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ABSTRACT

In this paper prove that if u is a Bowen-Ruellé-Sinai measure for
a C2 diffeomorphism f: M >~ M of a surface M then there exists a collec-

tion of hyperbolic horseshoes Qn satisfying the following conditions:

i) The Hausdorff dimension B(Qn) of 2 on the unstable manifold W' (x)
of any point x ¢ Qn tends to 1 as n + =,

ii) The expansion coefficient of each Qn is at last B, with B > 1. The-
se conditions are sufficient if the function yu - hu(f)-xu(f) is
upper semicontinuous, here hu(f) and xu(f) denote the entropy and

the future Lyapunov exponent of .
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§0. INTRODUCTION.

An ergodic invariant Borel probability measure 1 for a CZ diffeo-
morphism f: M > M of a surface M is called a Bowen-Ruellé-Sinai measu-
re if its entropy hu(f) equals its future Lyapunov exponent of Xu(f)
and they are positive, see Ij], [12] and [15]. These measures play an
important role in the smooth ergodic theory of diynamical systéms sin-
ce by Ledrappier IEJ they are absolutely continuous on unstable leaves,
and therefore the set GU of future generic points of U has positive

Riemannian measure.

in this paper we prove that if U is a Bowen-Ruellé-Sinai measure
for a C2 diffeomorphism f: M > M of a surface M then there exists a
collection of hyperbolic horseshoes Qn satisfying the following condi-

tions:

(i) The Hausdorff dimension B(Qn) of Qn on the unstable manifold

wWu(x) of any point x c o tends to 1 as n > o,
(ii) The expansion coefficient of each Q is at least B, with B > 1.

These conditions are sufficient if the function yu ~> hu(f)-XU(f) is

"upper semicontinuous.

In I}] Jacobson constructed Bowen-Ruellé-Sinai meausres for cer-
tain non-invertible maps of IR2 with one critical point, here the hor-
seshoes Qn appeared as the complement of the backward orbit of neigh-
bourhood of the singularity. This pattern of horseshoes of arbitra-

rily high unstable dimension is generic near tangencies of the stable
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and unstable manifolds of dissipative periodic points, as follows from
D1], therefore this phenomenom is present in the c¢reation of some

strange attractors.

To prove the main theorem we shall extend some results of KatokDﬂ
on entropy to pressure of continuous functions. We shall follow clo -
sely an umpublished version of S. Newhouse on Katok's work. The idea
of studying pressure first came to our attention through McCluskey and
Manning [}ﬂ, in §81. we shall define measure-theoretic pressure for con-
tinuous functions in a similar way as Katok did for entropy, ]}]. In
§2. we revliew some results from smooth ergodic theory and in §3. we

pove the result.

This paper is to be presented in the 1985 Annual Meeting of ASQVAC,
Mérida, 1| would like to thank Anthony Manning for some helpful conver-

sations during its preparation.

§1. MEASURE-THEORETIC PRESSURE.

Let T:X = X be a homemorphism of a compact metric space X and 1 a
T-invariant Borel probability measure on X. If d denotes the metric

of X, let
dn(x,y) = max {d(T'(x), T'(y))| 0 < i <n},

for x,y € X, dn("') is a metric on X and we shall call it the dn—me-

tie. Denote by Bn(x,e) the €-ball centred on x in the dn-metric.

For € > 0 a set E € X is said to be (n,e)-spanning if XclJBn(x,e).
xcE
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Similarly for 3 >0, € > 0 a set E € X is said to u-(n,e,3)- spanning

if u( U Bn(x’s))LZ 1-3. A set E is said to be(n,e)-separated if for
xeE

x=y € E there exists i e[b,n) such that d(T'(x),T'(y)) > e.

Let us denote by C(X) the set of continuous real valued functions

n-1
L:X > R. If Lec(X), wite S L(x) for Y} L(T'(x)). Define
i=0

.«

Q(T,L,n,e) = inf{ ) exp SnL(x)I E is (n,e)-spanning}
xek

and for 3 > 0

Q,(T,n,e,d) = inf{ } exp SnL(x)I E is py-(n,e,d9)-spanning}.
xeE

The topological pressure of T is defined as the map P(T,):C(X)~>R,

where

P(T,L) = lim limsup 1 log Q(T,L,n,c).
c>0 now n

Similarly the measure theoretic pressure of T with respect o u is

defined by

P (T,L) = 1im 1lim limsup 1l log Qu(T,L,n,e,B).
H >0 ¢c»0 n-e n

THEOREM 1.1.

Let T:X > X be a homeomorphism of a compact metrnic space X, then

gon L € C(X) and v an ergodic T-invariant Borel probability measure

PU(T’L) = hu(T) + J L du.



PROOF:

We shall prove that PU(T’L).i hU(T) + J L du. The converse ine-
quality follows from applications of the Shannon-MacMillan-Breiman and
the Ergodic theorems. The proof uses similar arguments to those of

Misiurewicz's proof of the Variational Principal |}ﬂ.

If B is a finite measurable partition of X, say B={A], ..... ,A

choose B, & A, compact such that ={Bo’Bl"' .,Bk}, where BO=X\U B, ,
i=1

has conditional entropy, see |j6] for definition, HU(B|¥) < 1.

For r > 0, set

Y, = {y € X|-1/n log u(¥n(y))_z_hu(T,¥)-r \/rw_z N and

1/n s Lly) > IL du-r ¥ n >N},

n-1

where yn(y) denotes the element of V T 1¥ contalning y and hu(T’¥)
i=0

he entropy of U with respect to ¥.

A combination of the Shannon-MacMillan-Breiman theorem, Egorov's
theorem and Birkhoff's Ergodic theorem implies that for large N,

u(Yn) > 0.

Choose € > 0 such that:
(i) 2¢ < b - min {d(Bi,BJ)I i=j},

(ii) dlx,y) < e implies |1(x) - L(y)]| < r.

Since Bn(x,e) YN can be covered by at most 2" elements of y, then
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u(Bn(x,e)l\ YN)_i exp n(log 2-hu(T,¥) +r). Now let E be a u-(n,e,9)

-spanning set for n > N and 0 < 3 << u(Yn) and consider the set

E' = {xCE IBn(x,e) avy, =@}. By continuity if y(x) € Bn(x,e) ny

then S
n

xek

xeE

xek

xeE

)

XeE

)

XekE

N
L(x) - S, L(y(x)) > nr. Therefore it follows that

exp SnL(x) exp-n([Ldu-3r - log2 + hu(T,y)) >
exp(SnL(x)-n JLde)exp-n(-3r-log 2 + hu(T’¥)).Z

exp(SnL(x)-SnL(y(x) + SnL(y(x))-nJLdu)exp-n(-3r-1092+hu(T,¥)Xi
exp-nr exp-nr exp 2nr exp-n{(-r-log 2+hu(T,¥))_i

exp-n(-r-log 2 + hu(T,y))_i

u(Bn(x,e) n Yn) z_u(xgEBn(x,e)) > 0,

which implies that

QU(T,L,n,e,S)_z JLdu-3r-log 2 + hu(T,y).

Since r and B are arbitrary, and hU(T’B) < h (T,y)+ hU(BI¥)

PU(T,L) > [Ldu-l—logz + hu(T).

Now apply the above procedure to T and SmL, to obtain

n
P (T,L) > 1/m(S_Ldu-1-log2 + h (T
U( ) > 1/m(S _Ldu-1-log U( ))



so letting m >

o, (T,1) > deu b ().

The converse inequality follows from the Shannon-MacMillan-Brei-

man theorem and the Ergodic theorem. #

.

REMARK. The above proof is different from the one given by Katok [k]

for entropy since we do not use the Hamming metrics.

COROLLARY 1.2.

Let T:X » X and L:X > R be as above, then

P(T,L) = sup {pu(T,L)| M is T-invariant}.

PROOF.
Apply Walters' Variational Principal, !jﬁ]. #
§2. SOME DEFINITIONS AND FACTS FROM SMOOTH ERGODIC THEORY.

For an invariant Borel probability measure u of a diffeomorphism

f: M > M of a surface M we define its futune Lyapunov exponent as

Xu(f) = lim 1/n JlogIlefnl|du .

n->co

Similarly one can define the past Lyapunov exponent Xu(f-]) of u by

considering f_]. A measure Y is said to have non-zero exponent if both



its future and past Lyapunov exponent are different from zero, so
. -1
X - X (f > 0.
I {min U( ), Xu(f 1} >0

Ruellé proved in ljj] that hu(f) < max {O’XU} and in l?j we proved that
if 4 is ergodic with positive entropy and f is C2 then hu(f) / Xu(f)
equals the Hausdorff dimension 3(n) of the quotient measure defined by

the family of stable manifolds.

McCluskey and Manning I}J have shown that if Q is hyperbolic ba-
sic set for [, then the Hausdorff dimension of the intersection of the
unstable manifold of any point x c  with the set { equals the unique
zero of the function t » p(f|Q,-tLY), with Lu(x)=logf|Dxf|Eu]| and E"
denotes the expanding subspace of the tangent space at x. Unfortuna-
tely their methods do not extend to then non-uniform hyperbolic sets,

since the function Lu(x) is not neccesarilly continuous and the exis -

tence of Markov pertitions Ij] is not guaranteed.

We say that Q ¢ M is a horseshoe for § if there exists n > 0 such
that = Q° U....UQn_1 and In[Q is conjugate a full shift in k symbols,
see I}ﬂ. See ]jl] for general definitions and standard results on

smooth dynamical systems.

The formulation of the following definitions and statements are

due to S. Newhouse. Let f: M - M be as above.

Fix 0 < r <1 and let | ={-1,1} for u:l>l a ¢! map with |Du| < r
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we say that {(u(y),y)} ({x,u(x)}) is a u-curve (s-curve). Given usu,
u-curves (s-curves) we shall call the set V={(x,y)el2|U1(y)§)<§_uz(y)}
(H ={(x,y) € lzlul(x) <y f_uz(x)}) a u-nectangle (s-nectangle). We
shall say that RX C M is a nectangle in M if there exists a C‘embedding
G such that G(IZ) = R, and G(0,0) = x, if U is a u-rectangle in 12 we

shall call G(U) a u-rectangle in R, -

A (r,\)-nectangle cover of a set Q€M for r > 0,A > 1 is a finite

collection of rectangles {Rxl’sz""’th} on M satisfying:

t
(1) Qe U B(xi,r), B(xi,r) < int R ; and x.€ Q.
i=1

(ii) 1f xe R, f'(x) € 2 for some n > 0, x € B(xi,r)and 1 (x)e B(xj,r),
then the connected component of in’\ g ij containing x, that

we denote by C(x,R_.Af " R _.), is an s-rectangle in R_. and
xi Xj xi

R .) is a u-rectangle in R_..
X] XJ

m -1
£ Clx,R ;N f
m - - - -
(iii)diam f  C(x,R A f " Ryj) < 3 diam R, max{) m 5~ (n=m)y for

0<m<n. #
THEOREM 2.1. [4]

Let f: M > M be a c2 difgeomonphism of a surgace M preserving an
engodic Bonel probability measure W with non-zero exponents, then for
any r > 0 there exists a compact set Q@ with measure arnbitrarnilly nean

1 which admits a (r,\)-rectangle cover of small diameterns and X=A(xu).#



§3. THE MAIN RESULT.
THEOREM 3.1.

I§ v 48 a Bowen-Rullé-Sinal measure for a C2 di4feomonphism f:M>M
0f a surface M then there exists a collection of hypenbolic horseshoes

e satisfying the following conditions:

.

(£} The Hausdorgd dimension B(Qn) of Q on the unstable manifold

W' (x) of any point x e a tends to 1 as n > =,
(4L) The expansion coeggicient of each e 45 at Least B, with B > 1.

Before giving the proof of the theorem we shall establish some

conditions to have the converse of the theorem true.
COROLLARY 3.2.

These conditions are sufgicient L4 the function y ~ hu (f)- xu‘(’f)

A5 uppesr semicontinuous .
PROOF.

Since the horseshoes Qn are hyperbolic then for each n there exist
a measure y_ supported on £ such that B(Un) = B(Qn), by |7] B(Un) =
= . e . .f
hun (f)/xun(f) and by (ii) XUn(f)_i B> 1 for all n. Thus if u ~>u

weakly then hu(f) = Xu(f) and since the function u > x (f) is always

upper semicontinuous then hu(f) = xu(f) > 0. #

PROOF OF THE THEOREM.

k .
If we write Fk(x) for -1/k logIIDxf l| , then xu(f)=|nfk J-Fk(x)du
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and O=hu(f)-xu(f) = squ{hu(f) + IFk(x)du}, so for r > 0 there exists
k > 0 such that 0 > hu(f) + [Fk(x)du > -r. The function x ~ Fk(x) is
continuous and therefore pu(f’Fk) = hu(f) + JFk(x)du. Now let 3 > O,

€ > 0 be such that

lim sup 1/n log Q(n,e,d) > -r

n-roo

and if d(x,y) < e then | F, (x) - F (y)| <r.

By Theorem 2.1 we can choose Q = S'ZXC M such that u(R) > 1-3/2,
for r > 0 small and X\ = K(xu) > 1 the set Q admits a (r,A)-rectangle
cover {Rx], Rx2,...in} such that diam Rx. < /3. Now let y be a par-
tition of M with diam y < r/2 and

g = {xeM | f9(x) € y(x) for some q € [n, (1+r)n]}.

LEMMA 3.3. [4]
u(Qn) > p(R) as n > =, #

So for n large u(Qn) > 1-3. Let Enc Qn be an (n,e)~separated set

of maximal cardinality, clearly Q €U Bn(x,e) and therefore ‘there
x€E
n

exist infinitely many n's such that

) exp Sn(Fk(x)) > exp -~2nr.
ern

For each q € [n, (1+r)n] let Vq = {x ¢ En | F9(x) € ¥(x)}, now let

m be the value of q that maximises ) exp Sn(Fk(x)), since exp nr>nr
xeV
q
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) exp Sn(Fk(x)) > exp-3nr.
x€Vm

Consider Vrn n ij for 1 < j < t and choose the value i of j that

maximizes ) exp Sn(Fk(x)). Thus if we write D for V 0 Rx,
xewnﬂ ij m J

I exps (F(x) > 1/t ] exps (F(x)) > 1/t exp-bnr.
xeD n xeV n
m m
So consider ij and Dm. Each x ¢ Dm returms to in in m iterations,
thus C(fm(x),inf! £m in) is a u-rectangle in in and f-mC(fm(x),
inll £ in) an s-rectangle. This follows from the facts that
d(xi,x) < r and d(fm(x),xi)< r, and(ii) of the definition of a(r,\)-

rectangle cover.

Ifye C(x,Rxl. ne™ in) then by (iii) of the definition of a

(r, )-rectangle cover
d(f'(x),f'(y))< diam f'(C(x,in f-mei))'_<_3‘diam Rx.<e. for 1 el:O,m),

wich implies: (i) lSm Fk(y)-Sm Fk(x)l < mr and (ii) that if y=x and
y c,C(x,inf\F_m in) then y € V_, otherwise it would contradict the

separability of Vm'

Hence there exists #Vm disjoint s-rectangles mapped by f™ onto
#Vm u-rectangles. Using Propositions 2.4 and 2.5 of |}J it can be
shown that the definition of a shoe given in |}ﬂ is satisfied. So let

o8]
Qx = [ f"”( u C(x,in nio in))
j==c0 xeDm
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by Theorem 3.1 of IEﬂ fmIQ* is conjugate to the full shift in #Vm sym-

bols. The same arguments used by Katok [4] (pag. 163-165) show that
m-1

Q% is a hyperbolic set for fm, thus @ U f' Q% is a hyperbolic set
i=0

for f. Moreover there exists a constant ¢ = c(Q) such that if x €

and Tx M=£E"(x) ® Es(x) then

IIDfo(v)|| <c X-jllv[l for v e Es(x),

and

]]Dxf-j(c)lyi C X_jllvll for v e E"(x).

We shall estimate P(f|Q,F [@). It is known [J4] that

P(le,FkIQ) = limsup 1/j log ) exp S, Fk(x),
Joeo xEAj J

where Aj = {x e Q| £ (x) = x}.

So if ye Q% is a periodic point of period N = jm, then there

1 2 i
exists a unique j-tuple x=x(y) = (x ,x yeee,xd), x' € V_» such that

d(f'(y),f'(x')) < e for i € [0,m)

d(f'(y),f'(xz)) <g forice Eﬁ,Zm)

d(f"(y),f'(x')) <e for ice [(j-1)m,jm).

1 2 i
+.,..+ F , d
Therefore Sn(Fk(y)+r) z_Sm Fk(x )+ Sm Fk(x ) Sm k(x ), an

J .
S, (F (y)+r) > 1 S F (x') = () exps F (x))'.
ygAn N —k(g):yeAni=l &P Ok xeV m k



-13-

Since Ska(x)_z S Fk(x)+(M-n-l)|nf F . and N = jm

1/j log ) S.m(Fk(y)+r) > log } exp S, Fk(x)_z

J
yeAjm erm

log } exp S_ F (x)+(m-n-1) inf F, .
x€Vm n k k

Thus letting j > © we obtain that

P(FIQ,F +r|Q) > 1/m log ) exp S_ F _(x)+(m-n-1) inf F_ >
k = = n k k =
m

n/m (Pu(f,Fk) = 34)+(m-n-1) inf F .
Now using the inequalities

1/(1+r)n < (m=n-1)/m < r=1/n, 1/(1+r)< n/m,
so when n > ©, we obtain that

PFIR,Fr]R) > (P (F,F )=3r)/(1+r)

Since le is expansive there exists an equilibrium state ljh] ur

for Fk + r so that

P(f[Q,Fk+r|Q) = hu r(f)+ J(Fk+r)dur_i ~br/(14r)-r,

hence

0> hur(f) - xur_i hur(f)- 1/k JlogHDkkadur > =hr/(1+r)-2r.

Finally letting r ~ 0 we can choose a sequence of ergodic measures u'



_]q_
such that xpi z_A and

s?p{hui(f) - xui} = 0.

By [7] h i(f) = B(U')xpi , so sup{(3(u')-1)x i} = 0 and  thus
i
sup 9(u') =1 and since each u' is supported on a Q. the result follows.

‘ #

.«
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