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Abstract

The expression of the vector field generator of a Ricci Collineation
for diagonal, spherically symmetric and non-degenerate Ricci tensors
is obtained. The resulting expressions show that the time and radial
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first derivatives of the components of the Ricci tensor can be used to
classify the collineation, leading to 64 families.
Some examples illustrate how to obtain the collineation vector.

1 Introduction.

General Relativity provides a rich arena to use symmetries in order to sim-
plify and understand the natural relation between geometry and matter
furnished by the Einstein equations. Symmetries of geometrical/physical
relevant quantities of this theory are known as Collineations and, in general,
can be represented as: £~ξφ = F , where φ and F are two geometric objects,
~ξ is the vector field generating the symmetry and £~ξ the Lie Derivative

along the congruence generated by ~ξ. The hierarchy and relations among
these symmetries are presented in the seminal work of Katzin and Levine
[1] (see Fig.1 below). The particular position occupied by the Ricci Colli-
neation (RC), defined by (£ξR)ab = 0 , at the top of the hierarchical tree,
and its close relation with the Energy-Momentum tensor, strongly motivate
the study of Proper and Improper Ricci Collineations. Collineations can be
proper or improper. A collineation of a given type is said to be proper if
it does not belong to any of the subtypes. Clearly, in solving for example
equation (£ξR)ab = 0, solutions representing improper collineations can be
found. However, in order to be related to a particular conservation law, and
its corresponding constant of the motion, the “properness” of the collinea-
tion type must be assured.

Ricci Collineations for static spherically symmetric space-times have
been studied recently by various authors [2] [3] [4] [5] [6]. This work deals
with the RC vector for dynamic (i.e. non-static) spherically symmetric
space-times. A detailed analysis of the (£ξR)ab = 0 suggests a classifi-
cation of RC based on the vanishing the time and radial first derivatives of
the components of the Ricci tensor. This approach, as can be seen in the
next section, leads to 64 families of RC, each one distinguished by a set of
vanishing first derivative of the components of the Ricci tensor; these results
are summarized in Table 1.

Section three gives some examples of RC for some of the families listed
in Table 1, with special emphasis on three specific FRW type metric tensors.
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Fig.1. Relations between symmetries.

The leant arrows relate symmetries for which: Rij = 0.

1. WPC - Weyl Proyective Collineation: £W i
jkl = 0 (n > 2).

2. PC - Proyective Collineation: £Γijk = δijφ;k + δikφ;j .

3. SPC - Special Proyective Collineation: £Γijk = δijφ;k + δikφ;j,φ;jk = 0.

4. RC - Ricci Collineation: £Rij = 0.

5. CC - Curvature Collineation: £Rijkl = 0.
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6. SCC - Special Curvature Collineation: (£Γijk);l = 0.

7. AC - Affine Collineation: £Γijk = 0.

8. HM - Homothetic Motion: £gij = 2σgij ,σ = ctte..

9. M - Motion:£gij = 0.

10. S Conf C - Special Conformal Collineation:£Γijk = δijσ;k + δikσ;j − gjkgilσ;l, σ;jk = 0.

11. S Conf M - Special Conformal Motion: £gij = 2σgij , σ;jk = 0.

12. W Conf C - Weyl Conformal Collineation: £ Cijkl = 0, (n > 3).

13. Conf C - Conformal Collineation: £Γijk = δijσ;k + δikσ;j − gjkgilσ;l.

14. Conf M - Conformal Motion:£gij = 2σgij .

15. NC - null geodesic Collineation: £Γijk = gjkg
imψ;m.

16. SNC - Special null geodesic Collineation:£Γijk = gjkg
imψ;m, ψ;jk = 0.

17. CRC - Contracted Ricci Collineation: gij£Rij = 0

2 The expression of the RC vector field.

Recently, the following result has been obtained by J. Carot et al. [7]:
Therefore, the proper RC of a spherically symmetric space-time whose Ricci
tensor is non-degenerate, are of the form:

~ξ = ξt(t, r)∂t + ξr(t, r)∂r. (1)

Thus, we will integrate the system of equations (£~ξ
R)ab = 0 for a RC vector

field with just two components ( ξt and ξr ) depending only of t and r.
Consideration of this collineation vector ~ξ does not preclude that another
class of collineations, other than proper RC, could be obtained. Indeed:
the form of the most general RC vector is the one given above plus linear
combinations, with constant coefficients, of the Killing Vectors for spherical
symmetry [7].

We consider a diagonal Ricci Tensor Rab written in those coordinates
where ([8] pag.163 ):

ds2 = −e2ν(t,r)dt2 + e2λ(t,r)dr2 + Y 2(t, r)(dθ2 + sen2θdφ2). (2)

Then, the system of equations:

Cab = (£~ξ
R)ab = 0, with a, b = t, r, θ, φ (3)

reduces to:

Ctt = ξt∂tA + ξr∂rA+ 2Aξt,t = 0 (4)
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Ctr = Aξt,r +Bξr,t = 0 (5)

Crr = ξt∂tB + ξr∂rB + 2Bξr,r = 0 (6)

Cθθ = ξt∂tC + ξr∂rC = 0 (7)

where the following notation is used: A = Rtt, B = Rrr, and C = Rθθ.
From the above equations ((4) through (7)) we can get,

0 = BCtt +ACrr

= Bξt∂tA+Bξr∂rA+ 2AB∂tξt + Aξt∂tB + Aξr∂rB + 2AB∂rξr

= (B∂tA +A∂tB)ξt + (B∂rA +A∂rB)ξr + 2AB(∂tξt + ∂rξ
r) (8)

Setting:
ξa = (AB)−1/2ηa (9)

with A,B 6= 0 and η = η(t, r) we have,

∂aξ
a = −1/2(AB)−3/2(B∂aA+ A∂aB)ηa + (AB)−1/2∂aη

a (10)

Now from equations.(8) and (10) it is clear that:

2(AB)1/2∂aη
a = 0 (11)

with the following solution:

ηa = εab∂bφ, φ = φ(t, r) (12)

where, εtr = 1 , εrt = −1 and εtt= εrr = 0
Let us now consider Ctr :

Ctr = A∂r[ηt(AB)−1/2] + B∂t[ηr(AB)−1/2] = 0 (13)

Differentiation with respect to φ and multiplying the result by 2(AB)3/2 we
obtain:

Ctr = A

(
−∂r(AB)

AB
)∂rφ + 2∂rrφ

)
+B

(
∂t(AB)
AB

∂tφ− 2∂ttφ
)

= 0 (14)

From Ctt, Cθθ and Ctr we have now the following system of equations:

A

(
−∂r(AB)

AB
∂rφ+ 2∂rrφ

)
+B

(
∂t(AB)
AB

∂tφ− 2∂ttφ
)

= 0 (15)

−∂tB
B

∂rφ−
∂rA

A
∂tφ+ 2∂rtφ = 0 (16)

∂tC∂rφ − ∂rC∂tφ = 0 (17)
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and the form of the RC emerges as:

ξt =
∂rφ√
AB

, and ξr = − ∂tφ√
AB

. (18)

From equations. (15), (16) and (17) we see that the partial derivatives
of the components of the Ricci tensor will appear in the expression of ~ξ. In
order to classify all this sort of RC vectors, the afore mentioned equations
suggest (almost obligate) to consider the vanishing of one or more derivatives
of the components of the Ricci tensor as classifying parameters. With this
criterion we get the 64 cases shown in TABLE 1.

3 Calculating a RC.

In order to illustrate how to extract information from TABLE 1, we give
some detailed examples.

3.1 Family 1: ∂rA = 0 .

The equations (15), (16) and (17) take the following expression in this case:

∂rφ
∂tC

∂rC
− ∂tφ = 0 (19)

−∂tB
B

∂rφ+ 2∂trφ = 0 (20)

A

(
−∂r(B)

B
∂rφ+ 2∂rrφ

)
+B

(
∂t(AB)
AB

∂tφ− 2∂ttφ
)

= 0 . (21)

From equations (20) and (21) we get:

∂rφ =
√
Bf(r), and ∂tφ =

∂tC

∂rC

√
Bf(r) . (22)

Because ∂rtφ = ∂rtφ, we have

f(r) = e∆(1)
, (23)

where

∆(1) =
1
2

∫
B

A

∂tC

∂rC

−∂t(A)
A

+ 2
∂t
(
∂tC
∂rC

)
∂tC
∂rC

 dr . (24)

Finally considering equations (18), the RC vector has the following compo-
nents:

(1)ξ
t =

e∆(1)

√
A
, and (1)ξ

r = −∂tC
∂rC

e∆(1)

√
A

(25)
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3.2 Family 7: ∂rA = 0 and ∂rB = 0.

Equations (15), (16) and (17) take the following expression in this case:

∂rφ
∂tC

∂rC
− ∂tφ = 0 (26)

−∂tB
B

∂rφ+ 2∂trφ = 0 (27)

2A∂rrφ+ B

(
∂t(AB)
AB

∂tφ− 2∂ttφ
)

= 0 (28)
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Family vanishing derivatives Family vanishing derivatives
1 ∂rA = 0 33 ∂tA, ∂tB, ∂rB = 0
2 ∂rB = 0 34 ∂tA, ∂tB, ∂rC = 0
3 ∂rC = 0 35 ∂tA, ∂tB, ∂tC = 0
4 ∂tA = 0 36 ∂tA, ∂tC, ∂rA = 0
5 ∂tB = 0 37 ∂tA, ∂tC, ∂rB = 0
6 ∂tC = 0 38 ∂tA, ∂tC, ∂rC = 0
7 ∂rA, ∂rB = 0 39 ∂rA, ∂tB, ∂tC = 0
8 ∂rA, ∂rC = 0 40 ∂tB, ∂tC, ∂rB = 0
9 ∂rB, ∂rC = 0 41 ∂tB, ∂tC, ∂rC = 0
10 ∂tA, ∂tB = 0 42 ∂rA, ∂tA, ∂rB, ∂rC = 0
11 ∂tA, ∂tC = 0 43 ∂rA, ∂tB, ∂rB, ∂rC = 0
12 ∂tB, ∂tC = 0 44 ∂rA, ∂rB, ∂tC, ∂rC = 0
13 ∂tA, ∂rA = 0 45 ∂rA, ∂tA, ∂rB, ∂tB = 0
14 ∂rA, ∂tB = 0 46 ∂rA, ∂tA, ∂rB, ∂tC = 0
15 ∂rA, ∂tC = 0 47 ∂rA, ∂tB, ∂rB, ∂tC = 0
16 ∂tA, ∂rB = 0 48 ∂rA, ∂tA, ∂tB, ∂rC = 0
17 ∂tA, ∂rC = 0 49 ∂rA, ∂tA, ∂tC, ∂rC = 0
18 ∂tB, ∂rB = 0 50 ∂rA, ∂tB, ∂tC, ∂rC = 0
19 ∂tB, ∂rC = 0 51 ∂tA, ∂tB, ∂rB, ∂rC = 0
20 ∂tC, ∂rC = 0 52 ∂tA, ∂rB, ∂tC, ∂rC = 0
21 ∂rB, ∂tC = 0 53 ∂tB, ∂rB, ∂tC, ∂rC = 0
22 ∂rA, ∂rB, ∂rC = 0 54 ∂tA, ∂rA, ∂tB, ∂tC = 0
23 ∂rA, ∂rB, ∂tA = 0 55 ∂tA, ∂rB, ∂tB, ∂tC = 0
24 ∂rA, ∂rB, ∂tB = 0 56 ∂tA, ∂rC, ∂tB, ∂tC = 0
25 ∂rA, ∂rB, ∂tC = 0 57 ∂tA, ∂rA, ∂tB, ∂rB, ∂rC = 0
26 ∂rA, ∂tA, ∂rC = 0 58 ∂tA, ∂rA, ∂rB, ∂tC, ∂rC = 0
27 ∂rA, ∂tB, ∂rC = 0 59 ∂rA, ∂tB, ∂rB, ∂tC, ∂rC = 0
28 ∂rA, ∂tC, ∂rC = 0 60 ∂tA, ∂rA, ∂rB, ∂tC, ∂rB = 0
29 ∂tA, ∂rB, ∂rC = 0 61 ∂tA, ∂rA, ∂tB, ∂tC, ∂rC = 0
30 ∂rB, ∂tB, ∂rC = 0 62 ∂tA, ∂tB, ∂rB, ∂tC, ∂rC = 0
31 ∂rB, ∂tC, ∂rC = 0 63 ∂tA, ∂rA, ∂rB, ∂tB, ∂tC, ∂rC = 0
32 ∂rA, ∂tA, ∂tB = 0 64 ∂tA, ∂rA, ∂rB, ∂tB, ∂tC, ∂rC 6= 0
. TABLE 1: Families of RC vectors.
Again, from equations (27) and (28) we get:

∂rφ =
√
Bf(r), and ∂tφ =

∂tC

∂rC

√
Bf(r) (29)
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and ∂rtφ = ∂rtφ, yields,

∂rf(r)
f(r)

= −B
2

(
∂t(AB)
AB

∂tC

∂rC
− 2∂t

(
∂tC

∂rC

)
− ∂tC

∂rC

∂tB

B

)
(30)

so that,
f(r) = e∆(7)

(31)

where

∆(7) =
B

2

∫
∂tC

∂rC

−∂t(A)
A

+ 2
∂t
(
∂tC
∂rC

)
∂tC
∂rC

 dr =
∆(1)

A
(32)

The components of the RC vector are:

(7)ξ
t =

e∆(7)

√
A
, and (7)ξ

r = −∂tC
∂rC

e∆(7)

√
A

(33)

3.3 Family 64: ∂cRab 6= 0 for c = t, r.

From equations (16), (17) and (18) we get,

(64)ξ
t =

e∆(64)

√
A
, and (64)ξ

r =
−∂tC
∂rC

e∆(64)

√
A

(34)

where
∆(64) =

1
2

∫
∂rA

A

∂tC

∂rC
dt (35)

and the restriction equation emerging from equation.(15):

A

(
−∂rA

A
+ 2∂r∆(64)

)
+ B

∂tC

∂rC

∂tA
A
− 2

∂t
(
∂tC
∂rC

)
∂tC
∂rC

− ∂rA

A

∂tC

∂rC

 = 0 (36)

with
∂rC 6= 0 (37)

3.4 Three examples of FRW type metric tensors.

3.4.1 First Example:

Consider the following line element [9],

ds2 = dt2 − F 2(t)[
1

1− kr2
dr2 + r2dθ2 + r2sen2θdφ2] (38)
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L. A. Núñez et al. have supposed a collineation vector of the following form:

~ξ = (ξt(t, r), ξr(t, r), 0, 0) (39)

The components of the Ricci tensor in this case are:

A = −3F,00/F, B = ∆/(1− kr2), C = r2∆, R33 = Csen2θ (40)

where: ∆(t) = 2k+ 2(F,0)2 + FF,00.
This metric tensor belongs to the family number 1 of the TABLE 1

(∂rA = 0). The components of the RC vector ~ξ are the following (see
equations (25)):

(1)ξ
t =

w(t)
√

1− kr2

√
A

exp

− ∂t∆
4kA

−∂tA
A

+ 2
∂t
(
∂t∆
∆

)
(
∂t∆
∆

)
 (41)

(1)ξ
r = −r∂t∆

2∆
w(t)
√

1− kr2

√
A

exp

− ∂t∆
4kA

−∂tA
A

+ 2
∂t
(
∂t∆
∆

)
(
∂t∆
∆

)
 (42)

Taking into account the equation (23), we can assume that

w(t) = const and

− ∂t∆
4kA

−∂tA
A

+ 2
∂t
(
∂t∆
∆

)
(
∂t∆
∆

)
 = 1 (43)

Making it so, we obtain the RC vector in the same form that appears in the
paper [9], and also the integrability condition (eq.2.13 of that paper).

3.4.2 Second Example:

In the paper of R. Chan et al. [10], for the case of null flux of heat, the
following line element is considered:

ds2 = −dt2 +B2(t)[dr2 + r2(dθ2 + sin2θ dφ2)]

where: B(t) = M
2b u

2 and u = ( 6t
M )1/3.

This is a FRW metric with k = 0. The Ricci Tensor is diagonal and its
components are:

Rtt =
2

3t2
, Rrr =

(6M2)1/3

b2t2/3
, Rθθ = Rrrr

2, and Rφφ = Rθθsin
2θ. (44)
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In this case: ∂rA = 0 and ∂rB = 0. It belongs to the family number 7 of
TABLE 1. Making use of equations (33), we obtain the following expressions
for the components of the RC:

(7)ξ
t =

√
3
2
t and (7)ξ

r =
r√
6

(45)

This vector generates a Homothetic motion: £ξgab = αgab with α =
√

3
2

3.4.3 Third Example:

Consider the metric [9]:

ds2 = dt2 − R2(t)(dr2 + r2dθ2 + r2sin2θdφ2)

where: R(t) = βtα,α 6= 1 and β and α are constants.
This is also an example of a FRW metric whose Ricci tensor components

are:

Rtt = A = −3α(α− 1)t−2, Rrr = B = β2t2α−2(3α2 − α), (46)

Rθθ = C = β2r2t2α−2[α(α− 1) + 2α2], Rφφ = Csin2θ. (47)

Again, in this case ∂rA = 0 and ∂rB = 0, and it belongs to Family 7 of
TABLE 1. From equations (33) we get the components of the RC vector:

(7)ξ
t = c1 t, and (7)ξ

r = −c2 r (48)

where
c1 =

1√
−3α(α− 1)

and c2 = − (α− 1)√
−3α(α− 1)

(49)

are constants.
This vector generates a Homothetic motion: £ξgab = gabδ, with δ =

1√
−3α(α−1)

4 Final Comments.

In this paper is presented the form of the Ricci Collineation Vector in the
case of a diagonal, non-degenerate and spherically symmetric Ricci Tensor
for space-times that would admit a proper RC. It also has been shown the
way how to make the calculation of the RC for each one of the 64 families
of Ricci tensors obtained. The way is open for the exploration of the non-
diagonal and the degenerated Ricci tensors.
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