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ABSTRACT 

Ionic equilibrium problems deal with algebraic equations of high 

degree. Textbooks discuss approximate 

value of the chemically important root 

and uniqueness of that root. 

methods for finding the numerical 

but no one proves the existence 

It is our purpose here to show that two important theorems of the 

theory of algebraic equations can be used to demonstrate the existence 

and uniqueness of a "chemical root" in problems of ionic equilibrium. 

La soluci6n exacta de problemas de equilibrio i6nico implica la 

resoluci6n de ecuaciones algebraicas de alto grado. Los libros de texto 

discuten mgtodos aproximados para encontrar la raiz con sentido quimico 

per0 ninguno demuestra la existencia y unicidad de esa raiz. 

Es nuestro prop6sito en este trabajo demostrar la existencia y 

unicidad de la "raiz quimical' por medio de dos importantes teoremas de 

la teoria de ecuaciones algebraicas. 



The exact solving of ionicequilibrium problems implies the calculation 

of roots of high degree algebraic equations. The unknowns being the 

concentrations of ions in equilibrium, for example, [H30+], [OH-], [A~'], 

etc. Even the exact treatment of a simple equilibrium such as that of 

1 
a weak monoprotic acid in water leads to a cubic equation . More complicated 

equilibria as dissociation of complex ions in water can lead to equations 

of degree eight and higher. Textbooks discuss these problems using 

approximations for finding the "chemical interesting solution" but no 

one establishes 2 criterium for the existence and uniqueness of a chemical 

important root in the range of allowed concentrations. It is simply 

assumed that only one root of chemical interest exists in the range of 

concentrations allowed. This assumption is a consequence of the law of 

mass conservation and of the fact that in our physical world only positive 

concentrations exist. Solving high degree algebraic equations means 

L iterative methods and in our days using a computer . It seems to be 

imperative for this purpose to assure that only one root, chemically 

~ossible, exists. 

In a recent approach, ~ u d w i ~ ~  tries to answer the student's question: 

How do you know that the other root(s) of the equilibrium equation are 

( 1 ) BUTLER, JAMES, "Ionic EqWbhium a MaAhematicd Appkoach", Addibon- 
We.&@, Md6bach~n&, 1 9 6 4 .  

( 2 )  We have deaet Ictith thih i n  a den in at^ bpomoked by Unaco: Elabohacibn 
de MbduRos de I n t m & c i b n  e&e MaAemWcah g Qdmica. Cahacah 
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physically impossible? In that approach is is assumed that only one root 

exists in the range of concentrations considered and then proceeds to 

show, using what is known in the theory of algebraic equations as Viete's 

relations4, that the other root(s) are chemically impossible, i .e. they 

give negative concentrations or concentrations out of the limits of 

possible ones. However, the application of Viete's relations becomes 

more difficult when the degree of the equation is greater than two. 

Here we present a method to demonstrate the existence and uniqueness 

of a root, "the chemical root", in ionic equilibrium problems in the 

interval allowed by the chemical restrictions. The method is based on 

two theorems of the theory of algebraic equations. Here we will restrict 

the method to the study of the existence and uniqueness of a chemical 

root in three kinds of ionic equilibrium: solubility of salts, complex 

ions and dissociation of a weak monoprotic acid; however, the theorems 

can be applied to other kinds of ionic equilibrium. 

The first theorem (labeled from here on as theorem 1) says: if a 

real polynomial f(x), for a<x<b - - takes values £(a) and f(b) of opposite 

signs, then there is at least one root of the equation f(x)=O in the 

4 
interval (a,b) . This theorem will be used to show the existence of a 

chemical root in a given interval of concentrations. 

Before stating the second theorem let us introduce first two 

definitions. Given a sequence of numbers ao, al, a2, ..., an, ai#O, if 
two consecutive numbers a and a. have the same sign we say that they i-1 1 

( 4 )  USPENSKY, J .  V .  Theotrq 0 6  E q W o n s ,  Mc. Gnaw-Hill, N w  Yotrk, 194b .  



present a permanence of signs, if they have different signs we say that 

they present a variation of signs. Now we can state the following rule 

known as Descartes' Rule of Signs (and from here on referred to as 

theorem 11): given the equation: 

with real coefficients a. the number of positive real roots is equal to 
1 ' 

the number of variatio&of signs in the sequence of its coefficients 

(coefficients equal to zero do not count) or is less than this in an even 

4 
number . This theorem will allow us to prove the uniqueness of a chemical 

root in problems of ionic equilibrium. In what follows we will apply 

these two theorems to the three kinds of ionic equilibrium mentioned 

above. 

SOLUBILITY EQUILIBRIUM 

To illustrate the application of the theorem to this case we will 

consider the aqueous solution of a slightly soluble salt to which a 

substance has been added that has a common ion with the solute (common 

ion effect). 

Consider the equilibrium of the slightly soluble salt AaBb in water 

The solubility ion product constant K is given by 
s P 



Let A be the concentration of the substance added and s the solubility 
0 

of AaBb. Then, [A+~] = (Ao + as); LB-~J = bs and equation (3) becomes: 

b . a K = (Ao + as) (bs) 
s P 

where all coefficients which do not appear are also positive quantities. 

Thus, there will be only one sign variation and consequently only one 

positive root. Finally, we will prove that this positive root lies in 

the range O<s<s where s is equal to (K /aabb) (a+b)-l, f o r A o = O .  max ' max s P 

The values of f(s) at 0 and smax are 

Since bb aa (s )a+b = K , then f(smax) '0 because all terms left are 
max * SP 

positive quantities. Then by Theorem I we conclude that at least one 

root exists in the interval O<s<s and, as has been shown previously 
max 



by Theorem 11, that root is unique. 

EQUILIBRIUM OF COMPLEX IONS 

Here we will consider only those complexes formed by one central 

ion and one type of ligand. Let us consider the dissociation of the 

complex AB where A is the central ion and B the ligand; the equilibrium b 

equation is 

The unstability constant of the complex K will be given by 
i ' 

If x is the number of moles per liter of ABb dissociating, then bx = [B-~] 

and C-x = [ABb], where C is the initial concentration of the complex. 

From equation ( 6 )  we find 

CK. = 0. 
1 

The number of variations of signs of this equation is one, therefore the 

equation will have only one positive root. To show the existence of that 



root in the range of concentrations [o,c] we will calculate the function 

f(x) at the end points of the interval. From equation ( 8 ' )  we find 

Then, from Theorem I we conclude that at least one root exists in that 

interval. As shown before by Theorem 11, that root is unique. 

DISSOCIATION OF A WEAK MONOPROTIC ACID 

The dissociation of a weak monoprotic acid in water leads to the 

following simultaneous equilibrium equations: 

The resultant algebraic equation whose solution gives the equilibrium 

+ 
concentration of H30 is the following: 

where C is the initial concentration of HA, K the dissociation constant 
a 

of HA, K the ion product constant of water. The interval of concentrations 
W 



in which the values of x lie is[K1I2, c+K:/~J. The left hand value of 
W 

+ 
the interval corresponds to the concentration of H 3 0  when no dissociation 

of H A  occurs; the right hand one corresponds to a complete dissociation 

5 of H A  (strong acids) . 
Because K K and C are all positive quantities, the number of a' w 

variations of signs of equation (11) is one. Thus, according to Theorem 

11, equation (11) has only one positive root. To show the existence of 

this root in the interval of concentrations given above, it will be 

necessary to determine the signs of f(K1I2) and £(c+K'/~). From equation 
W W 

(11) we find 

so the function f(x) has different signs at the end points of the interval 

and according to Theorem I there will exist at least one root in that 

interval. The uniqueness of this root has been shown in Theorem I. More 

complicated acid-base equilibria like the dissociation of H  A (n=2, 3, ... ) n 

can be analyzed in the same manner. 

- -- 

( 5 )  S;DLicay, lthe tLigkt b ide  ad lthe i n t m v a l  malt be bm&m lthan 
C + K w l / Z  because by f ie  Le C h a t d i e h  PtLindple, adding H O f  i o ~  
lto pune Wen d i n i n i s h a  disbooiatian. Howeveh, making l t L  
amendment uLcee nalt have any indluence an lthe c o n c l a i o m .  



SUMMARY 

We have shown that two theorems of the theory of algebraic equations 

can be used to prove the existence and uniqueness of a chemical root in 

ionic equilibrium problems. The methodology here presented can also be 

used to show the existence and uniqueness of a chemical root for problems 

in which several equilibria coexist. We have chosen general cases where 

the two theorems can be applied to give unambiguous answers. However, 

the method will not be enough to prove the existence and uniqueness of a 

chemical root in all chemical equilibrium cases. In those cases in which 

this method cannot give an unambiguous answer it will be necessary to 

consider each  articular problem and apply a more powerful but much less 

easy to apply theorem like Sturm's which always gives the exact number 

3 of roots in a given interval . 
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APPENDIX 

Chemical equilibrium is a function of reactants' and products' 

concentrations. For a chemical reaction such as 

this function may be written, at constant temperature as: 

where a, b, c, d are the coefficients of the 

numbers are real, strictly positive, usually 

chemical equation. These 

integers. The symbol [A], 

for example, stands for the concentration, in moles per liter, of the 

substance A. In all cases [A] > 0 where A stands for any substance. 




