in Theorem 2 every Banach space E for which
E](E) < 1/2 has normal structure. Thus, according to the well known
Kirk's fixed point theorem the space E has the fixed point property what
means that every nonempty, closed, convex and bounded subset of E posse-
sses the fixed point property with respect to nonexpansive self-mappings

[3,9]. We show now that this property is stable with regard to the
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slight change of the norm.

Let

Assume that (E,Il.lh) is a Banach space for which e, < %-.

H .”2 be the equivalent norm on the space E i.e. there exist positive

constants M and M such that

mll xll, < I xll, <Ml

for every x € E. Let X4 and X9 denote the Hausdorff measures of non-
compactness in the spaces (E,]I.H] ), (E,II.IIZ), respectively. Then

we can casily show that
m Xy (x) < x,(x) < M ox, (X)
for any bounded subset X of the space E.

Further, let A], AZ be moduli of noncompact convexity with respect

the suitable norms.

Let us fix € > 0 and n €(8,1). Next, let us take X C 9

X = Conv X, XZ(X) > € and such that
dist,(8,X) > 1- 8,(e) - n

(here the indexes denote that we consider the ball or the distance with

respect to the suitable norm). Then we have x](X) > /M and
dist,(6,X) > (1/M) dist,(6,X).

Moreover, X C'E](G,l/m). Hence we get
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(1/M) dist,(0,X) < dist,(8,X) < (1- A, (m e/M)) (1/m)
what implies
1-4,(e) = n < (M/m) (1-A,(me /M)).
Finally the last inequality yields

(9) Ay(e) > 1 - k(1 - A, (e/k})

where k = M/m > 1,

Let D > 1 be a unique solution of the equation
(10) 1 -(1/D) = 4, (1/20),

which exists in view of continuity of the function A] (Theorem 3). Now
if 1 <k <D then k(1- 4,(1/2 k)) < 1 so that (9) allows us to infer
that A2(1/2) > 0. This assertion means that thecoefficient of noncom-
pact convexity for the norm H.||2 is smaller than 1/2 and in view of

Theorem 2 the space (E,|| . ) has normal structure. Thus we have.
2

THEOREM 8. Let E be a Banach space with g, < 1/2 and let D > 1 satisfy
(10). f F is another Banach space having the Banach-Marzur distance

less than D then its coefficient of noncompact convexity is also smaller

than 1/2.

Let us remark that similar result for the coefficient of convexi-

ty was obtained in |7].
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