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SELF-DUAL SPIN-3 AND 4 THEORIES
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ABSTRACT

We present self-dual spin-3 and 4 actions using relevant Dreibein fields. Since these actions start
with a Chern-Simons like kinetic term (and therefore) cannot be obtained through dimensional
reduction) one might wonder whether they need the presence of auxiliary ghost-killings fields. It
turns out that they must contain, also in this three dimensional case, auxiliary fields. Auxiliary
scalars do not break self-duality: their free actions does not contain kinetic terms.
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Self-dual theories for odd dimensions were discovered time ago by Townsend, Pilch and van
Nieuwenhuizen [1]. For abelian vector theories, they can be shown to be classically and quantum
mechanically equivalent [2] to the Maxwell-Chern-Simons (MCS) [3] model, if one permits a non
minimal coupling in the self-dual model while keeps the minimal one for the gauge invariant second
order MCS theory.

Or one can assume minimal coupling in both cases and then, although both models propagates
one massive-spin 1 mode these theories will not be equivalent.

Spin-2 presents a new feature: there are three topological spin-2 theories: linearized topological
massive gravity [4], a second order Einstein-CS action [5] and the first order self-dual one [6]. In
the vector case the topological massive action is second order, whereas the self-dual one is first
order. Spin-two fields presents a new feature: exact topological massive gravity [4] is a third order
action while self-dual gravity [5] is, by definition, first order. Self-dual gravity is a good example
of the relevance of the Dreibein representation [7] for higher spin gauge fields: its more compact
form is obtained when the spin two field is represented by the (linearized) unsymmetrized second
rank tensor wpa where p is the gauge index and a is the flat remanent of a Lorentz index. Its
gauge variation is given by δwpa = ∂pξa.

When dealing with higher spin particles (s ≥ 3) one is always concerned with whether they
can have consistent interactions with either other basic elementary systems or (at least) with
themselves. Along this direction, recently it has been shown the existence of higher-spin self
interacting bosonic theories [14]. These theories are third order in the basic fields, their structure
is very similar to metric topological Chern-Simons gravity [4].

In d = 4, bosons obey second order field equations. Precisely due to this fact, coupling
them to abelian vectors (when charged) or to gravity (which is always mandatory because of
the universality of gravity) leads to consider a wide variety of different types of non minimal
coupling, once the canonical ones are shown not to work, as it is in general the case. The natural
solution to this problem comes from charged string theory models which consistently contain in
their spectrum all spins [15].

In dimension 3 we have the peculiarity of the existence of these first order, Dirac-like, bosonic
self-dual theories for spin 1 and 2. It seems to us worthwhile to construct flat models for spin 3
and 4 in order to investigate whether they can be consistently coupled to abelian vectors or to
gravity.

Here we report about the precise, Dirac like, self-dual actions we found for spin 3 and 4. We
want to mention an additional (more technical) problem.

Massive spin-3 in dimensions d ≥ 4 cannot avoid the presence of auxiliary fields as it is
clearly shown by dimensional reduction from its massless, gauge invariant d+ 1 dimensional spin-
3 ascendent action [8]. In d = 3 it is hard to imagine what might be the 4-dimensional ascendent
of a three dimensional self-dual action (whose kinetic term is essentially given by ∼ w(3)ε∂w(3)).
Therefore, one might ask again whether self-dual pure spin-3 (or higher) needs the presence of
auxiliary fields. Even if self-dual spin-3 would not have needed auxiliary fields one should ask
what is the fate of spin-4 since the real high spin field is spin-4. This is due to the fact, if one
works in the symmetric representation where w(4) is the basic 4-index symmetric tensor which
carries the physical massless excitations, w(4) has to be double traceless [9], i.e., w ≡ wpprr = 0.
This condition is uniformly obeyed by any spins-s grater than 4, v.e. wpprr`1···`s−4 = 0.

In the following we will show that both self-dual spin-3 and 4 actions require the presence of



self-dual auxiliary fields of spin-1 and 0 for the former and spin-2 and 1 for the latter.
The symmetric formulation of massless spin-3 in d ≥ 3 was given in [9]. The first order Vierbein

formulation was presented by Vasiliev [7] and a second order action was introduced in [10]. The
associated massive spin-3 models are discussed in [8].

In three dimensions there exist additional possibilities, (at the abelian level) which perhaps,
taking into account the analysis performed in [5] for the spin-2 case, will be 3: the topological
massive third order formulation discovered by Damour and Deser [10], the first order self-dual
action which is presented here and the intermediate second order action equivalent to these two
similar to the spin-2 intermediate [12]. Since spin-3 is simpler we treat if first.

Self-dual spin-3 action is the addition of three layers:

S = S3 + S31 + S10 (1)

were

S3 ≡ 2−1µ < wpā1ā2ε
pmn∂mwnā1ā2 > −6−1µ2 < εpmnεabcηpawmb̄d̄wnc̄d̄ >, (2)

S31 ≡ µ2 < wpup > +2−1αµ < upε
pmn∂mun > +2−1βµ2 < upup >, (3)

S10 ≡ µ < φ∂pup > +2−1γ < φ φ > +2−1δµ2 < φ2 > . (4)

In three dimensions [φ] = m1/2 = [w] = [u]. The basic field wpā1ā2 is symmetric and traceless in
its Dreibein Lorentz indices wpā1ā2 = wpā2ā1, wpāā = 0 while p is a world index, unrelated to them.
(In the following, a set of barred indices will indicate that the associated tensor is symmetric and
traceless in this set.) The algebraically irreducible descomposition of wpā1ā2 is

wpā1ā2 = wp̄ā2ā1 + εpa1bhb̄ā2
+ εpa2bhb̄ā1

+ b(ηpa1wa2ηpa2wa1 − 2(3)−1ηa1a2wp). (5a)

The 15 independent components of wpā1ā2 are represented by the 7 components of wpā1ā2 plus
the 5 needed to describe hb̄c̄ plus the last 3 which determine wp ≡ wrr̄p̄, the unique nonvanishing
trace of wpā1ā2. Taking the trace in Eq.(5a) one obtains b = 3/10 and calculating the symmetric
part of εb

pawpāā one is led to determine hb̄c̄:

h = hb̄c̄ = −6−1(εb
pawpāc̄ + εc

pawpāb̄). (5b)

The first interesting fact is that S3 has the good spin-3 and spin-2 behaviour. The associated
field equations Epā1ā2 ≡ δS3/δwpā1ā2 = 0 propagate one parity sensitive spin-3 excitation, do
not propagate neither the other possible spin-3 variable nor any spin-2 degree of freedom (those
contained in hT

āb̄
, the transverse part of hāb̄ : ∂āhTāb̄ = 0. However, S3 has spin-1 ghosts and this

is the reason one has to add a second layer which will fix this situation. S31 is a pure self-dual
vector action for the auxiliary vector up plus the simplest, contact term ∼< w up >. In general
one might also consider terms ∼ µ < wpεpmn∂mun > but we have been lucky and there is no need
to include them. Addition of these two layers leads to S3 + S31 whose field equations are

Epā1ā2 ≡ εpmn∂mwnā1ā2 + 6−1µ(ηpa1wa2 + ηpa2wa1 −wa1p̄ā2wa2p̄ā1)

+2−1µ(ηpa1ua2 + ηpa2ua1 − 2(3)−1ηa1a2up) = 0, (6)

F p ≡ αεpmn∂mun + βµup + µwp = 0. (7)



These two equations can be analyzed by further breaking of the algebraic decomposition (5a)
in terms of its SL(2, R) irreducible representations. We introduce the three dimensional covariant
(and non local) T -projectors which, in the vector case, are

up = uTp + ∂̂pu
L, ∂̂p ≡ −1/2∂p,

∂̂pu
T
p = 0, ∂̂p · ∂̂p = 1. (8a)

For spin-2 and 3, similar decompositions for symmetric traceless second and third rank tensors
have the form:

hp̄ā = hTp̄ā + ∂̂(p̄h
L
ā), ∂̂ph

T
p̄ā = 0 = hTp̄p̄, (8b)

wp̄āb̄ = wTp̄āb̄ + ∂̂(pw
L
āb̄), ∂̂pw

T
p̄āb̄ = 0 = wTp̄p̄b̄. (8c)

Symmetric traceless transverse 3d tensors (uTp , h
T
p̄ā, w

T
p̄āb̄w

T
p̄āb̄c̄) have two independent compo-

nents corresponding to the two P -sensitive pseudospin-j(j = 1, 2, 3, 4) excitation they can propa-
gate. A final covariant spliting of these set (symmetric, traceless, transverse) tensors is obtained
by means of the pure pseudospin-j projectors p±j w

T
p̄āb̄···c̄ [6]

p±j w
T
p̄āb̄···c̄ ≡ wT

±

p̄āb̄···c̄ = 2−1wTp̄āb̄···c̄ ±
1

2j
ε(p

mn∂̂mwn̄āb̄···c̄), (9)

where the indicated symmetrization is the minimal one and does not carry a normalization coef-
ficient. It is straightforward to check that

p+
j + p−j = 1, p+

j − p−j =
1

j
ε(.̈ ∂̂ · · ·). (10)

Armed with these projectors one can analyse the behaviour of E p̄āb̄T , the spin-3 sector of Eq.(6).
It turns out that E p̄āb̄T propagates the spin-3+ part of wTp̄āb̄ and annihilates wT−

p̄āb̄
. Then ones goes

to the spin-2 sector and it is immediate to verify that ∂pEpāb, Ě b̄c̄ ≡ ε(bpaE
pā
c̄) do not allow the

propagation of hT
±

āb̄
. The spin-1 dynamical behaviour is determined by ∂paEpāb̄, ∂bĚ b̄ā, Eb ≡ Epp̄b̄

and F p. In order not to have any spin-1 excitation alive we must choose

α = β = −18. (11)

Unfortunately this is not the last step in order to get a pure pseudospin-3+ propagation.
S3 + S31 has scalar ghosts and therefore they have to be destroyed by an auxiliary scalar φ.

This is the reason of having to add to the first two layers S3 + S31 the last one, S10 defined in
Eq.(4). In principle one should have to consider the posibility of kinetic terms like ∼ φ φ which
are the second order and therefore would break the full system self-duality. The fields equations
derived from S are

δwS ∼ Epā1ā2 = 0 (12)

δuS ∼ ′F p ≡ F p − ∂pφ = 0, (13)

δφS ∼ G ≡ γ φ+ δµ2φ+ µ∂pup = 0. (14)



There are five scalar excitations which the system might propagate ∂̂pabwp̄āb̄, ∂̂abhāb̄, ∂̂pwp, ∂̂pup,

φ. However, since ∂pEpāb̄ and Ě b̄c̄ tells us that

µhb̄c̄ = −3(∂buc + ∂cub − 2(3)−1ηab(∂ · u)), (15a)

∂bwc + ∂cwb − (∂pwbp̄c̄ + ∂pwcp̄b̄) + 3(∂buc + ∂cub − 2(3)−1ηbc(∂ · u)) = 0, (15b)

it is immediate that, if neither ∂̂pup nor ∂̂pwp propagate (i.e., ∂̂pup = 0 = ∂̂pwp)∂̂pabwp̄āb̄ and ∂̂pahp̄ā
will not propagate either. The key equations are the vanishing of ∂bEpp̄b̄, ∂p‘F p and G where in
the first one, makes use of Eqs.(5a) and (15).

They can be written, respectively

(12 + 5(8)−1µ2)∂ · u+ 2−1µ2∂ · w = 0, (16a)

µβ∂ · u+ µ∂ · w − φ = 0, (16b)

µ∂ · u+ (γ + δµ2)φ = 0. (16c)

Introducing the dimensionless operator x ≡ µ−1 1/2 it is straightforward to see that the inverse
propagator of ∂̂ ·w, ∂̂ · u, φ is

∆(x) ≡ −(γx2 + δ)(12x2 + 5(8)−1) + 2−1x2 + 2−1β(γx2 + δ). (17)

These scalar variables (and consequently ∂̂pabwp̄āb̄, ∂̂pahp̄ā) do not propagate if the polynomial
∆(x) becomes zero order, i.e., ∆(x) ≡ ∆4 · x0 = ∆4 · 1. This condition uniquely determines γ, δ

γ = 0, δ = (24)−1. (18)

Note that the vanishing of γ makes action S10 first order (scalars appear of the self-dual type
too), leading to the final S being fully first order. Observe that we do not claim mathematical
uniqueness for a pure spin-3+ (or 3+) 3d action: in the scalar sector one could have consider
coupling terms like ∼ φ(∂ · w). However, it seems to us that, if one starts with the right-spin
Dreibein seed (in the case S3), then S31 is unique if we demand that it must be the vector
self-dual action coupled in the softest possible ways to S3 (the coupling term must be, at most,
first order and if possible algebraic). The construction of the auxiliary scalar action S10 again is
unique: it contains the free self-dual scalar action (∼ µ2φ2, no Klein-Gordon kinetic term) and
it is next-neighbour coupled to the auxiliary spin-1 field, discarding φ(∂ · w) which is not of the
next-neighbour type.

All these results will be useful when dealing with the much complex case of spin-4.
We start this analysis by introducing the spin-4 part of the final action S42 with the right

physical behaviour up to the spin-2 sector. It reads

S42 ≡ (2)−1µ < wpāb̄c̄ε
pmn∂mwnāb̄c̄ > −2−1µ2 < εpmnεabcηpawmb̄d̄1d̄2

wnc̄d̄1d̄2
>

+µ2 < wpp̄āb̄uab > +(2)−1αµ < upaε
pmn∂muna > +2−1βµ2 < εpmnεabcηpaumbunc >,(19)

where wpāb̄c̄ is symmetric and traceless (ST) in its three last barred indices and upa is an auxiliary
self-dual second rank tensor, [w] = [u] = m1/2. Their algebraically irreducible representations are,
respectively

wpāb̄c̄ = wp̄āb̄c̄ + εp(adhdb̄c̄) + 5(21)−1ηp(awb̄c̄) − 2(21)−1wp(āηbc), (20)



upa = up̄ā + εpadhd + 3−1ηpau, hd = −2−1εd
paupa, (21a, b)

where wpp̄b̄c̄ ≡ wb̄c̄ and upp are the unique non-vanishing contractions which can be made out of
wpāb̄c̄ and upa, respectively. Symmetrizations are minimal with coefficient one in front and sets of
barred indices continue to indicate ST tensors.

Variations with respect the wpāb̄c̄ and upa yield the initial set of field equations

Epāb̄c̄ ≡ εp
mn∂mwnāb̄c̄ + µ(3)−1{ηp(awb̄c̄) − w(ab̄c̄)p̄}

+µ(3)−1{ηp(aub̄c̄) − 2(5)−1η(abuc̄p̄)} = 0, (22)

Fpa ≡ µwp̄ā + αεp
mn∂muna + µβεp

mnεa
bcηncumb = 0. (23)

The spin-4± excitations are carried on the transverse part of wp̄āb̄c̄ : wT
p̄āb̄c̄

, ∂pwTp̄āb̄c̄ = 0 while

there are two sets of spin-3 variables: those contained in ∂̂pwp̄āb̄c̄ and those defined by hTāb̄c̄. Use
of the spin-4±projectors defined in Eqs.(9) and (10) show that Epāb̄c̄ uniquely propagate spin-4+

(make the spin-4− degree of freedom to cancel) and does not propagate neither (∂̂pwp̄āb̄c̄)
T nor

hT
āb̄c̄

. In fact, equations ∂pEpāb̄c̄ = 0 = ε(a
pdEpd̄b̄c̄) are equivalent to

4µhāb̄c̄ = 2(5)−1η(ab∂pup̄c̄) − ∂(aub̄c̄), (24)

∂(awb̄c̄) − ∂pw(a p̄b̄c̄) = 2(5)−1η(ab∂pup̄c̄) − ∂(aub̄c̄). (25)

These equations say both hāb̄c̄ and ∂p wp̄āb̄c̄ are curls of spin-2 objects and therefore their pure
spin-3 parts have to vanish.

Four variables describe the spin-2 sector of S42 : (∂̂pawp̄āb̄c̄)
T , (∂̂php̄āb̄)

T , wTp̄ā, u
T
p̄ā. The equations

which determine their dynamical behaviour are ∂paEpāb̄c̄ = 0, Ěāb̄c̄ = 0, Eb̄c̄ ≡ Epp̄b̄c̄ = 0 and
Fpa = 0. After some algebra one is led to a separated propagation eqaution for uTp̄ā ≡ ω, p±ω ≡ ω±

(x2 + 7(5)−1 − 4(3)−1β)(ω+ + ω−) + 2(3)−1x(αx+ β)ω+ + 2(3)−1x(αx− β)ω−

−4(3)−1αx(ω+ − ω−) = 0. (26)

Projecting on this spin-2+ (2−) subspaces we obtain the two uncoupled equations which de-
termine their evolution

{x2(1 + 2(3)−1α)∓ 2(3)−1(2α − β)x+ (7(5)−1 − 4(3)−1β)}ω± = 0, (27)

(either all upper indices or all down right). Non-propagations of one of these two variables deter-
mines the values of αβ:

α = −3(2)−1, β = −3, (28)

and, due to Eq.(27), entails the non-propagation of the other companion variable. S42 (19) has been
uniquely determined requesting its good physical behaviour in its highest spin sector (s = 4, 3, 2).

However, it contains vector and scalar ghosts. This is the reason why we have to add two
additional layers. The most difficult of them is spin-1 fixing action. Its ambiguity stems in the
wide range of mathematically consistent terms one might have to consider ab initio.



In principle S21 may be

S21 ≡ −2λ1µ < ha∂buāc̄ > +2λ2µ < vp∂rur̄p̄ >

γ2µ < haε
abc∂bhc > +γ1(2)−1µ < vpε

pmn∂mvn >

+ρµ2 < h2
a > +δ(2)−1µ2 < v2

a > +2εµ2 < hpvp > +2κµ < ha∂bwb̄ā >

+2ϕµ < vp∂rwr̄p̄ > +2σµ < vpε
pmn∂mhn >, (29)

which can be regarded as the addition of the self-dual action for the spin-1 variable ha contained
in upa plus the auxiliary self-dual action for the auxilary vector up algebraically coupled through
∼ h · v plus more bizarre terms like ∼ ha∂bub̄ā, ha∂bwb̄ā, va∂bub̄ā, vaε

abc∂bhc and the exotic term
∼ va∂bwb̄ā. We will not consider them, the first because we already have chosen a good kinetic
term for upa (upaε

pmn∂muna as in Eq.(19)), the last one because it is not of the next-neighbour type
(it is spin-4·spin-1) and second, third and fourth because we have decided to choose, whenever
possible, algebraic couplings and we have already a spin-2·spin-1 contact term ∼ h.v. Therefore
we rule out the present of terms ∼ va∂bub̄āvaε

abc∂bhc as well as the need form a term ∼ ha∂bwb̄ā,
a different coupling term linking spin-4 with spin-2 for the same reason. In other words we take
λ1 = λ2 = κ = σ = ϕ = 0 in S21.

Taking into account Eq.(21b) we write down in the modified spin-2 field equations which govern
this system (note that E p̄āb̄c̄ = 0 remains intact). They have the aspect

‘Fpa ≡ Fpa + γ2(∂pha − ∂ahp)− ρεpabhb − εεpabvb = 0. (30)

An additional vector-like field equation appears after varying vp,

Gp ≡ γ1ε
mn
p ∂mvn + δµvp + 2εµhp = 0. (31)

We want to determine γ1, γ2, ρ, δ, ε in such a way that none of the six spin-1 variables: ω8 ≡
(∂̂pabwp̄āb̄c̄)

T , ω9 ≡ (∂̂pahp̄āb̄)
T , ω11 ≡ (∂̂pup̄ā)T , ω11 ≡ hTp , ω12 ≡ hTp , ω13 ≡ vTp can propagate. Since

ω8 is given by ∂pabEpāb̄c̄ in terms of the five remaining variables ω9 · · ·ω13 we go after the non
propagation of them.

They are determined by ∂abĚb̄āc̄ = 0, ∂bEb̄c̄ = 0, ∂p‘Fpa = 0, ‘F̌ b = 0 and Gp = 0 After minor
algebra and some use of Eq.(24) the five equations become

4µ∂abhāb̄c̄ + 8(5)−1 ∂auāc̄ + 5−1∂c(∂abuāb̄) = 0, (32)

−4∂abhāb̄c̄ − 3−1εc
pr∂p(∂bwb̄r̄ + 4(3)−1µ∂pwp̄c̄ + 7(5)−1µ∂pup̄c̄ = 0, (33)

µ∂pwp̄ā − 3µ∂pup̄ā + (ρ − 3)µεa
pr∂phr + 2µ∂au+

+γ2( ha − ∂a(∂php)) + εµεa
pr∂pvr = 0, (34)

3(2)−1∂pup̄b̄ + 2(ρ− 3)µhb + 2εµvb + (2γ2 + 2(3)−1)εb
pr∂phr − ∂bu = 0 (35)

and Eq.(31) as it stands.
Working in a similar way to what we did for the spin-3 case, the vanishing of ω9 · · ·ω13 is

equivalent to their non propagation and this is reached if ∆(x) = ∆0x4 + · · · + ∆4 · 1 becomes



∆4 · 1. Straighforward calculations give

∆(x) = − 3(10)−1γ1(9γ2 + 8)x4 + {3(2)−1γ1(1− 9(5)−1ρ′)− 3(5)−1δ(9(2)−1γ2 + 4)}x3

+ {−27(5)−1γ1(2γ2 + 3(2)−1)− 27(10)−1δρ′ + 3(2)−1δ + 27(5)−1ε2}x2

− 27(5)−1{δ(2γ2 + 3(2)−1) + 2γ1ρ
′}x+ 54(5)−1{2ε2 − δρ′} · 1, (36)

where for convenience ρ′ ≡ ρ−3. Requesting the vanishing of the coefficients ∆0,1,2,3 of the inverse
propagator ∆x one is lead to

γ2 = −8(9)−1, ρ′ = 5(9)−1 = ρ − 3, (ρ = −4γ2),

γ1 = −18(5)−1ε2, δ = 4γ1 = −72(5)−1ε2. (37)

Redefining 2 εvp → vp the final unique form of S21 becomes

S21 = −8(9)−1µ < haε
abc∂bhc > −9(20)−1µ < vpε

pmn∂mvn >

+32(9)−1µ2 < h2
a > −9(5)−1µ2 < v2

p > + < hpvp > µ2. (29b)

The action S42 + S21 has the right physical properties up to spin-1. However, its scalar sector
contains ghost which we have to exorcise by introducing an auxiliary self-dual scalar φ. Its
associated action S10 constitutes the last layer we need to determine the final pure self-dual spin-
4+ action S.

The most general scalar auxiliary action one can add to S42 + S21 is

S10 ≡ 2a1µ < φ∂pup > +2a2µ < φ∂php > +2a7µ < u∂php > +2a8µ < u∂pvp >

a5µ
2 < φu > +2−1a3µ

2 < φ2 > +2−1a4 < φ φ >

+2−1a6µ
2 < u2 > +2−1a9 < u u > +a10 < u φ > . (38)

Taking advantage of what we learned from the spin-3 case, we assume that there will be a final
scalar auxiliary action fully self-dual, i.e., that there exists a non trivial S10 with vanishing a4, a9

and a10. We also assume a vanishing a7, since this term can be seen as an unpleasant kinetic term
to add to the self-dual actions up̄āεpmn∂mun̄ā and hpεpmn∂mhn. The final equations are

Epāb̄c̄ = 0, (22)

“Fpa ≡ ‘Fpa + µa5ηpaφ+ a2εpa
m∂mφ+ a6µηpau+ 2a8ηpa(∂ · v) = 0, (39)

‘Gp ≡ Gp − 2α1µ∂pφ− 2a8∂pu = 0, (40)

H ≡ δS10/δφ = 2a1(∂ · v) + 2a2(∂ · h) + a4µu + µa3φ = 0. (41)

The scalar sector has eight independent variables:

ω1 ≡ ∂̂pabcwp̄āb̄c̄, ω2 ≡ ∂̂pabhp̄āb̄, ω3 ≡ ∂̂abwāb̄,
ω4 ≡ ∂̂abuāb̄, ω5 ≡ ∂̂aha, ω6 ≡ µu,

ω7 ≡ ∂̂ava, ω8 ≡ µφ (42)



whose evolution is determined by ∂pabcEpāb̄c̄, ∂abcĚāb̄c̄, ∂bcEb̄c̄, ∂pa“Fpa, ∂b“F̌b, ∂p‘Gp and H.
The first set of 3 equations is derived from Eq.(22) taking into account the algebraic structure

of wpāb̄c̄ as given in Eq.(20). It turns out to be

−5∂pabcwp̄āb̄c̄ + 5(21)−1 ∂pawp̄ā + 3 ∂p̄āup̄ā = 0, (43)

4µ∂pabhp̄āb̄ + 9(5)−1µ∂paup̄ā = 0, (44)

−4∂pabhp̄āb̄ + 4(3)−1µ∂pawp̄ā + 7(5)−1µ∂paup̄ā = 0. (45)

The second set comes from Eq.(39). It consists of

∂pa“Fpa ≡ µ∂pawp̄ā − 3µ∂paup̄ā + µ(2 + a6) u+

+µa5 φ+ 2a8 ∂pvp = 0, (46)

∂b“F̌b ≡ 3(2)−1∂pawp̄ā + 10(9)−1µ∂php + µ∂pvp −
− u− 2a2µ φ = 0, (47)

“Fpp ≡ ∂php + (2 + a6)µu+ a5µφ+ 2a8∂pvp = 0. (48)

The last two equations are

∂p‘Gp ≡ δµ∂pvp + µ∂php − 2a1µ φ− 2a8 u = 0, (49)

and Eq.(41) H = 0. In terms of the ω-variables (42) Eqs.(43)-(45) allow to obtain ω1, ω2, ω3 as a
function of ω4. In particular

ω3 = −3(20)−1(9x2 + 7)ω4. (50)

Then it is immediate to realize that Eqs.(46)-(49), (41) become a decoupled subset of the full
system. It can be written as

−27(20)−1(x2 + 3)ω4 + (2 + a6)ω6 + 2a8xω7 + a5ω8 = 0, (51)

3(2)−1xω4 + 10(9)−1ω5 + ω7 − xω6 − 2a2xω8 = 0, (52)

xω5 + (2 + a6)ω6 + 2a8xω7 + a5ω8 = 0, (53)

ω5 − 2a8xω6 + δω7 − 2a1xω8 = 0, (54)

2a2xω5 + a5ω6 + 2a1xω7 + a3ω8 = 0. (55)

The inverse of this determinat ∆(a1,a2,a3,a5,a6,a8) is the system’s propagator. We wish to de-
termine the a1 · · · a8 coefficients in such a way that ∆(x) is a non-vanishing real number. First
we investigate the possibility of having a solution with pure next-neighbours coupling terms, i.e.,
where a2 = 0 = a5 (they are spin-2-spin-0 couplings).

In this case

∆(a2 = 0 = a5) = −27(20)−1x2(x2 + 3)(4a2
1x

2 + a3(δ − 2a8))

−18x2(a2
1a
′
6 + a3a

2
8)− 9(2)−1δa3a

′
6, (56)

where a′6 ≡ 2 + a6. Vanishing of its highest power coefficient leads to

a1 = 0, (57a)



and subsequent cancellation of quartic and quadratic terms impose

a3 = 0, (57b)

which seem an inconsistent possibility, since in this case ∆(56) becomes identically zero. However,
since we are now thinking of not having φ-dependent actions (a1 = a2 = a3 = a5 = 0) we have
to consider the appropiate system of field equations which consists of Eqs.(22),(39) and (40) for
these values of a1,2,3,5 and does no longer contain Eq.(41). Its crucial decoupled part consists
of Eqs.(51)-(54) (a1 = a2 = a3 = a5 = 0) and the non propagating character is determined by
imposing to its associated (quartic) determinant to be a non zero real number. This leads us to
determine a6 and a8

a6 = (5)−144, a8 = −9(10)−1. (58)

S10 attains a very simple form

S10 = −9(5)−1µ < u∂pvp > +22(5)−1µ2 < u2 >, (59)

where there is no auxiliary scalar field present
This is the minimal solution. If one relaxes a little bit the assumption of considering only next-

neighbours coupling and investigate the consequence of only imposing a2 = 0 (leaving room for an
algebraic non-next-neighbour spin-2-spin-0 coupling) we are led to a1 = a3 = 0, a6, a8 arbitraries
and a5 arbitrary non-vanishing.

Similarly, one might constraint a5 to vanish and try to determine a2. In this case one obtains
(after redefining φ→ a2φ)

a1 = 2−1δ, a2 = 1, a3 = 20δ2(2 + a6)(6a6 + 12− 5δ2)−1,

a6 6= 44(5)−1, a8 = 4−1δ, (60)

and the corresponding full action is a pure spin-4+ action too.
It is worth observing that simplest, self-dual, next-neighbour coupled pure spin-4+ is then

given by:
S = S42(19) + S21(29a) + S10(59) (61)

and contains only one auxiliary self-dual spin-2, ura, and one (self-dual) vector auxiliary field vr,
in addition to the fundamental physical spin-4 carrier wrāb̄c̄.

In conclusion we have been able to uniquely construct self-dual spin-3 and 4 actions where
auxiliary fields also appear in a self-dual form (including scalars) and where coupling terms are
next-neighbours. In both cases we needed one self-dual auxiliary filed of spin s-2, s-3, up to spin-1.

Since spin-4 clearly is the higher-spin case we may conjecture that this self-dual picture exists
for arbitrary integer spin, where the unique non uniform structure is the final layer fixing the good
spin-0 behaviour.

An additional interesting question is what should be the higher spin structure of topologically
massive theories. We are inclined to think that all of them will be of third-order, as it is the case
for gravity and spin-3.

It would also be interesting to see what is the connection between the present self-dual spin-3,
and 4 formulations and the recently proposed [13] anyonic relativistic actions for spin-j real, since
this scheme consistently contains the self-dual abelian vector case.



However, as we mentioned in the beginning, whether this Dirac-like bosonic structures can be
consistently coupled either to abelian vectors or to gravity is a worthwhile question which deserves
further analysis.
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