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Portada:
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Abstract

These notes are intended as an introductory course for experimental particle physicists interested in the recent
developments in astrophysics and cosmology. I will describe the standard Big Bang theory of the evolution of
the universe, with its successes and shortcomings, which will lead to inflationary cosmology as the paradigm for
the origin of the global structure of the universe as well as the origin of the spectrum of density perturbations
responsible for structure in our local patch. I will present a review of the very rich phenomenology that we
have in cosmology today, as well as evidence for the observational revolution that this field is going through,
which will provide us, in the next few years, with an accurate determination of the parameters of our standard
cosmological model.
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Chapter

13
General Introduction

Cosmology is probably the most ancient body of knowledge, dating from as far back as the predictions of seasons
by early civilizations. Yet, until recently, we could only answer to some of its more basic questions with an order
of magnitude estimate. This poor state of affairs has dramatically changed in the last few months, thanks to raw
data coming from precise measurements of a wide range of cosmological parameters. Furthermore, we are entering
a precision era in cosmology, and soon most of our observables will be measured with a few percent accuracy.
We are truly living in the Golden Age of Cosmology. It is a very exciting time and I will try to communicate this
enthusiasm to you.
Important results are coming out almost every month from a large set of experiments, which provide crucial in-
formation about the universe origin and evolution. In fact, so rapidly that some of the results I mentioned during
the Meeting have already been improved, specially in the area of the microwave background anisotropies. Never-
theless, most of the new data can be interpreted within a coherent framework known as the standard cosmological
model, based on the Big Bang theory of the universe and the inflationary paradigm. I will try to make such a
theoretical model accesible to young experimental particle physicists with little or no previous knowledge about
general relativity and curved space-time, but with some knowledge of quantum field theory and the standard model
of particle physics.
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Chapter

14
Introduction to Big Bang Cosmology

Our present understanding of the universe is based upon the successful hot Big Bang theory, which explains its
evolution from the first fraction of a second to our present age, around 13 billion years later. This theory rests upon
four strong pillars, a theoretical framework based on general relativity, as put forward by Albert Einstein [1] and
Alexander A. Friedmann [2] in the 1920s, and three robust observational facts: First, the expansion of the universe,
discovered by Edwin P. Hubble [3] in the 1930s, as a recession of galaxies at a speed proportional to their distance
from us. Second, the relative abundance of light elements, explained by George Gamow [4] in the 1940s, mainly
that of helium, deuterium and lithium, which were cooked from the nuclear reactions that took place at around a
second to a few minutes after the Big Bang, when the universe was a few times hotter than the core of the sun.
Third, the cosmic microwave background (CMB), the afterglow of the Big Bang, discovered in 1965 by Arno A.
Penzias and Robert W. Wilson [5] as a very isotropic blackbody radiation at a temperature of about 3 degrees
Kelvin, emitted when the universe was cold enough to form neutral atoms, and photons decoupled from matter,
approximately 500,000 years after the Big Bang. Today, these observations are confirmed to within a few percent
accuracy, and have helped establish the hot Big Bang as the preferred model of the universe.

14.1 Friedmann–Robertson–Walker universes

Where are we in the universe? We live on planet Earth, rotating (8 light-minutes away) around the Sun, an ordinary
star 8.5 kpc1 from the center of our galaxy, the Milky Way, which is part of the local group, within the Virgo
cluster of galaxies (of size a few Mpc), itself part of a supercluster (of size ∼ 100 Mpc), within the visible universe
(∼ few× 1000 Mpc), most probably a tiny homogeneous patch of the infinite global structure of space-time, much
beyond our observable universe.
Cosmology studies the universe as we see it. Due to our inherent inability to experiment with it, its origin and
evolution has always been prone to wild speculation. However, cosmology was born as a science with the advent
of general relativity and the realization that the geometry of space-time, and thus the general attraction of matter,
is determined by the energy content of the universe,[6]

Gµν ≡ Rµν − 1

2
gµνR = 8πGTµν + Λ gµν . (14.1)

These non-linear equations are simply too difficult to solve without some insight coming from the symmetries of
the problem at hand: the universe itself. At the time (1917-1922) the known (observed) universe extended a few
hundreds of kiloparsecs away, to the galaxies in the local group, Andromeda and the Large and Small Magellanic
Clouds: The universe looked extremely anisotropic. Nevertheless, both Einstein and Friedmann speculated that
the most “reasonable” symmetry for the universe at large should be homogeneity at all points, and thus isotropy.
It was not until the detection, a few decades later, of the microwave background by Penzias and Wilson that this
important assumption was finally put onto firm experimental ground. So, what is the most general metric satisfying

1One parallax second (1 pc), parsec for short, corresponds to a distance of about 3.26 light-years or 3 × 1018 cm.
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homogeneity and isotropy at large scales? The Friedmann-Robertson-Walker (FRW) metric, written here in terms
of the invariant geodesic distance ds2 = gµνdx

µdxν in four dimensions,[6] µ = 0, 1, 2, 3 (I am using c = 1

everywhere, unless specified),

ds2 = dt2 − a2(t)

[

dr2

1 −K r2
+ r2(dθ2 + sin2 θ dφ2)

]

, (14.2)

characterized by just two quantities, a scale factor a(t), which determines the physical size of the universe, and a
constant K, which characterizes the spatial curvature of the universe,

(3)R =
6K

a2(t)
.







K = −1 OPEN
K = 0 FLAT
K = +1 CLOSED

(14.3)

Spatially open, flat and closed universes have different geometries. Light geodesics on these universes behave
differently, and thus could in principle be distinguished observationally, as we shall discuss later. Apart from the
three-dimensional spatial curvature, we can also compute a four-dimensional space-time curvature,

(4)R = 6
ä

a
+ 6

(

ȧ

a

)2

+ 6
K

a2
. (14.4)

Depending on the dynamics (and thus on the matter/energy content) of the universe, we will have different possible
outcomes of its evolution. The universe may expand for ever, recollapse in the future or approach an asymptotic
state in between.

14.2 The expansion of the universe

In 1929, Edwin P. Hubble observed a redshift in the spectra of distant galaxies, which indicated that they were
receding from us at a velocity proportional to their distance to us.[3] This was correctly interpreted as mainly due
to the expansion of the universe, that is, to the fact that the scale factor today is larger than when the photons
were emitted by the observed galaxies. For simplicity, consider the metric of a spatially flat universe, ds2 =

dt2 − a2(t) d~x2 (the generalization of the following argument to curved space is straightforward). The scale factor
a(t) gives physical size to the spatial coordinates ~x, and the expansion is nothing but a change of scale (of spatial
units) with time. Except for peculiar velocities, i.e. motion due to the local attraction of matter, galaxies do not
move in coordinate space, it is the space-time fabric which is stretching between galaxies. Due to this continuous
stretching, the observed wavelength of photons coming from distant objects is greater than when they were emitted
by a factor precisely equal to the ratio of scale factors,

λobs

λem
=
a0

a
≡ 1 + z , (14.5)

where a0 is the present value of the scale factor. Since the universe today is larger than in the past, the observed
wavelengths will be shifted towards the red, or redshifted, by an amount characterized by z, the redshift parameter.
In the context of a FRW metric, the universe expansion is characterized by a quantity known as the Hubble rate
of expansion, H(t) = ȧ(t)/a(t), whose value today is denoted by H0. As I shall deduce later, it is possible to
compute the relation between the physical distance dL and the present rate of expansion, in terms of the redshift
parameter,2

H0 dL = z +
1

2
(1 − q0) z

2 + O(z3) . (14.6)

2The subscript L refers to Luminosity, which characterizes the amount of light emitted by an object. See Eq. (15.9).
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At small distances from us, i.e. at z � 1, we can safely keep only the linear term, and thus the recession velocity
becomes proportional to the distance from us, v = c z = H0 dL, the proportionality constant being the Hubble
rate, H0. This expression constitutes the so-called Hubble law, and is spectacularly confirmed by a huge range
of data, up to distances of hundreds of megaparsecs. In fact, only recently measurements from very bright and
distant supernovae, at z ' 1, were obtained, and are beginning to probe the second-order term, proportional to the
deceleration parameter q0, see Eq. (14.22). I will come back to these measurements in Section 3.
One may be puzzled as to why do we see such a stretching of space-time. Indeed, if all spatial distances are scaled
with a universal scale factor, our local measuring units (our rulers) should also be stretched, and therefore we should
not see the difference when comparing the two distances (e.g. the two wavelengths) at different times. The reason
we see the difference is because we live in a gravitationally bound system, decoupled from the expansion of the
universe: local spatial units in these systems are not stretched by the expansion.3 The wavelengths of photons are
stretched along their geodesic path from one galaxy to another. In this consistent world picture, galaxies are like
point particles, moving as a fluid in an expanding universe.

14.3 The matter and energy content of the universe

So far I have only discussed the geometrical aspects of space-time. Let us now consider the matter and energy
content of such a universe. The most general matter fluid consistent with the assumption of homogeneity and
isotropy is a perfect fluid, one in which an observer comoving with the fluid would see the universe around it as
isotropic. The energy momentum tensor associated with such a fluid can be written as [6]

Tµν = p gµν + (p+ ρ)UµUν , (14.7)

where p(t) and ρ(t) are the pressure and energy density of the fluid at a given time in the expansion, and U µ is the
comoving four-velocity, satisfying UµUµ = −1.
Let us now write the equations of motion of such a fluid in an expanding universe. According to general relativity,
these equations can be deduced from the Einstein equations (14.1), where we substitute the FRW metric (14.2)
and the perfect fluid tensor (14.7). The µ = ν = 0 component of the Einstein equations constitutes the so-called
Friedmann equation

H2 =

(

ȧ

a

)2

=
8πG

3
ρ+

Λ

3
− K

a2
, (14.8)

where I have treated the cosmological constant Λ as a different component from matter. In fact, it can be associated
with the vacuum energy of quantum field theory, although we still do not understand why should it have such a
small value (120 orders of magnitude below that predicted by quantum theory), if it is non-zero. This constitutes
today one of the most fundamental problems of physics, let alone cosmology.
The conservation of energy (T µν

;ν = 0), a direct consequence of the general covariance of the theory (Gµν
;ν = 0),

can be written in terms of the FRW metric and the perfect fluid tensor (14.7) as

d

dt

(

ρ a3
)

+ p
d

dt

(

a3
)

= 0 , (14.9)

where the energy density and pressure can be split into its matter and radiation components, ρ = ρM + ρR,

p = pM + pR, with corresponding equations of state, pM = 0, pR = ρR/3. Together, the Friedmann and the
energy-conservation equation give the evolution equation for the scale factor,

ä

a
= − 4πG

3
(ρ+ 3p) +

Λ

3
, (14.10)

3The local space-time of a gravitationally bound system is described by the static Schwarzschild metric.[6]
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I will now make a few useful definitions. We can write the Hubble parameter todayH0 in units of 100 km s−1Mpc−1,
in terms of which one can estimate the order of magnitude for the present size and age of the universe,

H0 = 100h km s−1Mpc−1 , (14.11)

cH−1
0 = 3000h−1 Mpc , (14.12)

H−1
0 = 9.773h−1 Gyr . (14.13)

The parameter h has been measured to be in the range 0.4 < h < 1 for decades, and only in the last few years has
it been found to lie within 10% of h = 0.65. I will discuss those recent measurements in the next Section.
One can also define a critical density ρc, that which in the absence of a cosmological constant would correspond to
a flat universe,

ρc ≡
3H2

0

8πG
= 1.88h2 10−29 g/cm3 (14.14)

= 2.77h−1 1011 M�/(h
−1 Mpc)3 , (14.15)

where M� = 1.989 × 1033 g is a solar mass unit. The critical density ρc corresponds to approximately 4 protons
per cubic meter, certainly a very dilute fluid! In terms of the critical density it is possible to define the ratios
Ωi ≡ ρi/ρc, for matter, radiation, cosmological constant and even curvature, today,

ΩM =
8πGρM

3H2
0

ΩR =
8πGρR

3H2
0

(14.16)

ΩΛ =
Λ

3H2
0

ΩK = − K

a2
0H

2
0

. (14.17)

We can evaluate today the radiation component ΩR, corresponding to relativistic particles, from the density of
microwave background photons, ρ

CMB
= π2

15 (kT
CMB

)4/(~c)3 = 4.5 × 10−34 g/cm3, which gives Ω
CMB

= 2.4 ×
10−5 h−2. Three massless neutrinos contribute an even smaller amount. Therefore, we can safely neglect the
contribution of relativistic particles to the total density of the universe today, which is dominated either by non-
relativistic particles (baryons, dark matter or massive neutrinos) or by a cosmological constant, and write the rate
of expansion H2 in terms of its value today,

H2(a) = H2
0

(

ΩR
a4

0

a4
+ ΩM

a3
0

a3
+ ΩΛ + ΩK

a2
0

a2

)

. (14.18)

An interesting consequence of these redefinitions is that I can now write the Friedmann equation today, a = a0, as
a cosmic sum rule,

1 = ΩM + ΩΛ + ΩK , (14.19)

where we have neglected ΩR today. That is, in the context of a FRW universe, the total fraction of matter density,
cosmological constant and spatial curvature today must add up to one. For instance, if we measure one of the three
components, say the spatial curvature, we can deduce the sum of the other two. Making use of the cosmic sum rule
today, we can write the matter and cosmological constant as a function of the scale factor (a0 ≡ 1)

ΩM(a) =
8πGρM

3H2(a)
(14.20)

=
ΩM

a+ ΩM(1 − a) + ΩΛ(a3 − a)

{

a→0−→ 1
a→∞−→ 0

,
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ΩΛ(a) =
Λ

3H2(a)
(14.21)

=
ΩΛa

3

a+ ΩM(1 − a) + ΩΛ(a3 − a)

{

a→0−→ 0
a→∞−→ 1

.

This implies that for sufficiently early times, a � 1, all matter-dominated FRW universes can be described by
Einstein-de Sitter (EdS) models (ΩK = 0, ΩΛ = 0).4 On the other hand, the vacuum energy will always dominate
in the future.
Another relationship which becomes very useful is that of the cosmological deceleration parameter today, q0, in
terms of the matter and cosmological constant components of the universe, see Eq. (14.10),

q0 ≡ − ä

aH2

∣

∣

∣

∣

0

=
1

2
ΩM − ΩΛ , (14.22)

which is independent of the spatial curvature. Uniform expansion corresponds to q0 = 0 and requires a precise
cancellation: ΩM = 2ΩΛ. It represents spatial sections that are expanding at a fixed rate, its scale factor growing by
the same amount in equally-spaced time intervals. Accelerated expansion corresponds to q0 < 0 and comes about
whenever ΩM < 2ΩΛ: spatial sections expand at an increasing rate, their scale factor growing at a greater speed
with each time interval. Decelerated expansion corresponds to q0 > 0 and occurs whenever ΩM > 2ΩΛ: spatial
sections expand at a decreasing rate, their scale factor growing at a smaller speed with each time interval.

14.4 Mechanical analogy

It is enlightening to work with a mechanical analogy of the Friedmann equation. Let us rewrite Eq. (14.8) as

1

2
ȧ2 − GM

a
− Λ

6
a2 = −K

2
= constant , (14.23)

where M ≡ 4π
3 ρ a3 is the equivalent of mass for the whole volume of the universe. Equation (14.23) can be

understood as the energy conservation law E = T + V for a test particle of unit mass in the central potential

V (r) = −GM
r

+
1

2
k r2 , (14.24)

corresponding to a Newtonian potential plus a harmonic oscillator potential with a negative spring constant k ≡
−Λ/3. Note that, in the absence of a cosmological constant (Λ = 0), a critical universe, defined as the borderline
between indefinite expansion and recollapse, corresponds, through the Friedmann equations of motion, precisely
with a flat universe (K = 0). In that case, and only in that case, a spatially open universe (K = −1) corresponds to
an eternally expanding universe, and a spatially closed universe (K = +1) to a recollapsing universe in the future.
Such a well known (textbook) correspondence is incorrect when ΩΛ 6= 0: spatially open universes may recollapse
while closed universes can expand forever.
One can show that, for ΩΛ 6= 0, a critical universe (H = Ḣ = 0) corresponds to those points x ≡ a0/a > 0, for
which f(x) ≡ H2(a) and f ′(x) vanish, while f ′′(x) > 0,

f(x) = x3ΩM + x2ΩK + ΩΛ = 0 , (14.25)

f ′(x) = 3x2ΩM + 2xΩK = 0

{

x = 0
x = −2ΩK/3ΩM > 0

, (14.26)

f ′′(x) = 6xΩM + 2ΩK =

{

+2ΩK > 0 x = 0
−2ΩK > 0 x = 2|ΩK |/3ΩM

. (14.27)

VI Escuela “ La Hechicera ” Relatividad, Campos y Astrofı́sica



82 Juan Garcı́a-Bellido

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0

ΩΛ

ΩM

Accelerating

Decelerating

ClosedOpen

Bounce

Expansion

Recollapse

Figure 14.1: Parameter space (ΩM, ΩΛ). The line ΩΛ = 1 − ΩM corresponds to a flat universe, ΩK = 0, separating open from
closed universes. The line ΩΛ = ΩM/2 corresponds to uniform expansion, q0 = 0, separating accelerating from decelerating universes.
The dashed line corresponds to critical universes, separating eternal expansion from future recollapse. The dotted line corresponds to
t0H0 = ∞, beyond which the universe has a bounce.

Using the cosmic sum rule (14.19), we can write the solutions as

ΩΛ =







0 ΩM ≤ 1

4ΩM sin3
[

1
3arcsin(1 − Ω−1

M )
]

ΩM ≥ 1
. (14.28)

The first solution corresponds to the critical point x = 0 (a = ∞), and ΩK > 0, while the second one to
x = 2|ΩK |/3ΩM, and ΩK < 0. Expanding around ΩM = 1, we find ΩΛ ' 4

27 (ΩM − 1)3/Ω2
M, for ΩM ≥ 1. These

critical solutions are asymptotic to the Einstein-de Sitter model (ΩM = 1, ΩΛ = 0), see Fig. 1.

14.5 Thermodynamical analogy

It is also enlightening to find an analogy between the energy conservation equation (14.9) and the second law of
Thermodynamics,

TdS = dU + pdV , (14.29)

where U = ρV is the total energy of the closed system and V = a3 is its physical volume. Equation (14.9)
implies that the expansion of the universe is adiabatic or isoentropic (dS = 0), corresponding to a fluid in thermal
equilibrium at a temperature T. For a barotropic fluid, satisfying the equation of state p = ωρ, we can write the
energy density evolution as

d

dt
(ρa3) = −p d

dt
(a3) = −3Hω (ρa3) . (14.30)

For relativistic particles in thermal equilibrium, the trace of the energy-momentum tensor vanishes (because of
conformal invariance) and thus pR = ρR/3 ⇒ ω = 1/3. In that case, the energy density of radiation in thermal
equilibrium can be written as [7]

ρR =
π2

30
g∗T

4 , (14.31)

4Note that in the limit a → 0 the radiation component starts dominating, see Eq. (14.18), but we still recover the EdS model.
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g∗ =
∑

i=bosons

gi

(

Ti

T

)4

+
7

8

∑

i=fermions

gi

(

Ti

T

)4

, (14.32)

where g∗ is the number of relativistic degrees of freedom, coming from both bosons and fermions. Using the
equilibrium expressions for the pressure and density, we can write dp = (ρ+ p)dT/T , and therefore

dS =
1

T
d[(ρ+ p)V ] − (ρ+ p)V

dT

T 2
= d

[

(ρ+ p)V

T
+ const.

]

(14.33)

That is, up to an additive constant, the entropy per comoving volume is S = a3(ρ + p)V/T , which is conserved.
The entropy per comoving volume is dominated by the contribution of relativistic particles, so that, to very good
approximation,

S =
2π2

45
g∗s(aT )3 = constant , (14.34)

g∗s =
∑

i=bosons

gi

(

Ti

T

)3

+
7

8

∑

i=fermions

gi

(

Ti

T

)3

. (14.35)

A consequence of Eq. (14.34) is that, during the adiabatic expansion of the universe, the scale factor grows inversely
proportional to the temperature of the universe, a ∝ 1/T . Therefore, the observational fact that the universe is
expanding today implies that in the past the universe must have been much hotter and denser, and that in the future
it will become much colder and dilute. Since the ratio of scale factors can be described in terms of the redshift
parameter z, see Eq. (14.5), we can find the temperature of the universe at an earlier epoch by

T = T0 (1 + z) . (14.36)

Such a relation has been spectacularly confirmed with observations of absorption spectra from quasars at large
distances, which showed that, indeed, the temperature of the radiation background scaled with redshift in the way
predicted by the hot Big Bang model.

14.6 Brief thermal history of the universe

In this Section, I will briefly summarize the thermal history of the universe, from the Planck era to the present. As
we go back in time, the universe becomes hotter and hotter and thus the amount of energy available for particle
interactions increases. As a consequence, the nature of interactions goes from those described at low energy
by long range gravitational and electromagnetic physics, to atomic physics, nuclear physics, all the way to high
energy physics at the electroweak scale, gran unification (perhaps), and finally quantum gravity. The last two are
still uncertain since we do not have any experimental evidence for those ultra high energy phenomena, and perhaps
Nature has followed a different path.
The way we know about the high energy interactions of matter is via particle accelerators, which are unravelling
the details of those fundamental interactions as we increase in energy. However, one should bear in mind that
the physical conditions that take place in our high energy colliders are very different from those that occurred in
the early universe. These machines could never reproduce the conditions of density and pressure in the rapidly
expanding thermal plasma of the early universe. Nevertheless, those experiments are crucial in understanding the
nature and rate of the local fundamental interactions available at those energies. What interests cosmologists is the
statistical and thermal properties that such a plasma should have, and the role that causal horizons play in the final
outcome of the early universe expansion. For instance, of crucial importance is the time at which certain particles
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decoupled from the plasma, i.e. when their interactions were not quick enough compared with the expansion of the
universe, and they were left out of equilibrium with the plasma.
One can trace the evolution of the universe from its origin till today. There is still some speculation about the physics
that took place in the universe above the energy scales probed by present colliders. Nevertheless, the overall layout
presented here is a plausible and hopefully testable proposal. According to the best accepted view, the universe
must have originated at the Planck era (1019 GeV, 10−43 s) from a quantum gravity fluctuation. Needless to say,
we don’t have any experimental evidence for such a statement: Quantum gravity phenomena are still in the realm
of physical speculation. However, it is plausible that a primordial era of cosmological inflation originated then.
Its consequences will be discussed below. Soon after, the universe may have reached the Grand Unified Theories
(GUT) era (1016 GeV, 10−35 s). Quantum fluctuations of the inflaton field most probably left their imprint then
as tiny perturbations in an otherwise very homogenous patch of the universe. At the end of inflation, the huge
energy density of the inflaton field was converted into particles, which soon thermalized and became the origin
of the hot Big Bang as we know it. Such a process is called reheating of the universe. Since then, the universe
became radiation dominated. It is probable (although by no means certain) that the asymmetry between matter and
antimatter originated at the same time as the rest of the energy of the universe, from the decay of the inflaton. This
process is known under the name of baryogenesis since baryons (mostly quarks at that time) must have originated
then, from the leftovers of their annihilation with antibaryons. It is a matter of speculation whether baryogenesis
could have occurred at energies as low as the electroweak scale (100 GeV, 10−10 s). Note that although particle
physics experiments have reached energies as high as 100 GeV, we still do not have observational evidence that
the universe actually went through the EW phase transition. If confirmed, baryogenesis would constitute another
“window” into the early universe. As the universe cooled down, it may have gone through the quark-gluon phase
transition (102 MeV, 10−5 s), when baryons (mainly protons and neutrons) formed from their constituent quarks.
The furthest window we have on the early universe at the moment is that of primordial nucleosynthesis (1 − 0.1

MeV, 1 s – 3 min), when protons and neutrons were cold enough that bound systems could form, giving rise to
the lightest elements, soon after neutrino decoupling: It is the realm of nuclear physics. The observed relative
abundances of light elements are in agreement with the predictions of the hot Big Bang theory. Immediately
afterwards, electron-positron annihilation occurs (0.5 MeV, 1 min) and all their energy goes into photons. Much
later, at about (1 eV, ∼ 105 yr), matter and radiation have equal energy densities. Soon after, electrons become
bound to nuclei to form atoms (0.3 eV, 3 × 105 yr), in a process known as recombination: It is the realm of
atomic physics. Immediately after, photons decouple from the plasma, travelling freely since then. Those are the
photons we observe as the cosmic microwave background. Much later (∼ 1 − 10 Gyr), the small inhomogeneities
generated during inflation have grown, via gravitational collapse, to become galaxies, clusters of galaxies, and
superclusters, characterizing the epoch of structure formation. It is the realm of long range gravitational physics,
perhaps dominated by a vacuum energy in the form of a cosmological constant. Finally (3K, 13 Gyr), the Sun,
the Earth, and biological life originated from previous generations of stars, and from a primordial soup of organic
compounds, respectively.
I will now review some of the more robust features of the Hot Big Bang theory of which we have precise observa-
tional evidence.

14.7 Primordial nucleosynthesis and light element abundance

In this subsection I will briefly review Big Bang nucleosynthesis and give the present observational constraints on
the amount of baryons in the universe. In 1920 Eddington suggested that the sun might derive its energy from the
fusion of hydrogen into helium. The detailed reactions by which stars burn hydrogen were first laid out by Hans
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Bethe in 1939. Soon afterwards, in 1946, George Gamow realized that similar processes might have occurred also
in the hot and dense early universe and gave rise to the first light elements.[4] These processes could take place
when the universe had a temperature of around T

NS
∼ 1 − 0.1 MeV, which is about 100 times the temperature

in the core of the Sun, while the density is ρ
NS

= π2

30 g∗T
4
NS

∼ 82 g cm−3, about the same density as the core of
the Sun. Note, however, that although both processes are driven by identical thermonuclear reactions, the physical
conditions in star and Big Bang nucleosynthesis are very different. In the former, gravitational collapse heats up
the core of the star and reactions last for billions of years (except in supernova explosions, which last a few minutes
and creates all the heavier elements beyond iron), while in the latter the universe expansion cools the hot and dense
plasma in just a few minutes. Nevertheless, Gamow reasoned that, although the early period of cosmic expansion
was much shorter than the lifetime of a star, there was a large number of free neutrons at that time, so that the
lighter elements could be built up quickly by succesive neutron captures, starting with the reaction n+p→ D+γ.
The abundances of the light elements would then be correlated with their neutron capture cross sections, in rough
agreement with observations.[6, 8]

Figure 14.2: The relative abundance of light elements to Hidrogen. Note the large range of scales involved. From Ref. [8].

Nowadays, Big Bang nucleosynthesis (BBN) codes compute a chain of around 30 coupled nuclear reactions, to
produce all the light elements up to beryllium-7.5 Only the first four or five elements can be computed with accuracy
better than 1% and compared with cosmological observations. These light elements are H, 4He,D, 3He, 7Li, and
perhaps also 6Li. Their observed relative abundance to hydrogen is [1 : 0.25 : 3 · 10−5 : 2 · 10−5 : 2 · 10−10]

with various errors, mainly systematic. The BBN codes calculate these abundances using the laboratory measured
nuclear reaction rates, the decay rate of the neutron, the number of light neutrinos and the homogeneous FRW
expansion of the universe, as a function of only one variable, the number density fraction of baryons to photons,
η ≡ nB/nγ . In fact, the present observations are only consistent, see Fig. 14.2, with a very narrow range of
values [9, 8]

η10 ≡ 1010 η = 4.6 − 5.9 . (14.37)

5The rest of nuclei, up to iron (Fe), are produced in heavy stars, and beyond Fe in novae and supernovae explosions.
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Such a small value of η indicates that there is about one baryon per 109 photons in the universe today. Any
acceptable theory of baryogenesis should account for such a small number. Furthermore, the present baryon fraction
of the critical density can be calculated from η10 as [8]

ΩBh
2 = 3.6271 × 10−3 η10 = 0.0190 ± 0.0024 (95% c.l.) (14.38)

Clearly, this number is well below closure density, so baryons cannot account for all the matter in the universe, as
I shall discuss below.

14.8 Neutrino decoupling

Just before the nucleosynthesis of the lightest elements in the early universe, weak interactions were too slow to
keep neutrinos in thermal equilibrium with the plasma, so they decoupled. We can estimate the temperature at
which decoupling occurred from the weak interaction cross section, σw ' G2

FT
2 at finite temperature T , where

GF = 1.2 × 10−5 GeV−2 is the Fermi constant. The neutrino interaction rate, via W boson exchange in n+ ν ↔
p+ e− and p+ ν̄ ↔ n+ e+, can be written as [7]

Γν = nν〈σw|v|〉 ' G2
FT

5 , (14.39)

while the rate of expansion of the universe at that time (g∗ = 10.75) was H ' 5.4 T 2/MP, where MP =

1.22 × 1019 GeV is the Planck mass. Neutrinos decouple when their interaction rate is slower than the universe
expansion, Γν ≤ H or, equivalently, at Tν−dec ' 0.8 MeV. Below this temperature, neutrinos are no longer in
thermal equilibrium with the rest of the plasma, and their temperature continues to decay inversely proportional
to the scale factor of the universe. Since neutrinos decoupled before e+e− annihilation, the cosmic background
of neutrinos has a temperature today lower than that of the microwave background of photons. Let us compute
the difference. At temperatures above the the mass of the electron, T > me = 0.511 MeV, and below 0.8 MeV,
the only particle species contributing to the entropy of the universe are the photons (g∗ = 2) and the electron-
positron pairs (g∗ = 4 × 7

8 ); total number of degrees of freedom g∗ = 11
2 . At temperatures T ' me, electrons

and positrons annihilate into photons, heating up the plasma (but not the neutrinos, which had decoupled already).
At temperatures T < me, only photons contribute to the entropy of the universe, with g∗ = 2 degrees of freedom.
Therefore, from the conservation of entropy, we find that the ratio of Tγ and Tν today must be

Tγ

Tν
=

(11

4

)1/3
= 1.401 ⇒ Tν = 1.945 K , (14.40)

where I have used T
CMB

= 2.725± 0.002 K. We still have not measured such a relic background of neutrinos, and
probably will remain undetected for a long time, since they have an average energy of order 10−4 eV, much below
that required for detection by present experiments (of order GeV), precisely because of the relative weakness of
the weak interactions. Nevertheless, it would be fascinating if, in the future, ingenious experiments were devised
to detect such a background, since it would confirm one of the most robust features of Big Bang cosmology.

14.9 Matter-radiation equality

Relativistic species have energy densities proportional to the quartic power of temperature and therefore scale as
ρR ∝ a−4, while non-relativistic particles have essentially zero pressure and scale as ρM ∝ a−3, see Eq. (14.30).
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Therefore, there will be a time in the evolution of the universe in which both energy densities are equal ρR(teq) =

ρM(teq). Since then both decay differently, and thus

1 + zeq =
a0

aeq
=

ΩM

ΩR
= 3.1 × 104 ΩMh

2 , (14.41)

where I have used ΩRh
2 = Ω

CMB
h2 + Ωνh

2 = 3.24 × 10−5 for three massless neutrinos at T = Tν . As I will
show later, the matter content of the universe today is below critical, ΩM ' 0.3, while h ' 0.65, and therefore
(1 + zeq) ' 3900, or about teq = 1.2 × 103 (ΩMh

2)−2 ' 7 × 104 years after the origin of the universe.

14.10 Recombination and photon decoupling

As the temperature of the universe decreased, electrons could eventually become bound to protons to form neutral
hydrogen. Nevertheless, there is always a non-zero probability that a rare energetic photon ionizes hydrogen and
produces a free electron. The ionization fraction of electrons in equilibrium with the plasma at a given temperature
is given by [7]

1 −Xeq
e

Xeq
e

=
4
√

2ζ(3)√
π

η

(

T

me

)3/2

eEion/T , (14.42)

where Eion = 13.6 eV is the ionization energy of hydrogen, and η is the baryon-to-photon ratio (14.37). If we
now use Eq. (14.36), we can compute the ionization fraction X eq

e as a function of redshift z. Note that the huge
number of photons with respect to electrons (in the ratio 4He : H : γ ' 1 : 4 : 1010) implies that even at a very
low temperature, the photon distribution will contain a sufficiently large number of high-energy photons to ionize
a significant fraction of hydrogen. In fact, defining recombination as the time at which X eq

e ≡ 0.1, one finds that
the recombination temperature is Trec = 0.3 eV � Eion, for η10 ' 5.2. Comparing with the present temperature
of the microwave background, we deduce the corresponding redshift at recombination, (1 + zrec) ' 1270.
Photons remain in thermal equilibrium with the plasma of baryons and electrons through elastic Thomson scatter-
ing, with cross section

σ
T

=
8πα2

3m2
e

= 6.65 × 10−25 cm2 = 0.665 barn , (14.43)

where α = 1/137.036 is the dimensionless electromagnetic coupling constant. The mean free path of photons
λγ in such a plasma can be estimated from the photon interaction rate, λ−1

γ ∼ Γγ = neσT
c. For temperatures

above a few eV, the mean free path is much smaller that the causal horizon at that time and photons suffer multiple
scattering: the plasma is like a dense fog. Photons will decouple from the plasma when their interaction rate
cannot keep up with the expansion of the universe and the mean free path becomes larger than the horizon size:
the universe becomes transparent. We can estimate this moment by evaluating Γγ = H at photon decoupling.
Using ne = Xe η nγ , one can compute the decoupling temperature as Tdec = 0.26 eV, and the corresponding
redshift as (1 + zdec) ' 1100. This redshift defines the so called last scattering surface, when photons last
scattered off protons and electrons and travelled freely ever since. This decoupling occurred when the universe was
approximately tdec = 1.8 × 105 (ΩMh

2)−1/2 ' 5 × 105 years old.

14.11 The microwave background

One of the most remarkable observations ever made my mankind is the detection of the relic background of photons
from the Big Bang. This background was predicted by George Gamow and collaborators in the 1940s, based on the
consistency of primordial nucleosynthesis with the observed helium abundance. They estimated a value of about 10
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Figure 14.3: The Cosmic Microwave Background Spectrum seen by the FIRAS instrument on COBE. The left panel corresponds to the
monopole spectrum, T0 = 2.725±0.002 K, where the error bars are smaller than the line width. The right panel shows the dipole spectrum,
δT1 = 3.372 ± 0.014 mK. From Ref. [10].

K, although a somewhat more detailed analysis by Alpher and Herman in 1950 predicted Tγ ≈ 5 K. Unfortunately,
they had doubts whether the radiation would have survived until the present, and this remarkable prediction slipped
into obscurity, until Dicke, Peebles, Roll and Wilkinson [11] studied the problem again in 1965. Before they could
measure the photon background, they learned that Penzias and Wilson had observed a weak isotropic background
signal at a radio wavelength of 7.35 cm, corresponding to a blackbody temperature of Tγ = 3.5 ± 1 K. They
published their two papers back to back, with that of Dicke et al. explaining the fundamental significance of their
measurement.[6]

Since then many different experiments have confirmed the existence of the microwave background. The most out-
standing one has been the Cosmic Background Explorer (COBE) satellite, whose FIRAS instrument [10] measured
the photon background with great accuracy over a wide range of frequencies (ν = 1 − 97 cm−1), with a spec-
tral resolution ∆ν

ν = 0.0035. Nowadays, the photon spectrum is confirmed to be a blackbody spectrum with a
temperature given by [10]

T
CMB

= 2.725 ± 0.002 K (systematic, 95% c.l.) ± 7 µK (1σ statistical) (14.44)

In fact, this is the best blackbody spectrum ever measured, see Fig. 14.3, with spectral distortions below the level
of 10 parts per million (ppm).

Moreover, the differential microwave radiometer (DMR) instrument on COBE, with a resolution of about 7◦ in
the sky, has also confirmed that it is an extraordinarily isotropic background. The deviations from isotropy, i.e.
differences in the temperature of the blackbody spectrum measured in different directions in the sky, are of the
order of 20µK on large scales, or one part in 105.[12] There is, in fact, a dipole anisotropy of one part in 103,
δT1 = 3.372± 0.007 mK (95% c.l.), in the direction of the Virgo cluster, (l, b) = (264.14◦ ± 0.30, 48.26◦ ± 0.30)

(95% c.l.). Under the assumption that a Doppler effect is responsible for the entire CMB dipole, the velocity of the
Sun with respect to the CMB rest frame is v� = 371 ± 0.5 km/s.[10] When subtracted, we are left with a whole
spectrum of anisotropies in the higher multipoles (quadrupole, octupole, etc.), δT2 = 18±2 µK (95% c.l.),[12] see
Fig. 14.4.

Soon after COBE, other groups quickly confirmed the detection of temperature anisotropies at around 30µK and
above, at higher multipole numbers or smaller angular scales. As I shall discuss below, these anisotropies play a
crucial role in the understanding of the origin of structure in the universe.
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Figure 14.4: The Cosmic Microwave Background Spectrum seen by the DMR instrument on COBE. The top figure corresponds to the
monopole, T0 = 2.725±0.002 K. The middle figure shows the dipole, δT1 = 3.372±0.014 mK, and the lower figure shows the quadrupole
and higher multipoles, δT2 = 18 ± 2 µK. The central region corresponds to foreground by the galaxy. From Ref. [12].

14.12 Large-scale structure formation

Although the isotropic microwave background indicates that the universe in the past was extraordinarily homoge-
neous, we know that the universe today is not exactly homogeneous: we observe galaxies, clusters and superclusters
on large scales. These structures are expected to arise from very small primordial inhomogeneities that grow in
time via gravitational instability, and that may have originated from tiny ripples in the metric, as matter fell into
their troughs. Those ripples must have left some trace as temperature anisotropies in the microwave background,
and indeed such anisotropies were finally discovered by the COBE satellite in 1992. The reason why they took so
long to be discovered was that they appear as perturbations in temperature of only one part in 105.
While the predicted anisotropies have finally been seen in the CMB, not all kinds of matter and/or evolution of the
universe can give rise to the structure we observe today. If we define the density contrast as [13]

δ(~x, a) ≡ ρ(~x, a) − ρ̄(a)

ρ̄(a)
=

∫

d3~k δk(a) e
i~k·~x , (14.45)

where ρ̄(a) = ρ0 a
−3 is the average cosmic density, we need a theory that will grow a density contrast with

amplitude δ ∼ 10−5 at the last scattering surface (z = 1100) up to density contrasts of the order of δ ∼ 102

for galaxies at redshifts z � 1, i.e. today. This is a necessary requirement for any consistent theory of structure
formation.[14]
Furthermore, the anisotropies observed by the COBE satellite correspond to a small-amplitude scale-invariant
primordial power spectrum of inhomogeneities

P (k) = 〈|δk|2〉 ∝ kn , with n = 1 , (14.46)
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where the brackets 〈·〉 represent integration over an ensemble of different universe realizations. These inhomo-
geneities are like waves in the space-time metric. When matter fell in the troughs of those waves, it created density
perturbations that collapsed gravitationally to form galaxies and clusters of galaxies, with a spectrum that is also
scale invariant. Such a type of spectrum was proposed in the early 1970s by Edward R. Harrison, and independently
by the Russian cosmologist Yakov B. Zel’dovich,[15] to explain the distribution of galaxies and clusters of galaxies
on very large scales in our observable universe.

Today various telescopes – like the Hubble Space Telescope, the twin Keck telescopes in Hawaii and the European
Southern Observatory telescopes in Chile – are exploring the most distant regions of the universe and discovering
the first galaxies at large distances. The furthest galaxies observed so far are at redshifts of z ' 5, or 12 billion
light years from the Earth, whose light was emitted when the universe had only about 5% of its present age. Only
a few galaxies are known at those redshifts, but there are at present various catalogs like the CfA and APM galaxy
catalogs, and more recently the IRAS Point Source redshift Catalog, and Las Campanas redshift surveys, that study
the spatial distribution of hundreds of thousands of galaxies up to distances of a billion light years, or z < 0.1,
that recede from us at speeds of tens of thousands of kilometres per second. These catalogs are telling us about the
evolution of clusters of galaxies in the universe, and already put constraints on the theory of structure formation.
From these observations one can infer that most galaxies formed at redshifts of the order of 2 − 6; clusters of
galaxies formed at redshifts of order 1, and superclusters are forming now. That is, cosmic structure formed from
the bottom up: from galaxies to clusters to superclusters, and not the other way around. This fundamental difference
is an indication of the type of matter that gave rise to structure. The observed power spectrum of the galaxy matter
distribution from a selection of deep redshift catalogs can be seen in Fig. 14.5.

We know from Big Bang nucleosynthesis that all the baryons in the universe cannot account for the observed
amount of matter, so there must be some extra matter (dark since we don’t see it) to account for its gravitational
pull. Whether it is relativistic (hot) or non-relativistic (cold) could be inferred from observations: relativistic
particles tend to diffuse from one concentration of matter to another, thus transferring energy among them and
preventing the growth of structure on small scales. This is excluded by observations, so we conclude that most of
the matter responsible for structure formation must be cold. How much there is is a matter of debate at the moment.
Some recent analyses suggest that there is not enough cold dark matter to reach the critical density required to make
the universe flat. If we want to make sense of the present observations, we must conclude that some other form of
energy permeates the universe. In order to resolve this issue, even deeper galaxy redshift catalogs are underway,
looking at millions of galaxies, like the Sloan Digital Sky Survey (SDSS) and the Anglo-Australian two degree
field (2dF) Galaxy Redshift Survey, which are at this moment taking data, up to redshifts of z ∼< 0.5, over a large
region of the sky. These important observations will help astronomers determine the nature of the dark matter and
test the validity of the models of structure formation.

Before COBE discovered the anisotropies of the microwave background there were serious doubts whether gravity
alone could be responsible for the formation of the structure we observe in the universe today. It seemed that a new
force was required to do the job. Fortunately, the anisotropies were found with the right amplitude for structure to
be accounted for by gravitational collapse of primordial inhomogeneities under the attraction of a large component
of non-relativistic dark matter. Nowadays, the standard theory of structure formation is a cold dark matter model
with a non vanishing cosmological constant in a spatially flat universe. Gravitational collapse amplifies the density
contrast initially through linear growth and later on via non-linear collapse. In the process, overdense regions
decouple from the Hubble expansion to become bound systems, which start attracting eachother to form larger
bound structures. In fact, the largest structures, superclusters, have not yet gone non-linear.

The primordial spectrum (14.46) is reprocessed by gravitational instability after the universe becomes matter dom-
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Figure 14.5: The left panel shows the matter power spectrum for clusters of galaxies, from three different cluster surveys. The right panel
shows a compilation of the most recent estimates of the power spectrum of galaxy clustering, from four of the largest available redshift
surveys of optically-selected galaxies, compared to the deprojected spectrum of the 2D APM galaxy survey. From Ref. [16].
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Figure 14.6: The power spectrum for cold dark matter (CDM), tilted cold dark matter (TCDM), hot dark matter (HDM), and mixed hot
plus cold dark matter (MDM), normalized to COBE, for large-scale structure formation. From Ref. [17].

inated and inhomogeneities can grow. Linear perturbation theory shows that the growing mode6 of small density
contrasts go like [13, 14]

δ(a) ∝ a1+3ω =

{

a2 , a < aeq

a , a > aeq
(14.47)

in the Einstein-de Sitter limit (ω = p/ρ = 1/3 and 0, for radiation and matter, respectively). There are slight
deviations for a � aeq, if ΩM 6= 1 or ΩΛ 6= 0, but we will not be concerned with them here. The important
observation is that, since the density contrast at last scattering is of order δ ∼ 10−5, and the scale factor has
grown since then only a factor zdec ∼ 103, one would expect a density contrast today of order δ0 ∼ 10−2.
Instead, we observe structures like galaxies, where δ ∼ 102. So how can this be possible? The microwave
background shows anisotropies due to fluctuations in the baryonic matter component only (to which photons couple,
electromagnetically). If there is an additional matter component that only couples through very weak interactions,
fluctuations in that component could grow as soon as it decoupled from the plasma, well before photons decoupled
from baryons. The reason why baryonic inhomogeneities cannot grow is because of photon pressure: as baryons
collapse towards denser regions, radiation pressure eventually halts the contraction and sets up acoustic oscillations
in the plasma that prevent the growth of perturbations, until photon decoupling. On the other hand, a weakly

6The decaying modes go like δ(t) ∼ t−1, for all ω.
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interacting cold dark matter component could start gravitational collapse much earlier, even before matter-radiation
equality, and thus reach the density contrast amplitudes observed today. The resolution of this mismatch is one of
the strongest arguments for the existence of a weakly interacting cold dark matter component of the universe.
How much dark matter there is in the universe can be deduced from the actual power spectrum (the Fourier trans-
form of the two-point correlation function of density perturbations) of the observed large scale structure. One can
decompose the density contrast in Fourier components, see Eq. (14.45). This is very convenient since in linear per-
turbation theory individual Fourier components evolve independently. A comoving wavenumber k is said to “enter
the horizon” when k = d−1

H (a) = aH(a). If a certain perturbation, of wavelength λ = k−1 < dH(aeq), enters
the horizon before matter-radiation equality, the fast radiation-driven expansion prevents dark-matter perturbations
from collapsing. Since light can only cross regions that are smaller than the horizon, the suppression of growth due
to radiation is restricted to scales smaller than the horizon, while large-scale perturbations remain unaffected. The
suppression factor can be easily computed from (14.47) as fsup = (aenter/aeq)

2 = (keq/k)
2. In other words, the

processed power spectrum P (k) will have the form:

P (k) ∝
{

k , k � keq

k−3 , k � keq

(14.48)

This is precisely the shape that large-scale galaxy catalogs are bound to test in the near future, see Fig. 14.6.
Furthermore, since relativistic Hot Dark Matter (HDM) transfer energy between clumps of matter, they will wipe
out small scale perturbations, and this should be seen as a distinctive signature in the matter power spectra of future
galaxy catalogs. On the other hand, non-relativistic Cold Dark Matter (CDM) allow structure to form on all scales
via gravitational collapse. The dark matter will then pull in the baryons, which will later shine and thus allow us to
see the galaxies.
Naturally, when baryons start to collapse onto dark matter potential wells, they will convert a large fraction of their
potential energy into kinetic energy of protons and electrons, ionizing the medium. As a consequence, we expect
to see a large fraction of those baryons constituting a hot ionized gas surrounding large clusters of galaxies. This is
indeed what is observed, and confirms the general picture of structure formation.
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Chapter

15
Determination of Cosmological Parameters

In this Section, I will restrict myself to those recent measurements of the cosmological parameters by means of
standard cosmological techniques, together with a few instances of new results from recently applied techniques.
We will see that a large host of observations are determining the cosmological parameters with some reliability of
the order of 10%. However, the majority of these measurements are dominated by large systematic errors. Most of
the recent work in observational cosmology has been the search for virtually systematic-free observables, like those
obtained from the microwave background anisotropies, and discussed in Section 4.4. I will devote, however, this
Section to the more ‘classical’ measurements of the following cosmological parameters: The rate of expansion H0;
the matter content ΩM; the cosmological constant ΩΛ; the spatial curvature ΩK , and the age of the universe t0.1

These five basic cosmological parameters are not mutually independent. Using the homogeneity and isotropy on
large scales observed by COBE, we can infer relationships between the different cosmological parameters through
the Einstein-Friedmann equations. In particular, we can deduce the value of the spatial curvature from the Cosmic
Sum Rule,

1 = ΩM + ΩΛ + ΩK , (15.1)

or viceversa, if we determine that the universe is spatially flat from observations of the microwave background, we
can be sure that the sum of the matter content plus the cosmological constant must be one.

-1.0
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0.0 0.5 1.0 1.5 2.0 2.5 3.0

ΩΛ
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Figure 15.1: The contour lines correspond to equal t0H0 = 0.5 − 1.0, 1.2, 1.5, 2.0 and 5.0, from bottom to top, in parameter space
(ΩM, ΩΛ). The line t0H0 = ∞ would be indistinguishable from that of t0H0 = 5.

Another relationship between parameters appears for the age of the universe. In a FRW cosmology, the cosmic
expansion is determined by the Friedmann equation (14.8). Defining a new time and normalized scale factor,

y ≡ a

a0
=

1

1 + z
, τ ≡ H0(t− t0) , (15.2)

1We will take the baryon fraction as given by observations of light element abundances, in accordance with Big Bang nucleosynthesis,
see Eq. (14.38).
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we can write the Friedmann equation with the help of the Cosmic Sum Rule (14.19) as

y′(τ) =
[

1 + (y−1 − 1)ΩM + (y2 − 1)ΩΛ

]1/2
, (15.3)

with initial condition y(0) = 1, y′(0) = 1. Therefore, the present age t0 is a function of the other parameters,
t0 = f(H0,ΩM,ΩΛ), determined from

t0H0 =

1
∫

0

dy
[

1 + (y−1 − 1)ΩM + (y2 − 1)ΩΛ

]−1/2
. (15.4)

We show in Fig. 15.1 the contour lines for constant t0H0 in parameter space (ΩM,ΩΛ). There are two specific
limits of interest: an open universe with ΩΛ = 0, for which the age is given by

t0H0 =
1

1 − ΩM
− ΩM

(1 − ΩM)3/2
ln

[

1 + (1 − ΩM)1/2

Ω
1/2
M

]

(15.5)

= 2

∞
∑

n=0

(1 − ΩM)n

(2n+ 1)(2n+ 3)
,

and a flat universe with ΩΛ = 1 − ΩM, for which the age can also be expressed in compact form,

t0H0 =
2

3(1 − ΩM)1/2
ln

[

1 + (1 − ΩM)1/2

Ω
1/2
M

]

=
2

3

∞
∑

n=0

(1 − ΩM)n

2n+ 1
. (15.6)

We have plotted these functions in Fig. 15.2. It is clear that in both cases t0H0 → 2/3 as ΩM → 1. We can
now use these relations as a consistency check between the cosmological observations of H0, ΩM, ΩΛ and t0. Of
course, we cannot measure the age of the universe directly, but only the age of its constituents: stars, galaxies,
globular clusters, etc. Thus we can only find a lower bound on the age of the universe, t0 ∼> tgal + 1.5 Gyr. As
we will see, this is not a trivial bound and, in several occasions, during the progress towards better determinations
of the cosmological parameters, the universe seemed to be younger than its constituents, a logical inconsistency, of
course, only due to an incorrect assessment of systematic errors.[18]

Figure 15.2: The age of the universe as a function of the matter content, for an open and a flat universe.

In order to understand those recent measurements, one should also define what is known as the luminosity distance
to an object in the universe. Imagine a source that is emitting light at a distance dL from a detector of area dA.
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The absolute luminosity L of such a source is nothing but the energy emitted per unit time. A standard candle is
a luminous object that can be calibrated with some accuracy and therefore whose absolute luminosity is known,
within certain errors. For example, Cepheid variable stars and type Ia supernovae are considered to be reasonable
standard candles, i.e. their calibration errors are within bounds. The energy flux F received at the detector is the
measured energy per unit time per unit area of the detector coming from that source. The luminosity distance dL

is then defined as the radius of the sphere centered on the source for which the absolute luminosity would give
the observed flux, F ≡ L/4πd2

L. In a Friedmann-Robertson-Walker universe, light travels along null geodesics,
ds2 = 0, or, see Eq. (14.2),

dr
√

1 + a2
0H

2
0 r

2 ΩK

=
1

a2
0H

2
0

dz
√

(1 + z)2(1 + zΩM) − z(2 + z)ΩΛ

, (15.7)

which determines the coordinate distance r = r(z,H0,ΩM,ΩΛ), as a function of redshift z and the other cosmo-
logical parameters. Now let us consider the effect of the universe expansion on the observed flux coming from
a source at a certain redshift z from us. First, the photon energy on its way here will be redshifted, and thus the
observed energy E0 = E/(1 + z). Second, the rate of photon arrival will be time-delayed with respect to that
emitted by the source, dt0 = (1 + z)dt. Finally, the fraction of the area of the 2-sphere centered on the source that
is covered by the detector is dA/4πa2

0 r
2(z). Therefore, the total flux detected is

F =
L

4πa2
0 r

2(z)
≡ L

4πd2
L

. (15.8)

The final expression for the luminosity distance dL as a function of redshift is thus given by [7]

H0 dL

(1 + z)
= (15.9)

|ΩK |−1/2 sinn



|ΩK |1/2

z
∫

0

dz′
√

(1 + z′)2(1 + z′ΩM) − z′(2 + z′)ΩΛ



 ,

where sinn(x) = x if K = 0; sin(x) if K = +1 and sinh(x) if K = −1. Expanding to second order around
z = 0, we obtain Eq. (14.6),

H0 dL = z +
1

2

(

1 − ΩM

2
+ ΩΛ

)

z2 + O(z3) . (15.10)

This expression goes beyond the leading linear term, corresponding to the Hubble law, into the second order term,
which is sensitive to the cosmological parameters ΩM and ΩΛ. It is only recently that cosmological observations
have gone far enough back into the early universe that we can begin to probe the second term, as I will discuss
shortly. Higher order terms are not yet probed by cosmological observations, but they would contribute as important
consistency checks.
Let us now pursue the analysis of the recent determinations of the most important cosmological parameters: the
rate of expansion H0, the matter content ΩM, the cosmological constant ΩΛ, the spatial curvature ΩK , and the age
of the universe t0.

15.1 The rate of expansion H0

Over most of last century the value of H0 has been a constant source of disagreement.[18] Around 1929, Hubble
measured the rate of expansion to beH0 = 500 km s−1Mpc−1, which implied an age of the universe of order t0 ∼ 2
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Gyr, in clear conflict with geology. Hubble’s data was based on Cepheid standard candles that were incorrectly
calibrated with those in the Large Magellanic Cloud. Later on, in 1954 Baade recalibrated the Cepheid distance
and obtained a lower value, H0 = 250 km s−1Mpc−1, still in conflict with ratios of certain unstable isotopes.
Finally, in 1958 Sandage realized that the brightest stars in galaxies were ionized HII regions, and the Hubble
rate dropped down to H0 = 60 km s−1 Mpc−1, still with large (factor of two) systematic errors. Fortunately,
in the past 15 years there has been significant progress towards the determination of H0, with systematic errors
approaching the 10% level. These improvements come from two directions. First, technological, through the
replacement of photographic plates (almost exclusively the source of data from the 1920s to 1980s) with charged
couple devices (CCDs), i.e. solid state detectors with excellent flux sensitivity per pixel, which were previously
used successfully in particle physics detectors. Second, by the refinement of existing methods for measuring
extragalactic distances (e.g. parallax, Cepheids, supernovae, etc.). Finally, with the development of completely new
methods to determine H0, which fall into totally independent and very broad categories: a) Gravitational lensing;
b) Sunyaev-Zel’dovich effect; c) Extragalactic distance scale, mainly Cepheid variability and type Ia Supernovae;
d) Microwave background anisotropies. I will review here the first three, and leave the last method for Section 4.4,
since it involves knowledge about the primordial spectrum of inhomogeneities.

15.2 Gravitational lensing

Imagine a quasi-stellar object (QSO) at large redshift (z � 1) whose light is lensed by an intervening galaxy
at redshift z ∼ 1 and arrives to an observer at z = 0. There will be at least two different images of the same
background variable point source. The arrival times of photons from two different gravitationally lensed images of
the quasar depend on the different path lengths and the gravitational potential traversed. Therefore, a measurement
of the time delay and the angular separation of the different images of a variable quasar can be used to determine
H0 with great accuracy. This method, proposed in 1964 by Refsdael,[19] offers tremendous potential because it
can be applied at great distances and it is based on very solid physical principles.[20]

Unfortunately, there are very few systems with both a favourable geometry (i.e. a known mass distribution of the
intervening galaxy) and a variable background source with a measurable time delay. That is the reason why it
has taken so much time since the original proposal for the first results to come out. Fortunately, there are now
very powerful telescopes that can be used for these purposes. The best candidate to-date is the QSO 0957 + 561,
observed with the 10m Keck telescope, for which there is a model of the lensing mass distribution that is consistent
with the measured velocity dispersion. Assuming a flat space with ΩM = 0.25, one can determine [21]

H0 = 72 ± 7 (1σ statistical) ± 15% (systematic) km s−1Mpc−1 . (15.11)

The main source of systematic error is the degeneracy between the mass distribution of the lens and the value ofH0.
Knowledge of the velocity dispersion within the lens as a function of position helps constrain the mass distribution,
but those measurements are very difficult and, in the case of lensing by a cluster of galaxies, the dark matter
distribution in those systems is usually unknown, associated with a complicated cluster potential. Nevertheless,
the method is just starting to give promising results and, in the near future, with the recent discovery of several
systems with optimum properties, the prospects for measuring H0 and lowering its uncertainty with this technique
are excellent.
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15.3 Sunyaev-Zel’dovich effect

As discussed in the previous Section, the gravitational collapse of baryons onto the potential wells generated by
dark matter gave rise to the reionization of the plasma, generating an X-ray halo around rich clusters of galaxies,
see Fig. 15.3. The inverse-Compton scattering of microwave background photons off the hot electrons in the X-
ray gas results in a measurable distortion of the blackbody spectrum of the microwave background, known as the
Sunyaev-Zel’dovich (SZ) effect. Since photons acquire extra energy from the X-ray electrons, we expect a shift
towards higher frequencies of the spectrum, (∆ν/ν) ' (kBTgas/mec

2) ∼ 10−2. This corresponds to a decrement
of the microwave background temperature at low frequencies (Rayleigh-Jeans region) and an increment at high
frequencies.[22]

Figure 15.3: The Coma cluster of galaxies, seen here in an optical image (left) and an X-ray image (right), taken by the recently launched
Chandra X-ray Observatory. From Ref. [23].

Measuring the spatial distribution of the SZ effect (3 K spectrum), together with a high resolution X-ray map (108

K spectrum) of the cluster, one can determine the density and temperature distribution of the hot gas. Since the
X-ray flux is distance-dependent (F = L/4πd2

L), while the SZ decrement is not (because the energy of the CMB
photons increases as we go back in redshift, ν = ν0(1 + z), and exactly compensates the redshift in energy of the
photons that reach us), one can determine from there the distance to the cluster, and thus the Hubble rate H0.

The advantages of this method are that it can be applied to large distances and it is based on clear physical principles.
The main systematics come from possible clumpiness of the gas (which would reduce H0), projection effects (if
the clusters are prolate, H0 could be larger), the assumption of hydrostatic equilibrium of the X-ray gas, details of
models for the gas and electron densities, and possible contaminations from point sources. Present measurements
give the value [22]

H0 = 60 ± 10 (1σ statistical) ± 20% (systematic) km s−1Mpc−1 , (15.12)

compatible with other determinations. A great advantage of this completely new and independent method is that
nowadays more and more clusters are observed in the X-ray, and soon we will have high-resolution 2D maps of the
SZ decrement from several balloon flights, as well as from future microwave background satellites, together with
precise X-ray maps and spectra from the Chandra X-ray observatory recently launched by NASA, as well as from
the European X-ray satellite XMM launched a few months ago by ESA, which will deliver orders of magnitude
better resolution than the existing Einstein X-ray satellite.
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15.4 Cepheid variability

Cepheids are low-mass variable stars with a period-luminosity relation based on the helium ionization cycles inside
the star, as it contracts and expands. This time variability can be measured, and the star’s absolute luminosity
determined from the calibrated relationship. From the observed flux one can then deduce the luminosity distance,
see Eq. (15.9), and thus the Hubble rate H0. The Hubble Space Telescope (HST) [24] was launched by NASA
in 1990 (and repaired in 1993) with the specific project of calibrating the extragalactic distance scale and thus
determining the Hubble rate with 10% accuracy. The most recent results from HST are the following [25]

H0 = 71 ± 4 (random) ± 7 (systematic) km s−1Mpc−1 . (15.13)

The main source of systematic error is the distance to the Large Magellanic Cloud, which provides the fiducial
comparison for Cepheids in more distant galaxies. Other systematic uncertainties that affect the value of H0 are
the internal extinction correction method used, a possible metallicity dependence of the Cepheid period-luminosity
relation and cluster population incompleteness bias, for a set of 21 galaxies within 25 Mpc, and 23 clusters within
z ∼< 0.03.
With better telescopes coming up soon, like the Very Large Telescope (VLT) interferometer of the European South-
ern Observatory (ESO) in the Chilean Atacama desert, with 4 synchronized telescopes by the year 2005, and the
Next Generation Space Telescope (NGST) proposed by NASA for 2008, it is expected that much better resolution
and therefore accuracy can be obtained for the determination of H0.

15.5 The matter content ΩM

In the 1920s Hubble realized that the so called nebulae were actually distant galaxies very similar to our own. Soon
afterwards, in 1933, Zwicky found dynamical evidence that there is possibly ten to a hundred times more mass
in the Coma cluster than contributed by the luminous matter in galaxies.[26] However, it was not until the 1970s
that the existence of dark matter began to be taken more seriously. At that time there was evidence that rotation
curves of galaxies did not fall off with radius and that the dynamical mass was increasing with scale from that of
individual galaxies up to clusters of galaxies. Since then, new possible extra sources to the matter content of the
universe have been accumulating:

ΩM = ΩB,lum (stars in galaxies)

+ ΩB,dark (MACHOs?)

+ ΩCDM (weakly interacting : axion, neutralino?)

+ ΩHDM (massive neutrinos?) (15.14)

The empirical route to the determination of ΩM is nowadays one of the most diversified of all cosmological pa-
rameters. The matter content of the universe can be deduced from the mass-to-light ratio of various objects in
the universe; from the rotation curves of galaxies; from microlensing and the direct search of Massive Compact
Halo Objects (MACHOs); from the cluster velocity dispersion with the use of the Virial theorem; from the baryon
fraction in the X-ray gas of clusters; from weak gravitational lensing; from the observed matter distribution of the
universe via its power spectrum; from the cluster abundance and its evolution; from direct detection of massive
neutrinos at SuperKamiokande; from direct detection of Weakly Interacting Massive Particles (WIMPs) at DAMA
and UKDMC, and finally from microwave background anisotropies. I will review here just a few of them.
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15.6 Luminous matter

The most straight forward method of estimating ΩM is to measure the luminosity of stars in galaxies and then
estimate the mass-to-light ratio, defined as the mass per luminosity density observed from an object, Υ = M/L.
This ratio is usually expressed in solar units, M�/L�, so that for the sun Υ� = 1. The luminosity of stars depends
very sensitively on their mass and stage of evolution. The mass-to-light ratio of stars in the solar neighbourhood is
of order Υ ≈ 3. For globular clusters and spiral galaxies we can determine their mass and luminosity independently
and this gives Υ ≈ few. For our galaxy,

Lgal = (1.0 ± 0.3) × 108 hL� Mpc−3 and Υgal = 6 ± 3 . (15.15)

The contribution of galaxies to the luminosity density of the universe (in the visible-V spectral band, centered at
∼ 5500 Å) is [27]

LV = (1.7 ± 0.6) × 108 hL� Mpc−3 , (15.16)

which can be translated into a mass density by multiplying by the observed Υ in that band,

ΩM h = (6.1 ± 2.2) × 10−4 ΥV . (15.17)

All the luminous matter in the universe, from galaxies, clusters of galaxies, etc., account for Υ ≈ 10, and thus [28]

0.002 ≤ Ωlum h ≤ 0.006 . (15.18)

As a consequence, the luminous matter alone is far from the critical density. Moreover, comparing with the amount
of baryons from Big Bang nucleosynthesis (14.38), we conclude that Ωlum � ΩB, so there must be a large fraction
of baryons that are dark, perhaps in the form of very dim stars.

15.7 Rotation curves of spiral galaxies

The flat rotation curves of spiral galaxies provide the most direct evidence for the existence of large amounts of
dark matter. Spiral galaxies consist of a central bulge and a very thin disk, stabilized against gravitational collapse
by angular momentum conservation, and surrounded by an approximately spherical halo of dark matter. One can
measure the orbital velocities of objects orbiting around the disk as a function of radius from the Doppler shifts
of their spectral lines. The rotation curve of the Andromeda galaxy was first measured by Babcock in 1938, from
the stars in the disk. Later it became possible to measure galactic rotation curves far out into the disk, and a trend
was found.[29] The orbital velocity rose linearly from the center outward until it reached a typical value of 200
km/s, and then remained flat out to the largest measured radii. This was completely unexpected since the observed
surface luminosity of the disk falls off exponentially with radius,[29] I(r) = I0 exp(−r/rD). Therefore, one
would expect that most of the galactic mass is concentrated within a few disk lengths rD, such that the rotation
velocity is determined as in a Keplerian orbit, vrot = (GM/r)1/2 ∝ r−1/2. No such behaviour is observed. In
fact, the most convincing observations come from radio emission (from the 21 cm line) of neutral hydrogen in the
disk, which has been measured to much larger galactic radii than optical tracers. A typical case is that of the spiral
galaxy NGC 6503, where rD = 1.73 kpc, while the furthest measured hydrogen line is at r = 22.22 kpc, about
13 disk lengths away. The measured rotation curve is shown in Fig. 15.4 together with the relative components
associated with the disk, the halo and the gas.
Nowadays, thousands of galactic rotation curves are known, and all suggest the existence of about ten times more
mass in the halos of spiral galaxies than in the stars of the disk. Recent numerical simulations of galaxy formation
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Figure 15.4: The rotation curve of the spiral galaxy NGC 6503, determined by radio observations of hydrogen gas in the disk [30]. The
dashed line shows the rotation curve expected from the disk material alone, the dot-dashed line is from the dark matter halo alone.

in a CDM cosmology [31] suggest that galaxies probably formed by the infall of material in an overdense region
of the universe that had decoupled from the overall expansion. The dark matter is supposed to undergo violent
relaxation and create a virialized system, i.e. in hydrostatic equilibrium. This picture has led to a simple model of
dark-matter halos as isothermal spheres, with density profile ρ(r) = ρc/(r

2
c + r2), where rc is a core radius and

ρc = v2
∞/4πG, with v∞ equal to the plateau value of the flat rotation curve. This model is consistent with the

universal rotation curve seen in Fig. 15.4. At large radii the dark matter distribution leads to a flat rotation curve.
Adding up all the matter in galactic halos up to maximum radii, one finds Υhalo ≥ 30h, and therefore

Ωhalo ≥ 0.03 − 0.05 . (15.19)

Of course, it would be extraordinary if we could confirm, through direct detection, the existence of dark matter in
our own galaxy. For that purpose, one should measure its rotation curve, which is much more difficult because of
obscuration by dust in the disk, as well as problems with the determination of reliable galactocentric distances for
the tracers. Nevertheless, the rotation curve of the Milky Way has been measured and conforms to the usual picture,
with a plateau value of the rotation velocity of 220 km/s.[32] For dark matter searches, the crucial quantity is the
dark matter density in the solar neighbourhood, which turns out to be (within a factor of two uncertainty depending
on the halo model) ρDM = 0.3 GeV/cm3. We will come back to direct searched of dark matter in a later subsection.

15.8 Microlensing

The existence of large amounts of dark matter in the universe, and in our own galaxy in particular, is now established
beyond any reasonable doubt, but its nature remains a mystery. We have seen that baryons cannot account for
the whole matter content of the universe; however, since the contribution of the halo (15.19) is comparable in
magnitude to the baryon fraction of the universe (14.38), one may ask whether the galactic halo could be made of
purely baryonic material in some non-luminous form, and if so, how one should search for it. In other words, are
MACHOs the non-luminous baryons filling the gap between Ωlum and ΩB? If not, what are they?
Let us start a systematic search for possibilities. They cannot be normal stars since they would be luminous; neither
hot gas since it would shine; nor cold gas since it would absorb light and reemit in the infrared. Could they be burnt-
out stellar remnants? This seems implausible since they would arise from a population of normal stars of which
there is no trace in the halo. Neutron stars or black holes would typically arise from Supernova explosions and thus
eject heavy elements into the galaxy, while the overproduction of helium in the halo is strongly constrained. They
could be white dwarfs, i.e. stars not massive enough to reach supernova phase. Despite some recent arguments, a
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halo composed by white dwarfs is not rigorously excluded. Are they stars too small to shine? Perhaps M-dwarfs,
stars with a mass M ≤ 0.1M� which are intrinsically dim; however, very long exposure images of the Hubble
Space Telescope restrict the possible M-dwarf contribution to the galaxy to be below 6%. The most plausible
alternative is a halo composed of brown dwarfs with mass M ≤ 0.08M�, which never ignite hydrogen and thus
shine only from the residual energy due to gravitational contraction. An often discussed alternative, planet-size
Jupiters, can also be classified as low-mass brown dwarfs. In fact, the extrapolation of the stellar mass function
to small masses predicts a large number of brown dwarfs within normal stellar populations. A final possibility is
primordial black holes (PBH), which could have been created in the early universe from early phase transitions,[33]
even before baryons were formed, and thus may be classified as non-baryonic. They could make a large contribution
towards the total ΩM, and still be compatible with Big Bang nucleosynthesis.

Figure 15.5: The best candidate (LMC-1) for microlensing from the MACHO Collaboration in the direction of the Large Magellanic
Cloud. A recent reanalysis of this event suggested an amplification factor Amax = 7.20 ± 0.09, with achromaticity Ared/Ablue =
1.00 ± 0.05, and a duration of t̂ = 34.8 ± 0.2. From Ref. [34].

Figure 15.6: Likelihood contours for MACHO mass m (in units of solar mass) and halo fraction f for a typical size halo. The plus
sign shows the maximum likelihood estimate and the contours enclose regions of 68%, 90%, 95% and 99% probability. The panels are
labeled according to different sets of selection criteria (A or B), and whether or not an LMC halo with MACHO fraction f is included. From
Ref. [35].
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Whatever the arguments for or against baryonic objects as galactic dark matter, nothing would be more convincing
than a direct detection of the various candidates, or their exclusion, in a direct search experiment. Fortunately,
in 1986 Paczyński proposed a method for detecting faint stars in the halo of our galaxy.[36] The idea is based
on the well known effect that a point-like mass deflector placed between an observer and a light source creates
two different images. When the source is exactly aligned with the deflector of mass MD, the image would be an
annulus, an Einstein ring, with radius

r2E = 4GMD d , where d =
d1d2

d1 + d2
(15.20)

is the reduced distance to the source. If the two images cannot be separated because their angular distance α is
below the resolving power of the observer’s telescope, the only effect will be an apparent brightening of the star,
an effect known as gravitational microlensing. The amplification factor is [36]

A =
2 + u2

u
√

4 + u2
, where u ≡ r

rE
, (15.21)

with r the distance from the line of sight to the deflector. Imagine an observer on Earth watching a distant star in
the Large Magellanic Cloud (LMC), 50 kpc away. If the galactic halo is filled with MACHOs, one of them will
occasionally pass near the line of sight and thus cause the image of the background star to brighten. If the MACHO
moves with velocity v transverse to the line of sight, and if its impact parameter, i.e. the minimal distance to the
line of sight, is b, then one expects an apparent lightcurve as seen in Fig. 15.5. The natural time unit is ∆t = rE/v,
and the origin corresponds to the time of closest approach to the line of sight.
The probability for a target star to be lensed is independent of the mass of the dark matter object.[36] For stars in the
LMC one finds a probability, i.e. an optical depth for microlensing of the galactic halo, of approximately τ ∼ 10−6.
Thus, if one looks simultaneously at several millions of stars in the LMC during extended periods of time, one has
a good chance of seeing at least a few of them brightened by a dark halo object. In order to be sure one has seen a
microlensing event one has to monitor a large sample of stars long enough to identify the characteristic light curve.
The unequivocal signatures of such an event are the following: it must be a) unique (non-repetitive in time); b)
time-symmetric; and c) achromatic (because of general covariance). These signatures allow one to discriminate
against variable stars which constitute the background. The typical duration of the light curve is the time it takes a
MACHO to cross an Einstein radius, ∆t = rE/v. If the deflector mass is 1M�, the average microlensing time will
be 3 months, for 10−2 M� it is 9 days, for 10−4 M� it is 1 day, and for 10−6 M� it is 2 hours. A characteristic
event, of duration 34 days, is shown in Fig. 15.5.
The first microlensing events towards the LMC were reported by the MACHO and EROS collaborations in 1993.[37,
38] Nowadays, there are 12 candidates towards the LMC, 2 towards the SMC, around 40 towards the bulge of our
own galaxy, and about 2 towards Andromeda, seen by AGAPE [39] with a slightly different technique based on
pixel brightening rather than individual stars. Thus, microlensing is a well established technique with a rather ro-
bust future. In particular, it has allowed the MACHO and EROS collaboration to draw exclusion plots for various
mass ranges in terms of their maximum allowed halo fraction, see Fig. 15.6. The MACHO Collaboration conclude,
in their 5-year analysis,[35] that the spatial distribution of events is consistent with an extended lens distribution
such as Milky Way or LMC halo, consisting partially of compact objects. A maximum likelihood analysis gives
a MACHO halo fraction of 20% for a typical halo model with a 95% confidence interval of 8% to 50%. A 100%
MACHO halo is ruled out at 95% c.l. for all except their most extreme halo model. The most likely MACHO
mass is between 0.15 M� and 0.9 M�, depending on the halo model. The lower mass is characteristic of white
dwarfs, but a galactic halo composed primarily of white dwarfs is barely compatible with a range of observational
constraints. On the other hand, if one wanted to attribute the observed events to brown dwarfs, one needs to appeal
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to a very non-standard density and/or velocity distribution of these objects. It is still unclear what sort of objects
the microlensing experiments are seeing towards the LMC and where the lenses are. Nevertheless, the field is ex-
panding, with several new experiments already underway, to search for clear signals of parallax, or binary systems,
where the degeneracy between mass and distance can be resolved.[34]

15.9 Virial theorem and large scale motion

Figure 15.7: The velocity and density fluctuation fields in the Supergalactic Plane as recovered by the POTENT method from the Mark
III velocities of about 3,000 galaxies with 12 h−1 smoothing. The vectors are projections of the 3D velocity field in the frame of the CMB.
Coordinates are in units of 10 h−1 Mpc. The marked structures are the Local Group (LG), the “Great Attractor” (GA), the Coma cluster
“Great Wall” (GW), the Perseus-Pisces (PP) region and the “Southern Wall” (SW). From Ref. [40].

Clusters of galaxies are the largest gravitationally bound systems in the universe (superclusters are not yet in
equilibrium). We know today several thousand clusters; they have typical radii of 1− 5 Mpc and typical masses of
2 − 9 ×1014 M�. Zwicky noted in 1933 that these systems appear to have large amounts of dark matter.[26] He
used the virial theorem (for a gravitationally bound system in equilibrium), 2〈Ekin〉 = −〈Egrav〉, where 〈Ekin〉 =
1
2m〈v2〉 is the average kinetic energy of one of the bound objects (galaxies) of massm and 〈Egrav〉 = −m〈GM/r〉
is the average gravitational potential energy caused by the attraction of the other galaxies. Measuring the velocity
dispersion 〈v2〉 from the Doppler shifts of the spectral lines and estimating the geometrical size of the system
gives an estimate of its total mass M . As Zwicky noted, this virial mass of clusters far exceeds their luminous
mass, typically leading to a mass-to-light ratio Υcluster = 200 ± 70. Assuming that the average cluster Υ is
representative of the entire universe – Recent observations indicate that Υ is independent of scale up to supercluster
scales ∼ 100 h−1 Mpc – one finds for the cosmic matter density [41]

ΩM = 0.24 ± 0.05 (1σ statistical) ± 0.09 (systematic) . (15.22)

On scales larger than clusters the motion of galaxies is dominated by the overall cosmic expansion. Nevertheless,
galaxies exhibit peculiar velocities with respect to the global cosmic flow. For example, our Local Group of galaxies
is moving with a speed of 627 ± 22 km/s relative to the cosmic microwave background reference frame, towards
the Great Attractor.
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In the context of the standard gravitational instability theory of structure formation, the peculiar motions of galaxies
are attributed to the action of gravity during the universe evolution, caused by the matter density inhomogeneities
which give rise to the formation of structure. The observed large-scale velocity fields, together with the observed
galaxy distributions, can then be translated into a measure for the mass-to-light ratio required to explain the large-
scale flows. An example of the reconstruction of the matter density field in our cosmological vicinity from the
observed velocity field is shown in Fig. 15.7. The cosmic matter density inferred from such analyses is [40, 42]

ΩM > 0.3 95% c.l. (15.23)

Related methods that are more model-dependent give even larger estimates.

15.10 Baryon fraction in clusters

Since large clusters of galaxies form through gravitational collapse, they scoop up mass over a large volume of
space, and therefore the ratio of baryons over the total matter in the cluster should be representative of the entire
universe, at least within a 20% systematic error. Since the 1960s, when X-ray telescopes became available, it is
known that galaxy clusters are the most powerful X-ray sources in the sky.[43] The emission extends over the whole
cluster and reveals the existence of a hot plasma with temperature T ∼ 107 − 108 K, where X-rays are produced
by electron bremsstrahlung. Assuming the gas to be in hydrostatic equilibrium and applying the virial theorem
one can estimate the total mass in the cluster, giving general agreement (within a factor of 2) with the virial mass
estimates. From these estimates one can calculate the baryon fraction of clusters

fBh
3/2 = 0.03 − 0.08 ⇒ ΩB

ΩM
≈ 0.15 , for h = 0.65 , (15.24)

which together with (15.18) indicates that clusters contain far more baryonic matter in the form of hot gas than in
the form of stars in galaxies. Assuming this fraction to be representative of the entire universe, and using the Big
Bang nucleosynthesis value of ΩB = 0.05 ± 0.01, for h = 0.65, we find

ΩM = 0.3 ± 0.1 (statistical) ± 20% (systematic) . (15.25)

This value is consistent with previous determinations of ΩM. If some baryons are ejected from the cluster during
gravitational collapse, or some are actually bound in nonluminous objects like planets, then the actual value of ΩM

is smaller than this estimate.

15.11 Structure formation and the matter power spectrum

One the most important constraints on the amount of matter in the universe comes from the present distribution of
galaxies. As we mentioned in the Section 2.3, gravitational instability increases the primordial density contrast,
seen at the last scattering surface as temperature anisotropies, into the present density field responsible for the large
and the small scale structure.
Since the primordial spectrum is very approximately represented by a scale-invariant Gaussian random field, the
best way to present the results of structure formation is by working with the 2-point correlation function in Fourier
space (the equivalent to the Green’s function in QFT), the so-called power spectrum. If the reprocessed spectrum
of inhomogeneities remains Gaussian, the power spectrum is all we need to describe the galaxy distribution. Non-
Gaussian effects are expected to arise from the non-linear gravitational collapse of structure, and may be important
at small scales.[13]
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The power spectrum measures the degree of inhomogeneity in the mass distribution on different scales. It depends
upon a few basic ingredientes: a) the primordial spectrum of inhomogeneities, whether they are Gaussian or non-
Gaussian, whether adiabatic (perturbations in the energy density) or isocurvature (perturbations in the entropy
density), whether the primordial spectrum has tilt (deviations from scale-invariance), etc.; b) the recent creation
of inhomogeneities, whether cosmic strings or some other topological defect from an early phase transition are
responsible for the formation of structure today; and c) the cosmic evolution of the inhomogeneity, whether the
universe has been dominated by cold or hot dark matter or by a cosmological constant since the beginning of
structure formation, and also depending on the rate of expansion of the universe.
The working tools used for the comparison between the observed power spectrum and the predicted one are very
precise N-body numerical simulations and theoretical models that predict the shape but not the amplitude of the
present power spectrum. Even though a large amount of work has gone into those analyses, we still have large
uncertainties about the nature and amount of matter necessary for structure formation. A model that has become a
working paradigm is a flat cold dark matter model with a cosmological constant and ΩM = 0.3 − 0.4. This model
will soon be confronted with very precise measurements from SDSS, 2dF, and several other large redshift catalogs,
that are already taking data, see Section 4.5.
The observational constraints on the power spectrum have a huge lever arm of measurements at very different scales,
mainly from the observed cluster abundance, on 10 Mpc scales, to the CMB fluctuations, on 1000 Mpc scales, which
determines the normalization of the spectrum. At present, deep redshift surveys are probing scales between 100
and 1000 Mpc, which should begin to see the turnover corresponding to the peak of the power spectrum at keq, see
Figs. 14.5 and 14.6. The standard CDM model with ΩM = 1, normalized to the CMB fluctuations on large scales,
is inconsistent with the cluster abundance. The power spectra of both a flat model with a cosmological constant or
an open universe with ΩM = 0.3 (defined as ΛCDM and OCDM, respectively) can be normalized so that they agree
with both the CMB and cluster observations. In the near future, galaxy survey observations will greatly improve
the power spectrum constraints and will allow a measurement of ΩM from the shape of the spectrum. At present,
these measurements suggest a low value of ΩM, but with large uncertainties.

15.12 Cluster abundance and evolution

Rich clusters are the most recently formed gravitationally bound systems in the universe. Their number density as
a function of time (or redshift) helps determine the amount of dark matter. The observed present (z ∼ 0) cluster
abundance provides a strong constraint on the normalization of the power spectrum of density perturbations on
cluster scales. Both ΛCDM and OCDM are consistent with the observed cluster abundance at z ∼ 0, see Fig. 15.8,
while Standard CDM (Einstein-De Sitter model, with ΩM = 1), when normalized at COBE scales, produces too
many clusters at all redshifts.
The evolution of the cluster abundance with redshift breaks the degeneracy among the models at z ∼ 0. The
low-mass models (Open and Λ-CDM) predict a relatively small change in the number density of rich clusters as a
function of redshift because, due to the low density, hardly any structure growth occurs since z ∼ 1. The high-mass
models (Tilted and Standard CDM) predict that structure has grown steadily and rich clusters only formed recently:
the number density of rich clusters at z ∼ 1 is predicted to be exponentially smaller than today. The observation of
a single massive cluster is enough to rule out the ΩM = 1 model. In fact, three clusters have been seen, suggesting
a low density universe,[46]

ΩM = 0.25 +0.15
−0.10 (1σ statistical) ± 20% (systematic) . (15.26)

But one should be cautious. There is the caveat that for this constraint it is assumed that the initial spectrum
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Figure 15.8: The evolution of the cluster abundance as a function of redshift, compared with observations from massive clusters. The
four models are normalized to COBE. From Ref. [45].

of density perturbations is Gaussian, as predicted in the simplest models of inflation, but that has not yet been
confirmed observationally on cluster scales.

Figure 15.9: The observed cosmic matter components as functions of the Hubble expansion parameter. The luminous matter component
is given by Eq. (15.18); the galactic halo component is the horizontal band, Eq. (15.19), crossing the baryonic component from BBN,
Eq. (14.38); and the dynamical mass component from large scale structure analysis is given by Eq. (15.25). Note that in the range H0 =
70 ± 7 km/s/Mpc, there are three dark matter problems, see the text.

15.13 Summary of the matter content

We can summarize the present situation with Fig. 15.9, for ΩM as a function of H0. There are four bands, the
luminous matter Ωlum; the baryon content ΩB, from BBN; the galactic halo component Ωhalo, and the dynamical
mass from clusters, ΩM. From this figure it is clear that there are in fact three dark matter problems: The first
one is where are 90% of the baryons. Between the fraction predicted by BBN and that seen in stars and diffuse
gas there is a huge fraction which is in the form of dark baryons. They could be in small clumps of hydrogen that
have not started thermonuclear reactions and perhaps constitute the dark matter of spiral galaxies’ halos. Note that
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although ΩB and Ωhalo coincide at H0 ' 70 km/s/Mpc, this could be just a coincidence. The second problem
is what constitutes 90% of matter, from BBN baryons to the mass inferred from cluster dynamics. This is the
standard dark matter problem and could be solved by direct detection of a weakly interacting massive particle in
the laboratory. And finally, since we know from observations of the CMB, see Section 4.4, that the universe is
flat, what constitutes around 60% of the energy density, from dynamical mass to critical density, Ω0 = 1? One
possibility could be that the universe is dominated by a diffuse vacuum energy, i.e. a cosmological constant, which
only affects the very large scales. Alternatively, the theory of gravity (general relativity) may need to be modified
on large scales, e.g. due to quantum gravity effects. The need to introduce an effective cosmological constant on
large scales is nowadays the only reason why gravity may need to be modified at the quantum level. Since we
still do not have a quantum theory of gravity, such a proposal is still very speculative, and most of the approaches
simply consider the inclusion of a cosmological constant as a phenomenological parameter.

15.14 Massive neutrinos

One of the ‘usual suspects’ when addressing the problem of dark matter are neutrinos. They are the only candidates
known to exist. If neutrinos have a mass, could they constitute the missing matter? We know from the Big Bang
theory, see Section 2.2.2, that there is a cosmic neutrino background at a temperature of approximately 2K. This
allows one to compute the present number density in the form of neutrinos, which turns out to be, for massless
neutrinos, nν(Tν) = 3

11 nγ(Tγ) = 112 cm−3, per species of neutrino. If neutrinos have mass, as recent experiments
seem to suggest, see Fig. 15.10, the cosmic energy density in massive neutrinos would be ρν =

∑

nνmν =
3
11 nγ

∑

mν , and therefore its contribution today,

Ωνh
2 =

∑

mν

94 eV
. (15.27)

The discussion in the previous Sections suggest that ΩM ≤ 0.4, and thus, for any of the three families of neutrinos,
mν ≤ 40 eV. Note that this limit improves by six orders of magnitude the present bound on the tau-neutrino
mass.[47] Supposing that the missing mass in non-baryonic cold dark matter arises from a single particle dark
matter (PDM) component, its contribution to the critical density is bounded by 0.05 ≤ ΩPDMh

2 ≤ 0.4, see
Fig. 15.9.
I will now go through the various logical arguments that exclude neutrinos as the dominant component of the
missing dark matter in the universe. Is it possible that neutrinos with a mass 4 eV ≤ mν ≤ 40 eV be the non-
baryonic PDM component? For instance, could massive neutrinos constitute the dark matter halos of galaxies? For
neutrinos to be gravitationally bound to galaxies it is necessary that their velocity be less that the escape velocity
vesc, and thus their maximum momentum is pmax = mν vesc. How many neutrinos can be packed in the halo of
a galaxy? Due to the Pauli exclusion principle, the maximum number density is given by that of a completely
degenerate Fermi gas with momentum pF = pmax, i.e. nmax = p3

max/3π
2. Therefore, the maximum local density

in dark matter neutrinos is ρmax = nmaxmν = m4
ν v

3
esc/3π

2, which must be greater than the typical halo density
ρhalo = 0.3 GeV cm−3. For a typical spiral galaxy, this constraint, known as the Tremaine-Gunn limit,[49] gives
mν ≥ 40 eV. However, this mass, even for a single species, say the tau-neutrino, gives a value for Ωνh

2 = 0.5,
which is far too high for structure formation. Neutrinos of such a low mass would constitute a relativistic hot dark
matter component, which would wash-out structure below the supercluster scale, against evidence from present
observations, see Fig. 15.10. Furthermore, applying the same phase-space argument to the neutrinos as dark matter
in the halo of dwarf galaxies givesmν ≥ 100 eV, beyond closure density (15.27). We must conclude that the simple
idea that light neutrinos could constitute the particle dark matter on all scales is ruled out. They could, however,
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Figure 15.10: The neutrino parameter space, mixing angle against ∆m2, including the results from the different solar and atmospheric
neutrino oscillation experiments. Note the threshold of cosmologically important masses, cosmologically detectable neutrinos (by CMB
and LSS observations), and cosmologically excluded range of masses. From Ref. [48].

still play a role as a sub-dominant hot dark matter component in a flat CDM model. In that case, a neutrino mass
of order 1 eV is not cosmological excluded, see Fig. 15.10.
Another possibility is that neutrinos have a large mass, of order a few GeV. In that case, their number density at
decoupling, see Section 2.2.2, is suppressed by a Boltzmann factor, ∼ exp(−mν/Tdec). For masses mν > Tdec '
0.8 MeV, the present energy density has to be computed as a solution of the corresponding Boltzmann equation.
Apart from a logarithmic correction, one finds Ωνh

2 ' 0.1(10 GeV/mν)
2 for Majorana neutrinos and slightly

smaller for Dirac neutrinos. In either case, neutrinos could be the dark matter only if their mass was a few GeV.
Laboratory limits for ντ of around 18 MeV,[47] and much more stringent ones for νµ and νe, exclude the known
light neutrinos. However, there is always the possibility of a fourth unknown heavy and stable (perhaps sterile)
neutrino. If it couples to the Z boson and has a mass below 45 GeV for Dirac neutrinos (39.5 GeV for Majorana
neutrinos), then it is ruled out by measurements at LEP of the invisible width of the Z. There are two logical
alternatives, either it is a sterile neutrino (it does not couple to the Z), or it does couple but has a larger mass. In
the case of a Majorana neutrino (its own antiparticle), their abundance, for this mass range, is too small for being
cosmologically relevant, Ωνh

2 ≤ 0.005. If it were a Dirac neutrino there could be a lepton asymmetry, which
may provide a higher abundance (similar to the case of baryogenesis). However, neutrinos scatter on nucleons
via the weak axial-vector current (spin-dependent) interaction. For the small momentum transfers imparted by
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galactic WIMPs, such collisions are essentially coherent over an entire nucleus, leading to an enhancement of the
effective cross section. The relatively large detection rate in this case allowes one to exclude fourth-generation
Dirac neutrinos for the galactic dark matter.[50] Anyway, it would be very implausible to have such a massive
neutrino today, since it would have to be stable, with a life-time greater than the age of the universe, and there is no
theoretical reason to expect a massive sterile neutrino that does not oscillate into the other neutrinos.
Of course, the definitive test to the possible contribution of neutrinos to the overall density of the universe would be
to measure directly their mass in laboratory experiments. There are at present two types of experiments: neutrino
oscillation experiments, which measure only differences in squared masses, and direct mass-searches experiments,
like the tritium β - spectrum and the neutrinoless double-β decay experiments, which measure directly the mass of
the electron neutrino and give a boundmνe ∼< 2 eV. Neutrinos with such a mass could very well constitute the HDM
component of the universe, ΩHDM ∼< 0.15. The oscillation experiments give a variety of possibilities for ∆m2

ν =

0.3 − 3 eV2 from LSND (not yet confirmed), to the atmospheric neutrino oscillations from SuperKamiokande
(∆m2

ν ' 3 × 10−3 eV2) and the solar neutrino oscillations (∆m2
ν ' 10−5 eV2). Only the first two possibilities

would be cosmologically relevant, see Fig. 15.10.

15.15 Weakly Interacting Massive Particles

Unless we drastically change the theory of gravity on large scales, baryons cannot make up the bulk of the dark
matter. Massive neutrinos are the only alternative among the known particles, but they are essentially ruled out as
a universal dark matter candidate, even if they may play a subdominant role as a hot dark matter component. There
remains the mystery of what is the physical nature of the dominant cold dark matter component.
Something like a heavy stable neutrino, a generic Weakly Interacting Massive Particle (WIMP), could be a reason-
able candidate because its present abundance could fall within the expected range,

ΩPDMh
2 ∼ G3/2T 3

0 h
2

H2
0 〈σannvrel〉

=
3 × 10−27 cm3s−1

〈σannvrel〉
. (15.28)

Here vrel is the relative velocity of the two incoming dark matter particles and the brackets 〈. . .〉 denote a thermal
average at the freeze-out temperature, Tf ' mPDM/20, when the dark matter particles go out of equilibrium with
radiation. The value of 〈σannvrel〉 needed for ΩPDM ≈ 1 is remarkably close to what one would expect for a WIMP
with a mass mPDM = 100 GeV, 〈σannvrel〉 ∼ α2/8πmPDM ∼ 3 × 10−27 cm3s−1. We still do not know whether
this is just a coincidence or an important hint on the nature of dark matter.
There are a few theoretical candidates for WIMPs, like the neutralino, coming from supersymmetric extensions of
the standard model of particle physics, but at present there is no empirical evidence that such extensions are indeed
realized in nature. In fact, the non-observation of supersymmetric particles at current accelerators places stringent
limits on the neutralino mass and interaction cross section.[51]
If WIMPs constitute the dominant component of the halo of our galaxy, it is expected that some may cross the Earth
at a reasonable rate to be detected. The direct experimental search for them rely on elastic WIMP collisions with
the nuclei of a suitable target. Dark matter WIMPs move at a typical galactic virial velocity of around 200 − 300

km/s, depending on the model. If their mass is in the range 10 − 100 GeV, the recoil energy of the nuclei in the
elastic collision would be of order 10 keV. Therefore, one should be able to identify such energy depositions in a
macroscopic sample of the target. There are at present three different methods: First, one could search for scintilla-
tion light in NaI crystals or in liquid xenon; second, search for an ionization signal in a semiconductor, typically a
very pure germanium crystal; and third, use a cryogenic detector at 10 mK and search for a measurable temperature
increase of the sample. The main problem with such a type of experiment is the low expected signal rate, with a
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typical number below 1 event/kg/day. To reduce natural radioactive contamination one must use extremely pure
substances, and to reduce the background caused by cosmic rays requires that these experiments be located deeply
underground.

DAMA/
NaI-1

DAMA/
NaI-2

DAMA/
NaI-3

DAMA/
NaI-4

Figure 15.11: The DAMA experiment sees an annual variation, of order 7%, in the WIMP flux due to the Earth’s motion around the Sun.
The model independent residual rate in the lowest (2− 6 keV) cumulative energy interval (in counts per day/kg/keV) is shown as a function
of time since 1 January of the first year of data taking. The expected behaviour of a WIMP signal is a cosine function with a minimum
(maximum) roughly at the dashed (dotted) vertical lines. From Ref. [54].

The best limits on WIMP scattering cross sections come from some germanium experiments,[52] as well as from the
NaI scintillation detectors of the UK dark matter collaboration (UKDMC) in the Boulby salt mine in England,[53]
and the DAMA experiment in the Gran Sasso laboratory in Italy.[54] Current experiments already touch the pa-
rameter space expected from supersymmetric particles, and therefore there is a chance that they actually discover
the nature of the missing dark matter. The problem, of course, is to attribute a tentative signal unambiguously to
galactic WIMPs rather than to some unidentified radioactive background.
One specific signature is the annual modulation which arises as the Earth moves around the Sun.2 Therefore,
the net speed of the Earth relative to the galactic dark matter halo varies, causing a modulation of the expected
counting rate. The DAMA/NaI experiment has actually reported such a modulation signal, see Fig. 15.11, from the
combined analysis of their 4-year data,[54] which provides a confidence level of 99.6% for a neutralino mass of
mχ = 52 +10

−8 GeV and a proton cross section of ξσp = 7.2 +0.4
−0.9 × 10−6 pb, where ξ = ρχ/0.3 GeV cm−3 is the

local neutralino energy density in units of the galactic halo density. There has been no confirmation yet of this result
from other dark matter search groups; in fact the Cryogenic Dark Matter Search (CDMS) Collaboration [55] claims
that they exclude the DAMA result at 95% c.l. using a coincidence analysis which allows for better discrimination
of the background. New experiments are underway with better sensitivity at low masses, like the Cryogenic Rare
Event Search with Superconducting Thermometers (CRESST) experiment at Gran Sasso [56], which uses sapphire
crystals as targets and a new method to simultaneously measure the phonons and the scintillating light from particle
interactions inside the crystal, which allows excellent background discrimination. Moreover, recently there has
been the very interesting proposal of a completely new method based on a Superheated Droplet Detector (SDD),
which claims to have already a similar sensitivity as the more standard methods described above.[57]
There exist other indirect methods to search for galactic WIMPs.[58] Such particles could self-annihilate at a certain
rate in the galactic halo, producing a potentially detectable background of high energy photons or antiprotons. The
absence of such a background in both gamma ray satellites and the Alpha Matter Spectrometer [59] imposes
bounds on their density in the halo. Alternatively, WIMPs traversing the solar system may interact with the matter

2The time scale of the Sun’s orbit around the center of the galaxy is too large to be relevant in the analysis.
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that makes up the Earth or the Sun so that a small fraction of them will lose energy and be trapped in their cores,
building up over the age of the universe. Their annihilation in the core would thus produce high energy neutrinos
from the center of the Earth or from the Sun which are detectable by neutrino telescopes. In fact, SuperKamiokande
already covers a large part of SUSY parameter space. In other words, neutrino telescopes are already competitive
with direct search experiments. In particular, the AMANDA experiment at the South Pole,[60] which is expected
to have 103 Cherenkov detectors 2.3 km deep in very clear ice, over a volume ∼ 1 km3, is competitive with the
best direct searches proposed. The advantages of AMANDA are also directional, since the arrays of Cherenkov
detectors will allow one to reconstruct the neutrino trajectory and thus its source, whether it comes from the Earth
or the Sun.

15.16 The cosmological constant ΩΛ

A cosmological constant is a term in the Einstein equations, see Eq. (14.1), that corresponds to the energy density of
the vacuum of quantum field theories,[61] Λ ≡ 8πGρv. These theories predict a value of order ρv ∼M4

P ' 5×1093

g/cm3, which is about 123 orders of magnitude larger than the critical density (14.14). Such a discrepancy is one
of the biggest problems of theoretical physics.[62] It has always been assumed that quantum gravity effects, via
some as yet unknown symmetry, would exactly cancel the cosmological constant, but this remains a downright
speculation. Moreover, one of the difficulties with a non-zero value for Λ is that it appears coincidental that we
are now living at a special epoch when the cosmological constant starts to dominate the dynamics of the universe,
and that it will do so forever after, see Section 2.1.2 and Eq. (14.20). Nevertheless, ever since Einstein introduced
it in 1917, this ethereal constant has been invoked several times in history to explain a number of apparent crises,
always to disappear under further scrutiny.[18]
In spite of the theoretical prejudice towards Λ = 0, there are new observational arguments for a non-zero value. The
most compelling ones are recent evidence that we live in a flat universe, from observations of CMB anisotropies,
together with strong indications of a low mass density universe (ΩM < 1), from the large scale distribution of
galaxies, clusters and voids, that indicate that some kind of dark energy must make up the rest of the energy density
up to critical, i.e. ΩΛ = 1 − ΩM. In addition, the discrepancy between the ages of globular clusters and the
expansion age of the universe may be cleanly resolved with Λ 6= 0. Finally, there is growing evidence for an
accelerating universe from observations of distant supernovae. I will now discuss the different arguments one by
one.
The only known way to reconcile a low mass density with a flat universe is if an additional “dark” energy dominates
the universe today. It would have to resist gravitational collapse, otherwise it would have been detected already
as part of the energy in the halos of galaxies. However, if most of the energy of the universe resists gravitational
collapse, it is impossible for structure in the universe to grow. This dilemma can be resolved if the hypothetical
dark energy was negligible in the past and only recently became the dominant component. According to general
relativity, this requires that the dark energy have negative pressure, since the ratio of dark energy to matter density
goes like a(t)−3p/ρ. This argument [63] would rule out almost all of the usual suspects, such as cold dark matter,
neutrinos, radiation, and kinetic energy, since they all have zero or positive pressure. Thus, we expect something
like a cosmological constant, with negative pressure, p ≈ −ρ, to account for the missing energy.
This negative pressure would help accelerate the universe and reconcile the expansion age of the universe with
the ages of stars in globular clusters, see Fig. 15.2, where t0H0 is shown as a function of ΩM, in a flat universe,
ΩΛ = 1−ΩM, and an open one, ΩΛ = 0. For the present age of the universe of t0 = 13± 1 Gyr, and the measured
rate of expansion, H0 = 70 ± 7 km/s/Mpc, one finds t0H0 = 0.93 ± 0.12 (adding errors in quadrature), which
corresponds to ΩM = 0.05 +0.24

−0.10 for an open universe, see Fig. 15.2, marginally consistent with observations of
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large scale structure. On the other hand, for a flat universe with a cosmological constant, t0H0 = 0.93 ± 0.12

corresponds to ΩM = 0.34 +0.20
−0.12, which is perfectly compatible with recent observations. These suggest that we

probably live in a flat universe that is accelerating, dominated today by a vacuum energy density.
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Figure 15.12: Hubble diagram for the high redshift supernovae found by the SN Cosmology Project. From Ref. [64]. A similar diagram
is found by the High Redshift Supernova Project.65 Both groups conclude that distant supernovae are fainter than expected, and this could
be due to an accelerating universe.

This conclusions have been supported by growingly robust observational evidence from distant supernovae. In
their quest for the cosmological parameters, astronomers look for distant astrophysical objects that can serve as
standard candles to determine the distance to the object from their observed apparent luminosity. A candidate that
has recently been exploited with great success is a certain type of supernova explosions at large redshifts, called
SN of type Ia. These are white dwarf stars at the end of their life cycle that accrete matter from a companion until
they become unstable and violently explode in a natural thermonuclear explosion that out-shines their progenitor
galaxy. The intensity of the distant flash varies in time, it takes about three weeks to reach its maximum brightness
and then it declines over a period of months. Although the maximum luminosity varies from one supernova to
another, depending on their original mass, their environment, etc., there is a pattern: brighter explosions last longer
than fainter ones. By studying the characteristic light curves of a reasonably large statistical sample, cosmologists
from two competing groups, the Supernova Cosmology Project [64] and the High-redshift Supernova Project,[65]
are confident that they can use this type of supernova as a standard candle. Since the light coming from some of
these rare explosions has travelled for a large fraction of the size of the universe, one expects to be able to infer
from their distribution the spatial curvature and the rate of expansion of the universe.
One of the surprises revealed by these observations is that high redshift type Ia supernovae appear fainter than
expected for either an open (ΩM < 1) or a flat (ΩM = 1) universe, see Fig. 15.12. In fact, the universe appears
to be accelerating instead of decelerating, as was expected from the general attraction of matter, see Eq. (14.22);
something seems to be acting as a repulsive force on very large scales. The most natural explanation for this is the
presence of a cosmological constant, a diffuse vacuum energy that permeates all space and, as explained above,
gives the universe an acceleration that tends to separate gravitationally bound systems from each other. The best-fit
results from the Supernova Cosmology Project give a linear combination 0.8ΩM − 0.6ΩΛ = −0.2 ± 0.1 (1σ),
and, for a flat universe (ΩM + ΩΛ = 1), the best-fit values for the combined analysis of both groups,[64, 65] are

Ωflat
M = 0.28 +0.09

−0.08(1σ statistical) +0.05
−0.04 (identified systematics) ,
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0 ,
with the best-fit 68% and 90% confidence regions in the (ΩM, ΩΛ) plane. From Ref. [64].

(15.29)

Ωflat
Λ = 0.72 +0.08

−0.09(1σ statistical) +0.04
−0.05 (identified systematics) .

(15.30)

However, one may think that it is still premature to conclude that the universe is indeed accelerating, because of
possibly large systematic errors inherent to most cosmological measurements, and in particular to observations of
supernovae at large redshifts. There has been attempts to find crucial systematic effects like evolution, chemical
composition dependence, reddening by dust, etc. in the supernovae observations that would invalidate the claims,
but none of them are now considered as a serious threat. Perhaps the most critical one today seems to be sampling
effects, since the luminosities of the high-redshift supernovae (z ∼ 0.5− 1.0) are all measured relative to the same
set of local supernovae (z < 0.3). Hence, absolute calibrations, completeness levels, and any other systematic
effects related to both data sets are critical. For instance, the intense efforts to search for high-redshift objects have
led to the peculiar situation where the nearby sample, which is used for calibration, is now smaller than the distant
one. Further searches, already underway, for increasing the nearby supernovae sample will provide an important
check.
Moreover, there are bounds on a cosmological constant that come from the statistics of gravitational lensing, with
two different methods. Gravitational lensing can be due to various accumulations of matter along the line of sight
to the distant light sources. The first method uses the abundance of multiply imaged sources like quasars, lensed by
intervening galaxies. The probability of finding a lensed image is directly proportional to the number of galaxies
(lenses) along the path and thus to the distance to the source. This distance, for fixed H0, increases dramatically
for a large value of the cosmological constant: the age of the universe and the distance to the galaxy become large
for ΩΛ 6= 0 because the universe has been expanding for a longer time; therefore, more lenses are predicted for
ΩΛ > 0. Using this method, an upper limit of

ΩΛ < 0.75 (95% c.l.) (15.31)

has recently been obtained,[66] marginally consistent with the supernovae results, but there are caveats to this
powerful method due to uncertainties in the number density and lensing cross section of the lensing galaxies as
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well as the distant quasars. A second method is lensing by massive clusters of galaxies, which produces widely
separated lensed images of quasars and distorted images of background galaxies. The observed statistics, when
compared with numerical simulations, rule out the ΩM = 1 models and set an upper bound on the cosmological
constant,[44] ΩΛ < 0.7. However, this limit is very sensitive to the resolution of the numerical simulations, which
are currently improving.

15.17 The spatial curvature ΩK

As we will discuss in detail in Section 4.4, observations of the two-point correlation function of temperature
anisotropies in the microwave background provide a crucial test for the spatial curvature of the universe. From
those observations one can tell whether the photons that left the last scattering surface, at redshift z = 1100, have
travelled in straight lines, like in a flat universe, or in curved paths, like in an open one. Very recent observations
made by the balloon experiments BOOMERANG and MAXIMA suggest that the universe is indeed spatially flat
(ΩK = 0) with about 10% accuracy,[67, 68, 69] Ω0 = ΩM + ΩΛ = 1.11 ± 0.12 (95% c.l.). These measurements
are bound to be improved in the near future, by both balloon experiments and by the Microwave Anisotropy Probe
(MAP) satellite, to be launched by NASA at the end of year 2000.[70] Furthermore, with the launch in 2007 of
Planck satellite [71] we will be able to determine Ω0 with 1% accuracy.

15.18 The age of the universe t0

The universe must be older than the oldest objects it contains. Those are believed to be the stars in the oldest
clusters in the Milky Way, globular clusters. The most reliable ages come from the application of theoretical
models of stellar evolution to observations of old stars in globular clusters. For about 30 years, the ages of globular
clusters have remained reasonable stable, at about 15 Gyr.[72] However, recently these ages have been revised
downward.[73]
During the 1980s and 1990s, the globular cluster age estimates have improved as both new observations have
been made with CCDs, and since refinements to stellar evolution models, including opacities, consideration of
mixing, and different chemical abundances have been incorporated.[74] From the theory side, uncertainties in
globular cluster ages come from uncertainties in convection models, opacities, and nuclear reaction rates. From the
observational side, uncertainties arise due to corrections for dust and chemical composition. However, the dominant
source of systematic errors in the globular cluster age is the uncertainty in the cluster distances. Fortunately,
the Hipparcos satellite recently provided geometric parallax measurements for many nearby old stars with low
metallicity, typical of glubular clusters, thus allowing for a new calibration of the ages of stars in globular clusters,
leading to a downward revision to 10 − 13 Gyr.[74] Moreover, there were very few stars in the Hipparcos catalog
with both small parallax erros and low metal abundance. Hence, an increase in the sample size could be critical in
reducing the statatistical uncertaintites for the calibration of the globular cluster ages. There are already proposed
two new parallax satellites, NASA’s Space Interferometry Mission (SIM) and ESA’s mission, called GAIA, that
will give 2 or 3 orders of magnitude more accurate parallaxes than Hipparcos, down to fainter magnitude limits, for
several orders of magnitude more stars. Until larger samples are available, however, distance errors are likely to be
the largest source of systematic uncertainty to the globular cluster age.[18]
The supernovae groups can also determine the age of the universe from their high redshift observations. Fig-
ure 15.13 shows that the confidence regions in the (ΩM,ΩΛ) plane are almost parallel to the contours of con-
stant age. For any value of the Hubble constant less than H0 = 70 km/s/Mpc, the implied age of the universe
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Figure 15.14: The recent estimates of the age of the universe and that of the oldest objects in our galaxy. The last three points correspond
to the combined analysis of 8 different measurements, for h = 0.64, 0.68 and 7.2, which indicates a relatively weak dependence on h. The
age of the Sun is accurately known and is included for reference. Error bars indicate 1σ limits. The averages of the ages of the Galactic
Halo and Disk are shaded in gray. Note that there isn’t a single age estimate more than 2σ away from the average. The result t0 > tgal is
logically inevitable, but the standard EdS model does not satisfy this unless h < 0.55. From Ref. [75].

is greater than 13 Gyr, allowing enough time for the oldest stars in globular clusters to evolve.[74] Integrat-
ing over ΩM and ΩΛ, the best fit value of the age in Hubble-time units is H0t0 = 0.93 ± 0.06 or equivalently
t0 = 14.1± 1.0 (0.65h−1) Gyr.[64] The age would be somewhat larger in a flat universe: H0t

flat
0 = 0.96 +0.09

−0.07 or,
equivalently,[64]

tflat
0 = 14.4 +1.4

−1.1 (0.65h−1) Gyr . (15.32)

Furthermore, a combination of 8 independent recent measurements: CMB anisotropies, type Ia SNe, cluster mass-
to-light ratios, cluster abundance evolution, cluster baryon fraction, deuterium-to-hidrogen ratios in quasar spectra,
double-lobed radio sources and the Hubble constant, can be used to determine the present age of the universe.[75]
The result is shown in Fig. 15.14, compared to other recent determinations. The best fit value for the age of
the universe is, according to this analysis, t0 = 13.4 ± 1.6 Gyr, about a billion years younger than other recent
estimates.[75]
We can summarize this Section by showing the region in parameter space where we stand nowadays, thanks to
the recent cosmological observations. We have plotted that region in Fig. 15.15. One could also superimpose the
contour lines corresponding to equal t0H0 lines, as a cross check. It is extraordinary that only in the last few months
we have been able to reduce the concordance region to where it stands today, where all the different observations
seem to converge. There are still many uncertainties, mainly systematic; however, those are quickly decreasing
and becoming predominantly statistical. In the near future, with precise observations of the anisotropies in the
microwave background temperature and polarization, to be discussed in Section 4.4, we will be able to reduce
those uncertainties to the level of one percent. This is the reason why cosmologists are so excited and why it is
claimed that we live in the Golden Age of Cosmology.
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Einstein-de Sitter model is no longer the preferred one. The best model today is a flat model with a third of the energy density in the form
of non-relativistic matter and two thirds in the form of vacuum energy or a cosmological constant. From Ref. [76].
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Chapter

16
The inflationary Paradigm

The hot Big Bang theory is nowadays a very robust edifice, with many independent observational checks: the ex-
pansion of the universe; the abundance of light elements; the cosmic microwave background; a predicted age of the
universe compatible with the age of the oldest objects in it, and the formation of structure via gravitational collapse
of initially small inhomogeneities. Today, these observations are confirmed to within a few percent accuracy, and
have helped establish the hot Big Bang as the preferred model of the universe. All the physics involved in the above
observations is routinely tested in the laboratory (atomic and nuclear physics experiments) or in the solar system
(general relativity).
However, this theory leaves a range of crucial questions unanswered, most of which are initial conditions’ problems.
There is the reasonable assumption that these cosmological problems will be solved or explained by new physical
principles at high energies, in the early universe. This assumption leads to the natural conclusion that accurate
observations of the present state of the universe may shed light onto processes and physical laws at energies above
those reachable by particle accelerators, present or future. We will see that this is a very optimistic approach indeed,
and that there are many unresolved issues related to those problems. However, there might be in the near future
reasons to be optimistic.

16.1 Shortcomings of Big Bang Cosmology

The Big Bang theory could not explain the origin of matter and structure in the universe; that is, the origin of the
matter–antimatter asymmetry, without which the universe today would be filled by a uniform radiation continuosly
expanding and cooling, with no traces of matter, and thus without the possibility to form gravitationally bound
systems like galaxies, stars and planets that could sustain life. Moreover, the standard Big Bang theory assumes,
but cannot explain, the origin of the extraordinary smoothness and flatness of the universe on the very large scales
seen by the microwave background probes and the largest galaxy catalogs. It cannot explain the origin of the
primordial density perturbations that gave rise to cosmic structures like galaxies, clusters and superclusters, via
gravitational collapse; the quantity and nature of the dark matter that we believe holds the universe together; nor
the origin of the Big Bang itself.
A summary [77] of the problems that the Big Bang theory cannot explain is:

• The global structure of the universe.

- Why is the universe so close to spatial flatness?

- Why is matter so homogeneously distributed on large scales?

• The origin of structure in the universe.

- How did the primordial spectrum of density perturbations originate?
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• The origin of matter and radiation.

- Where does all the energy in the universe come from?

- What is the nature of the dark matter in the universe?

- How did the matter-antimatter asymmetry arise?

• The initial singularity.

- Did the universe have a beginning?

- What is the global structure of the universe beyond our observable patch?

Let me discuss one by one the different issues:

16.2 The Flatness Problem

The Big Bang theory assumes but cannot explain the extraordinary spatial flatness of our local patch of the universe.
In the general FRW metric (14.2) the parameter K that characterizes spatial curvature is a free parameter. There
is nothing in the theory that determines this parameter a priori. However, it is directly related, via the Friedmann
equation (14.8), to the dynamics, and thus the matter content, of the universe,

K =
8πG

3
ρa2 −H2a2 =

8πG

3
ρa2

(Ω − 1

Ω

)

. (16.1)

We can therefore define a new variable,

x ≡ Ω − 1

Ω
=

const.

ρa2
, (16.2)

whose time evolution is given by

x′ =
dx

dN
= (1 + 3ω)x , (16.3)

where N = ln(a/ai) characterizes the number of e-folds of universe expansion (dN = Hdt) and where we have
used Eq. (14.30) for the time evolution of the total energy, ρa3, which only depends on the barotropic ratio ω. It
is clear from Eq. (16.3) that the phase-space diagram (x, x′) presents an unstable critical (saddle) point at x = 0

for ω > −1/3, i.e. for the radiation (ω = 1/3) and matter (ω = 0) eras. A small perturbation from x = 0 will
drive the system towards x = ±∞. Since we know the universe went through both the radiation era (because of
primordial nucleosynthesis) and the matter era (because of structure formation), tiny deviations from Ω = 1 would
have grown since then, such that today

x0 =
Ω0 − 1

Ω0
= xin

(Tin

Teq

)2
(1 + zeq) . (16.4)

In order that today’s value be in the range 0.1 < Ω0 < 1.2, or x0 ≈ O(1), it is required that at, say, primordial
nucleosynthesis (T

NS
' 106 Teq) its value be

Ω(t
NS

) = 1 ± 10−15 , (16.5)

which represents a tremendous finetuning. Perhaps the universe indeed started with such a peculiar initial condition,
but it is epistemologically more satisfying if we give a fundamental dynamical reason for the universe to have
started so close to spatial flatness. These arguments were first used by Robert Dicke in the 1960s, much before
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inflation. He argued that the most natural initial condition for the spatial curvature should have been the Planck
scale curvature, (3)R = 6K/l2P, where the Planck length is lP = (~G/c3)1/2 = 1.62× 10−33 cm, that is, 60 orders
of magnitude smaller than the present size of the universe, a0 = 1.38 × 1028 cm. A universe with this immense
curvature would have collapsed within a Planck time, tP = (~G/c5)1/2 = 5.39 × 10−44 s, again 60 orders of
magnitude smaller than the present age of the universe, t0 = 4.1 × 1017 s. Therefore, the flatness problem is also
related to the Age Problem, why is it that the universe is so old and flat when, under ordinary circumstances (based
on the fundamental scale of gravity) it should have lasted only a Planck time and reached a size of order the Planck
length? As we will see, inflation gives a dynamical reason to such a peculiar initial condition.

16.3 The Homogeneity Problem

An expanding universe has particle horizons, that is, spatial regions beyond which causal communication cannot
occur. The horizon distance can be defined as the maximum distance that light could have travelled since the origin
of the universe,[7]

dH(t) ≡ a(t)

t
∫

0

dt′

a(t′)
∼ H−1(t) , (16.6)

which is proportional to the Hubble scale: during the radiation era, the horizon distance is equal to the Hubble
scale; for the matter era it is twice the Hubble scale. For instance, at the beginning of nucleosynthesis the horizon
distance is a few light-seconds, but grows linearly with time and by the end of nucleosynthesis it is a few light-
minutes, i.e. a factor 100 larger, while the scale factor has increased only a factor of 10. The fact that the causal
horizon increases faster, dH ∼ t, than the scale factor, a ∼ t1/2, implies that at any given time the universe contains
regions within itself that, according to the Big Bang theory, were never in causal contact before. For instance, the
number of causally disconnected regions at a given redshift z present in our causal volume today, dH(t0) ≡ a0, is

NCD(z) ∼
(

a(t)

dH(t)

)3

' (1 + z)3/2 , (16.7)

which, for the time of decoupling, is of order NCD(zdec) ∼ 105 � 1.
This phenomenon is particularly acute in the case of the observed microwave background. Information cannot
travel faster than the speed of light, so the causal region at the time of photon decoupling could not be larger than
dH(tdec) ∼ 3 × 105 light years across, or about 1◦ projected in the sky today. So why should regions that are
separated by more than 1◦ in the sky today have exactly the same temperature, to within 10 ppm, when the photons
that come from those two distant regions could not have been in causal contact when they were emitted? This
constitutes the so-called horizon problem, see Fig. 16.1, and was first discussed by Robert Dicke in the 1970s as a
profound inconsistency of the Big Bang theory.

16.4 Cosmological Inflation

In the 1980s, a new paradigm, deeply rooted in fundamental physics, was put forward by Alan H. Guth,[79]
Andrei D. Linde [80] and others,[81, 82, 83] to address these fundamental questions. According to the inflationary
paradigm, the early universe went through a period of exponential expansion, driven by the approximately constant
energy density of a scalar field called the inflaton. In modern physics, elementary particles are represented by
quantum fields, which resemble the familiar electric, magnetic and gravitational fields. A field is simply a function
of space and time whose quantum oscillations are interpreted as particles. In our case, the inflaton field has,
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Figure 16.1: Perhaps the most acute problem of the Big Bang theory is explaining the extraordinary homogeneity and isotropy of the
microwave background, see Fig. 14.4. At the time of decoupling, the volume that gave rise to our present universe contained many causally
disconnected regions (top figure). Today we observe a blackbody spectrum of photons coming from those regions and they appear to have
the same temperature, T1 = T2, to one part in 105. Why is the universe so homogeneous? This constitutes the so-called horizon problem,
which is spectacularly solved by inflation. From Ref. [76].

associated with it, a large potential energy density, which drives the exponential expansion during inflation, see
Fig. 16.2. We know from general relativity that the density of matter determines the expansion of the universe,
but a constant energy density acts in a very peculiar way: as a repulsive force that makes any two points in space
separate at exponentially large speeds. (This does not violate the laws of causality because there is no information
carried along in the expansion, it is simply the stretching of space-time.)
This superluminal expansion is capable of explaining the large scale homogeneity of our observable universe and,
in particular, why the microwave background looks so isotropic: regions separated today by more than 1◦ in the sky
were, in fact, in causal contact before inflation, but were stretched to cosmological distances by the expansion. Any
inhomogeneities present before the tremendous expansion would be washed out. This explains why photons from
supposedly causally disconneted regions have actually the same spectral distribution with the same temperature,
see Fig. 16.1.
Moreover, in the usual Big Bang scenario a flat universe, one in which the gravitational attraction of matter is exactly
balanced by the cosmic expansion, is unstable under perturbations: a small deviation from flatness is amplified and
soon produces either an empty universe or a collapsed one. As we discussed above, for the universe to be nearly
flat today, it must have been extremely flat at nucleosynthesis, deviations not exceeding more than one part in 1015.
This extreme fine tuning of initial conditions was also solved by the inflationary paradigm, see Fig. 16.3. Thus
inflation is an extremely elegant hypothesis that explains how a region much, much greater that our own observable
universe could have become smooth and flat without recourse to ad hoc initial conditions. Furthermore, inflation
dilutes away any “unwanted” relic species that could have remained from early universe phase transitions, like
monopoles, cosmic strings, etc., which are predicted in grand unified theories and whose energy density could be
so large that the universe would have become unstable, and collapsed, long ago. These relics are diluted by the
superluminal expansion, which leaves at most one of these particles per causal horizon, making them harmless to
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Figure 16.2: The inflaton field can be represented as a ball rolling down a hill. During inflation, the energy density is approximately
constant, driving the tremendous expansion of the universe. When the ball starts to oscillate around the bottom of the hill, inflation ends and
the inflaton energy decays into particles. In certain cases, the coherent oscillations of the inflaton could generate a resonant production of
particles which soon thermalize, reheating the universe. From Ref. [76].

the subsequent evolution of the universe.

Figure 16.3: The exponential expansion during inflation made the radius of curvature of the universe so large that our observable patch
of the universe today appears essentialy flat, analogous (in three dimensions) to how the surface of a balloon appears flatter and flatter as
we inflate it to enormous sizes. This is a crucial prediction of cosmological inflation that will be tested to extraordinary accuracy in the next
few years. From Ref. [76].

The only thing we know about this peculiar scalar field, the inflaton, is that it has a mass and a self-interaction
potential V (φ) but we ignore everything else, even the scale at which its dynamics determines the superluminal
expansion. In particular, we still do not know the nature of the inflaton field itself, is it some new fundamental scalar
field in the electroweak symmetry breaking sector, or is it just some effective description of a more fundamental
high energy interaction? Hopefully, in the near future, experiments in particle physics might give us a clue to its
nature. Inflation had its original inspiration in the Higgs field, the scalar field supposed to be responsible for the
masses of elementary particles (quarks and leptons) and the breaking of the electroweak symmetry. Such a field
has not been found yet, and its discovery at the future particle colliders would help understand one of the truly
fundamental problems in physics, the origin of masses. If the experiments discover something completely new and
unexpected, it would automatically affect the idea of inflation at a fundamental level.
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16.5 Homogeneous scalar field dynamics

In this subsection I will describe the theoretical basis for the phenomenon of inflation. Consider a scalar field φ, a
singlet under any given interaction, with an effective potential V (φ). The Lagrangian for such a field in a curved
background is

Linf =
1

2
gµν∂µφ∂νφ− V (φ) , (16.8)

whose evolution equation in a Friedmann-Robertson-Walker metric (14.2) and for a homogeneous field φ(t) is
given by

φ̈+ 3Hφ̇+ V ′(φ) = 0 , (16.9)

where H is the rate of expansion, together with the Einstein equations,

H2 =
κ2

3

(1

2
φ̇2 + V (φ)

)

, (16.10)

Ḣ = −κ
2

2
φ̇2 , (16.11)

where κ2 ≡ 8πG. The dynamics of inflation can be described as a perfect fluid (14.7) with a time dependent
pressure and energy density given by

ρ =
1

2
φ̇2 + V (φ) , (16.12)

p =
1

2
φ̇2 − V (φ) . (16.13)

The field evolution equation (16.9) can then be written as the energy conservation equation,

ρ̇+ 3H(ρ+ p) = 0 . (16.14)

If the potential energy density of the scalar field dominates the kinetic energy, V (φ) � φ̇2, then we see that

p ' −ρ ⇒ ρ ' const. ⇒ H(φ) ' const. , (16.15)

which leads to the solution

a(t) ∼ exp(Ht) ⇒ ä

a
> 0 accelerated expansion . (16.16)

Using the definition of the number of e-folds, N = ln(a/ai) =
∫

Hdt, we see that the scale factor grows quasi-
exponentially, a(N) = ai exp(N). This solution of the Einstein equations solves immediately the flatness problem.
Recall that the problem with the radiation and matter eras is that Ω = 1 (x = 0) is an unstable critical point in
phase-space. However, during inflation, with p ' −ρ ⇒ ω ' −1, we have that 1 + 3ω < 0 and therefore x = 0

is a stable attractor of the equations of motion, see Eq. (16.3). As a consequence, what seemed an ad hoc initial
condition, becomes a natural prediction of inflation. Suppose that during inflation the scale factor increased by N
e-folds, then

x0 = xin e
−2N

(Trh

Teq

)2
(1 + zeq) ' e−2N 1056 ≤ 1 ⇒ N ≥ 65 , (16.17)

where we have assumed that inflation ended at the scale Vend, and the transfer of the inflaton energy density to
thermal radiation at reheating occurred almost instantaneously1 at the temperature Trh ∼ V

1/4
end ∼ 1015 GeV. Note

1There could be a small delay in thermalization, due to the intrinsic inefficiency of reheating, but this does not change significantly the
required number of e-folds.
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that we can now have initial conditions with a large uncertainty, xin ' 1, and still have today x0 ' 1, thanks to
the inflationary attractor towards Ω = 1. This can be understood very easily by realizing that the three curvature
evolves during inflation as

(3)R =
6K

a2
= (3)Rin e

−2N −→ 0 , for N � 1 . (16.18)

Therefore, if cosmological inflation lasted over 65 e-folds, as most models predict, then today the universe (or at
least our local patch) should be exactly flat, see Fig. 16.3, a prediction that can be tested with great accuracy in the
near future and for which already seems to be some evidence from observations of the microwave background.[67]
Furthermore, inflation also solves the homogeneity problem in a spectacular way. First of all, due to the superlu-
minal expansion, any inhomogeneity existing prior to inflation will be washed out,

δk ∼
(

k

aH

)2

Φk ∝ e−2N −→ 0 , for N � 1 . (16.19)

Moreover, since the scale factor grows exponentially, while the horizon distance remains essentially constant,
dH(t) ' H−1 = const., any scale within the horizon during inflation will be stretched by the superluminal ex-
pansion to enormous distances, in such a way that at photon decoupling all the causally disconnected regions that
encompass our present horizon actually come from a single region during inflation, about 65 e-folds before the
end. This is the reason why two points separated more than 1◦ in the sky have the same backbody temperature, as
observed by the COBE satellite: they were actually in causal contact during inflation. There is at present no other
proposal known that could solve the homogeneity problem without invoquing an acausal mechanism like inflation.
Finally, any relic particle species (relativistic or not) existing prior to inflation will be diluted by the expansion,

ρM ∝ a−3 ∼ e−3N −→ 0 , for N � 1 , (16.20)

ρR ∝ a−4 ∼ e−4N −→ 0 , for N � 1 . (16.21)

Note that the vacuum energy density ρv remains constant under the expansion, and therefore, very soon it is the
only energy density remaining to drive the expansion of the universe.

16.6 The origin of density perturbations

If cosmological inflation made the universe so extremely flat and homogeneous, where did the galaxies and clusters
of galaxies come from? One of the most astonishing predictions of inflation, one that was not even expected,
is that quantum fluctuations of the inflaton field are stretched by the exponential expansion and generate large-
scale perturbations in the metric. Inflaton fluctuations are small wave packets of energy that, according to general
relativity, modify the space-time fabric, creating a whole spectrum of curvature perturbations. The use of the word
spectrum here is closely related to the case of light waves propagating in a medium: a spectrum characterizes the
amplitude of each given wavelength. In the case of inflation, the inflaton fluctuations induce waves in the space-
time metric that can be decomposed into different wavelengths, all with approximately the same amplitude, that
is, corresponding to a scale-invariant spectrum. These patterns of perturbations in the metric are like fingerprints
that unequivocally characterize a period of inflation. When matter fell in the troughs of these waves, it created
density perturbations that collapsed gravitationally to form galaxies, clusters and superclusters of galaxies, with a
spectrum that is also scale invariant. Such a type of spectrum was proposed in the early 1970s (before inflation)
by Harrison and Zel’dovich,[15] to explain the distribution of galaxies and clusters of galaxies on very large scales
in our observable universe. Perhaps the most interesting aspect of structure formation is the possibility that the
detailed knowledge of what seeded galaxies and clusters of galaxies will allow us to test the idea of inflation.
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16.7 The anisotropies of the microwave background

The metric fluctuations generated during inflation are not only responsible for the density perturbations that gave
rise to galaxies via gravitational collapse, but one should also expect to see such ripples in the metric as temperature
anisotropies in the cosmic microwave background, that is, minute deviations in the temperature of the blackbody
spectrum when we look at different directions in the sky. Such anisotropies had been looked for ever since Penzias
and Wilson’s discovery of the CMB, but had eluded all detection, until COBE satellite discovered them in 1992, see
Fig. 14.4. The reason why they took so long to be discovered was that they appear as perturbations in temperature
of only one part in 105. Soon after COBE, other groups quickly confirmed the detection of temperature anisotropies
at around 30µK, at higher multipole numbers or smaller angular scales. There are at this moment dozens of ground
and balloon-borne experiments analysing the anisotropies in the microwave background with angular resolutions
from 10◦ to a few arc minutes in the sky, see Fig. 16.4.

16.8 Acoustic oscillations in the plasma

The physics of the CMB anisotropies is relatively simple.[87] The universe just before recombination is a very
tightly coupled fluid, due to the large electromagnetic Thomson cross section (14.43). Photons scatter off charged
particles (protons and electrons), and carry energy, so they feel the gravitational potential associated with the
perturbations imprinted in the metric during inflation. An overdensity of baryons (protons and neutrons) does
not collapse under the effect of gravity until it enters the causal Hubble radius. The perturbation continues to
grow until radiation pressure opposes gravity and sets up acoustic oscillations in the plasma, very similar to sound
waves. Since overdensities of the same size will enter the Hubble radius at the same time, they will oscillate in
phase. Moreover, since photons scatter off these baryons, the acoustic oscillations occur also in the photon field
and induces a pattern of peaks in the temperature anisotropies in the sky, at different angular scales, see Fig. 16.4.
There are three different effects that determine the temperature anisotropies we observe in the CMB. First, gravity:
photons fall in and escape off gravitational potential wells, characterized by Φ in the comoving gauge, and as a
consequence their frequency is gravitationally blue- or red-shifted, δν/ν = Φ. If the gravitational potential is not
constant, the photons will escape from a larger or smaller potential well than they fell in, so their frequency is also
blue- or red-shifted, a phenomenon known as the Rees-Sciama effect. Second, pressure: photons scatter off baryons
which fall into gravitational potential wells and the two competing forces create acoustic waves of compression and
rarefaction. Finally, velocity: baryons accelerate as they fall into potential wells. They have minimum velocity at
maximum compression and rarefaction. That is, their velocity wave is exactly 90◦ off-phase with the acoustic
waves. These waves induce a Doppler effect on the frequency of the photons.
The temperature anisotropy induced by these three effects is therefore given by [87]

δT

T
(r) = Φ(r, tdec) + 2

t0
∫

tdec

Φ̇(r, t)dt +
1

3

δρ

ρ
− r · v

c
. (16.22)

Metric perturbations of different wavelengths enter the horizon at different times. The largest wavelengths, of size
comparable to our present horizon, are entering now. There are perturbations with wavelengths comparable to
the size of the horizon at the time of last scattering, of projected size about 1◦ in the sky today, which entered
precisely at decoupling. And there are perturbations with wavelengths much smaller than the size of the horizon
at last scattering, that entered much earlier than decoupling, all the way to the time of radiation-matter equality,
which have gone through several acoustic oscillations before last scattering. All these perturbations of different
wavelengths leave their imprint in the CMB anisotropies.
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The baryons at the time of decoupling do not feel the gravitational attraction of perturbations with wavelength
greater than the size of the horizon at last scattering, because of causality. Perturbations with exactly that wave-
length are undergoing their first contraction, or acoustic compression, at decoupling. Those perturbations induce a
large peak in the temperature anisotropies power spectrum, see Fig. 16.4. Perturbations with wavelengths small-
er than these will have gone, after they entered the Hubble scale, through a series of acoustic compressions and
rarefactions, which can be seen as secondary peaks in the power spectrum. Since the surface of last scattering is
not a sharp discontinuity, but a region of ∆z ∼ 100, there will be scales for which photons, travelling from one
energy concentration to another, will erase the perturbation on that scale, similarly to what neutrinos or HDM do for
structure on small scales. That is the reason why we don’t see all the acoustic oscillations with the same amplitude,
but in fact they decay exponentialy towards smaller angular scales, an effect known as Silk damping, due to photon
diffusion.[88, 87]

16.9 The Sachs-Wolfe effect

The anisotropies corresponding to large angular scales are only generated via gravitational red-shift and density
perturbations through the Einstein equations, δρ/ρ = −2Φ for adiabatic perturbations; we can ignore the Doppler
contribution, since the perturbation is non-causal. In that case, the temperature anisotropy in the sky today is given
by [90]

δT

T
(θ, φ) =

1

3
Φ(ηLS)Q(η0, θ, φ) + 2

η0
∫

ηLS

drΦ′(η0 − r)Q(r, θ, φ) , (16.23)

where η0 is the coordinate distance to the last scattering surface, i.e. the present conformal time, while ηLS ' 0

determines that comoving hypersurface. The above expression is known as the Sachs-Wolfe effect,[90] and contains
two parts, the intrinsic and the Integrated Sachs-Wolfe (ISW) effect, due to integration along the line of sight of
time variations in the gravitational potential.

Figure 16.4: There are at present dozens of ground and balloon-borne experiments looking at the microwave background temperature
anisotropies with angular resolutions from 10◦ to a few arc minutes in the sky, corresponding to multipole numbers l = 2 − 3000. Present
observations suggest the existence of a peak in the angular distribution, as predicted by inflation. The theoretical curve (thick line) illustrates
a particular model which fits the data. From Ref. [89].

The growing mode solution of the metric perturbation that left the Hubble scale during inflation contributes to the
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temperature anisotropies on large scales (16.23) as

δT

T
(θ, φ) =

1

3
Φ(ηLS)Q =

1

5
RQ(η0, θ, φ) ≡

∞
∑

l=2

l
∑

m=−l

alm Ylm(θ, φ) , (16.24)

where we have used the fact that at reentry (at the surface of last scattering) the gauge invariant Newtonian potential
Φ is related to the curvature perturbation R at Hubble-crossing during inflation,[78]

Φk =
3 + 3ω

5 + 3ω
Rk =

{ 2
3 Rk radiation era ,

3
5 Rk matter era .

(16.25)

and we have expanded δT/T in spherical harmonics.
We can now compute the two-point correlation function or angular power spectrum, C(θ), of the CMB anisotropies
on large scales, defined as an expansion in multipole number,

C(θ) =

〈

δT

T

∗

(n)
δT

T
(n′)

〉

n·n′=cos θ

=
1

4π

∞
∑

l=2

(2l + 1)Cl Pl(cos θ) , (16.26)

where Pl(z) are the Legendre polynomials,[85] and we have averaged over different universe realizations. Since
the coefficients alm are isotropic (to first order), we can compute the Cl = 〈|alm|2〉 as

C
(S)
l =

4π

25

∞
∫

0

dk

k
PR(k) j2l (kη0) , (16.27)

where we have used Eq. (16.24) and [78]

〈0|R∗
kRk′ |0〉 ≡ PR(k)

4πk3
(2π)3 δ3(k − k

′) . (16.28)

In the case of scalar metric perturbation produced during inflation, the scalar power spectrum at reentry is given by
PR(k) = A2

S(kη0)
n−1, in the power-law approximation, where n = 1− 6ε+ 2η ' 1 is the scalar tilt. In that case,

one can integrate (16.27) to give

C
(S)
l =

2π

25
A2

S

Γ[32 ] Γ[1 − n−1
2 ] Γ[l + n−1

2 ]

Γ[32 − n−1
2 ] Γ[l + 2 − n−1

2 ]
, (16.29)

l(l + 1)C
(S)
l

2π
=
A2

S

25
= constant , for n = 1 . (16.30)

This last expression corresponds to what is known as the Sachs-Wolfe plateau, and is the reason why the coefficients
Cl are always plotted multiplied by l(l + 1), see Fig. 16.4.
One can also compute the tensor (gravitational wave) power spectrum in the Sachs-Wolfe approximation as

C
(T )
l =

9π

4
(l − 1)l(l + 1)(l + 2)

∞
∫

0

dk

k
Pg(k) I

2
kl , (16.31)

Ikl =

x0
∫

0

dx
j2(x0 − x)jl(x)

(x0 − x)x2
, (16.32)
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where x ≡ kη, and Pg(k) = A2
T (kη0)

nT is the primordial tensor spectrum [78]. For a scale invariant spectrum,
nT = 0, we can integrate (16.31) to give [92]

l(l + 1)C
(T )
l =

π

36

(

1 +
48π2

385

)

A2
T Bl , (16.33)

with Bl = (1.1184, 0.8789, . . . , 1.0000) for l = 2, 3, . . . , 30. Therefore, l(l + 1)

C
(T )
l also becomes constant for large l. Beyond l ∼ 30, the Sachs-Wolfe expression is not a good approximation

and the tensor angular power spectrum decays very quickly at large l, see Fig.16.9.

16.10 The consistency relation

In spite of the success of inflation in predicting a homogeneous and isotropic background on which to imprint a
scale-invariant spectrum of inhomogeneities, it is difficult to test the idea of inflation. A CMB cosmologist before
the 1980s would have argued that ad hoc initial conditions could have been at the origin of the homogeneity and
flatness of the universe on large scales, while a LSS cosmologist would have agreed with Harrison and Zel’dovich
that the most natural spectrum needed to explain the formation of structure was a scale-invariant spectrum. The
surprise was that inflation incorporated an understanding of both the globally homogeneous and spatially flat back-
ground, and the approximately scale-invariant spectrum of perturbations in the same formalism. But that could
have been a coincidence, and is not epistemologically testable.
What is unique to inflation is the fact that inflation determines not just one but two primordial spectra, corresponding
to the scalar (density) and tensor (gravitational waves) metric perturbations, from a single continuous function, the
inflaton potential V (φ). In the slow-roll approximation, one determines, from V (φ), two continuous functions,
PR(k) and Pg(k), that in the power-law approximation reduces to two amplitudes, AS and AT , and two tilts, n
and nT . It is clear that there must be a relation between the four parameters. Indeed, one can see from Eqs. (16.33)
and (16.30) that the ratio of the tensor to scalar contribution to the angular power spectrum is proportional to the
tensor tilt,[84, 78]

R ≡ C
(T )
l

C
(S)
l

=
25

9

(

1 +
48π2

385

)

2ε ' −2π nT . (16.34)

This is a unique prediction of inflation, which could not have been postulated a priori by any cosmologist. If we
finally observe a tensor spectrum of anisotropies in the CMB, or a stochastic gravitational wave background in
laser interferometers like LIGO or VIRGO,[93] with sufficient accuracy to determine their spectral tilt, one might
have some chance to test the idea of inflation, via the consistency relation (16.34). For the moment, observations
of the microwave background anisotropies suggest that the Sachs-Wolfe plateau exists, see Fig. 16.4, but it is still
premature to determine the tensor contribution.
Assuming that the scalar contribution dominates over the tensor on large scales, i.e. R � 1, one can actually give
a measure of the amplitude of the scalar metric perturbation from the observations of the Sachs-Wolfe plateau in
the angular power spectrum,[91]

[

l(l + 1)C
(S)
l

2π

]1/2

=
AS

5
= (1.03 ± 0.07) × 10−5 , (16.35)

n = 1.02 ± 0.12 . (16.36)

These measurements can be used to normalize the primordial spectrum and determine the parameters of the model
of inflation.[86] In the near future these parameters will be determined with much better accuracy, as described in
Section 4.4.5.
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Figure 16.5: Theoretical predictions for CMB temperature angular power spectra as a function of multipole number l for models with
primordial adiabatic perturbations. Each graph shows the effect of a variation in one of these parameters. From Ref. [94].

16.11 The acoustic peaks

The Sachs-Wolfe plateau is a distinctive feature of Fig. 16.4. These observations confirm the existence of a primor-
dial spectrum of scalar (density) perturbations on all scales, otherwise the power spectrum would have started from
zero at l = 2. However, we see that the spectrum starts to rise around l = 20 towards the first acoustic peak, where
the SW approximation breaks down and the above formulae are no longer valid.
As mentioned above, the first peak in the photon distribution corresponds to overdensities that have undergone half
an oscillation, that is, a compression, and appear at a scale associated with the size of the horizon at last scattering,
about 1◦ projected in the sky today. Since photons scatter off baryons, they will also feel the acoustic wave and
create a peak in the correlation function. The height of the peak is proportional to the amount of baryons: the
larger the baryon content of the universe, the higher the peak. The position of the peak in the power spectrum
depends on the geometrical size of the particle horizon at last scattering. Since photons travel along geodesics, the
projected size of the causal horizon at decoupling depends on whether the universe is flat, open or closed. In a flat
universe the geodesics are straight lines and, by looking at the angular scale of the first acoustic peak, we would
be measuring the actual size of the horizon at last scattering. In an open universe, the geodesics are inward-curved
trajectories, and therefore the projected size on the sky appears smaller. In this case, the first acoustic peak should
occur at higher multipoles or smaller angular scales. On the other hand, for a closed universe, the first peak occurs
at smaller multipoles or larger angular scales. The dependence of the position of the first acoustic peak on the
spatial curvature can be approximately given by [87]

lpeak ' 200 Ω
−1/2
0 , (16.37)

where Ω0 = ΩM + ΩΛ = 1 − ΩK . Present observations, specially the ones of the Mobile Anisotropy Telescope
(MAT) in Cerro Tololo, Chile, which produced two data sets, TOCO97 and TOCO98,[95] and the recent balloon-
borne experiments BOOMERANG,[67] and MAXIMA,[68] suggest that the peak is at multipole lpeak = 197 ± 6

at 95% c.l., with an amplitude δT = 69 ± 8 µK, and therefore the universe is most probably flat, see Fig. 16.6. In
particular, these measurements determine [69]

Ω0 = 1.11 +0.13
−0.12 (95% c.l.) . (16.38)
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That is, the universe is flat, within 10% uncertainty, which is much better than we could ever do before. In the near
future we will measure Ω0 to within 1%, with the new microwave anisotropy satellites, see the next Section.

M-1
B98 

+B98
M-1

+LSS

Figure 16.6: The left figure shows the CMB power spectra of both BOOMERANG and MAXIMA experiments, together with the binned
COBE-DMR power at low multipoles. The solid curves in both panels show the best fit model in the joint parameter estimation with weak
priors, and the dashed lines show the best fit with Ω0 = 1. These remain the best fits when the LSS prior is added, while the Ω0 = 1 model
becomes the best fit when the SN prior is added. The right figure shows the likelihood functions for spatial curvature, ΩK = 1 − Ω0, the
scalar tilt, ns, the baryon content, ΩBh2, and the cold dark matter content, ΩCDMh2. From Ref. [69].

Apart from the position of th efirst acoustic peaks, Boomerang and Maxima determined the existence of the sec-
ondary acoustic peaks. These peaks should occur at harmonics of the first one, but are typically much lower
because of Silk damping. Since the amplitude and position of the primary and secondary peaks are directly deter-
mined by the sound speed (and, hence, the equation of state) and by the geometry and expansion of the universe,
they can be used as a powerful test of the density of baryons and dark matter, and other cosmological parameters,
see Fig. 16.5. In fact the recent observations suggest that the baryon content could be higher than expected from
BBN nucleosynthesis,[69]

ΩBh
2 = 0.032 +0.009

−0.008 (95%c.l.) , (16.39)

as inferred from the near absence of the second acoustic peak and a prominent third peak, see Fig. 16.6. However, it
is still a bit premature to conclude that something is wrong with our observations of primordial helium, deuterium
and lithium. Moreover, it is encouraging that completely independent methods provide results that agree at the 2σ
level.
By looking at these patterns in the anisotropies of the microwave background, cosmologists can determine not only
the cosmological parameters, see Fig. 16.5, but also the primordial spectrum of density perturbations produced dur-
ing inflation. It turns out that the observed temperature anisotropies are compatible with a scale-invariant spectrum,
see Eq. (16.36), as predicted by inflation,[69]

n = 1.01 +0.17
−0.14 (95%c.l.) . (16.40)

This is remarkable, and gives very strong support to the idea that inflation may indeed be responsible for both the
CMB anisotropies and the large-scale structure of the universe. Different models of inflation have different specific
predictions for the fine details associated with the spectrum generated during inflation. It is these minute differences
that will allow cosmologists to differentiate between alternative models of inflation and discard those that do not
agree with observations. However, most importantly, perhaps, the pattern of anisotropies predicted by inflation is
completely different from those predicted by alternative models of structure formation, like cosmic defects: strings,
vortices, textures, etc. These are complicated networks of energy density concentrations left over from an early
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universe phase transition, analogous to the defects formed in the laboratory in certain kinds of liquid crystals when
they go through a phase transition. The cosmological defects have spectral properties very different from those
generated by inflation. That is why it is so important to launch more sensitive instruments, and with better angular
resolution, to determine the properties of the CMB anisotropies.

16.12 The new microwave anisotropy satellites, MAP and Planck

The large amount of information encoded in the anisotropies of the microwave background is the reason why both
NASA and the European Space Agency have decided to launch two independent satellites to measure the CMB
temperature and polarization anisotropies to unprecendented accuracy. The Microwave Anisotropy Probe [70] will
be launched by NASA at the end of 2000, and Planck [71] is expected in 2007.
As we have emphasized before, the fact that these anisotropies have such a small amplitude allow for an accurate
calculation of the predicted anisotropies in linear perturbation theory. A particular cosmological model is char-
acterized by a dozen or so parameters: the rate of expansion, the spatial curvature, the baryon content, the cold
dark matter and neutrino contribution, the cosmological constant (vacuum energy), the reionization parameter (op-
tical depth to the last scattering surface), and various primordial spectrum parameters like the amplitude and tilt
of the adiabatic and isocurvature spectra, the amount of gravitational waves, non-Gaussian effects, etc. All these
parameters can now be fed into a fast code called CMBFAST [96] that computes the predicted temperature and
polarization anisotropies to 1% accuracy, and thus can be used to compare with observations.

Figure 16.7: The left figure shows a simulation of the temperature anisotropies predicted by a generic model of inflation, as would be seen
by a satellite like COBE with angular resolution of 7◦. The right figure shows the same, but with a satellite like Planck, with a resolution
100 times better. From Ref. [71].

These two satellites will improve both the sensitivity, down to µK, and the resolution, down to arc minutes, with
respect to the previous COBE satellite, thanks to large numbers of microwave horns of various sizes, positioned
at specific angles, and also thanks to recent advances in detector technology, with high electron mobility transistor
amplifiers (HEMTs) for frequencies below 100 GHz and bolometers for higher frequencies. The primary advantage
of HEMTs is their ease of use and speed, with a typical sensitivity of 0.5 mKs1/2, while the advantage of bolometers
is their tremendous sensitivity, better than 0.1 mKs1/2.[97] For instance, to appreciate the difference, compare the
resolution in the temperature anisotropies that COBE and Planck would observe for the same simulated sky in
Fig. 16.7. This will allow cosmologists to extract information from around 3000 multipoles! Since most of the
cosmological parameters have specific signatures in the height and position of the first few acoustic peaks, the
higher the resolution, the more peaks one is expected to see, and thus the better the accuracy with which one will
be able to measure those parameters, see Table 1. As an example of the kind of data that these two satellites will
be able to provide, see Fig. 16.8, which compares the present observational status with that which will become
available around 2008.
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�
Figure 16.8: The past and future of CMB temperature anisotropies’ detections. In 1998 there were very few data points beyond multipole
l ∼ 100, but now there are several experiments, like Boomerang and Maxima, that have already constrained the first acoustic peak. By the
year 2003 there will be many balloon and ground experiments, as well as the MAP satellite, with data up to multipoles l ∼ 1000, covering
the first few acoustic peaks. By the year 2008, the Planck satellite and ground interferometers will have data up to l ∼ 5000, probably also
with polarization measurements. A large amount of information will then be used to constrain the parameters of the Standard Cosmological
Model. From Ref. [98].

Although the satellite probes were designed for the accurate measurement of the CMB temperature anisotropies,
there are other experiments, like balloon-borne and ground interferometers, which will probably accomplish the
same results with similar resolution (in the case of MAP), before the satellites start producing their own results.[97]
Probably the most important objective of the future satellites will be the measurement of the CMB polarization
anisotropies, yet to be discovered. These anisotropies are predicted by models of structure formation and are ex-
pected to arise at the level of microKelvin sensitivities, where the new satellites are aiming at. The complementary
information contained in the polarization anisotropies will provide much more stringent constraints on the cos-
mological parameters than from the temperature anisotropies alone. In particular, the curl-curl component of the
polarization power spectra is nowadays the only means we have to determine the tensor (gravitational wave) con-
tribution to the metric perturbations responsible for temperature anisotropies, see Fig. 16.9. If such a component is
found, one could constraint very precisely the model of inflation from its spectral properties, specially the tilt.[94]

16.13 From metric perturbations to large scale structure

If inflation is responsible for the metric perturbations that gave rise to the temperature anisotropies observed in
the microwave background, then the primordial spectrum of density inhomogeneities induced by the same metric
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Figure 16.9: Theoretical predictions for the four non-zero CMB temperature-polarization spectra as a function of multipole moment.
The dotted curves are the predictions for a COBE-normalized scalar perturbation from an inflationary model with no reionization and
no gravitational waves for h = 0.65, ΩBh2 = 0.024, and Λ = 0. The solid curves are the corresponding predictions if the COBE
anisotropy were entirely due to a stochastic gravitational wave background with a flat scale-invariant spectrum (with the same cosmological
parameters). The panel for CCC

l contains no dotted curve because scalar perturbations produce no curl component of the polarization vector.
From Ref. [94].

perturbations should also be responsible for the present large scale structure.[99] This simple connection allows for
more stringent tests on the inflationary paradigm for the generation of metric perturbations, since it relates the large
scales (of order the present horizon) with the smallest scales (on galaxy scales). This provides a very large lever
arm for the determination of primordial spectra parameters like the tilt, the nature of the perturbations, whether
adiabatic or isocurvature, the geometry of the universe, as well as its matter and energy content, whether CDM,
HDM or mixed CHDM.

16.14 The galaxy power spectrum

As metric perturbations enter the causal horizon during the radiation or matter era, they create density fluctuations
via gravitational attraction of the potential wells. The density contrast δ can be deduced from the Einstein equations
in linear perturbation theory,[78]

δk ≡ δρk

ρ
=

(

k

aH

)2 2

3
Φk =

(

k

aH

)2 2 + 2ω

5 + 3ω
Rk , (16.41)

where we have assumed K = 0, and used Eq. (16.25). From this expression one can compute the power spectrum,
at horizon crossing, of matter density perturbations induced by inflation, see Eq. (16.28),

P (k) = 〈|δk|2〉 = A

(

k

aH

)n

, (16.42)

with n given by the scalar tilt, n = 1 + 2η − 6ε. This spectrum reduces to a Harrison-Zel’dovich spectrum (14.46)
in the slow-roll approximation: η, ε� 1.[78]
Since perturbations evolve after entering the horizon, the power spectrum will not remain constant. For scales
entering the horizon well after matter domination (k−1 � k−1

eq ' 81 Mpc), the metric perturbation has not changed
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physical quantity symbol present range MAP Planck
luminous matter Ωlumh

2 0.001 − 0.005 − −
baryonic matter ΩBh

2 0.01 − 0.03 5% 0.6%
cold dark matter ΩMh

2 0.2 − 1.0 10% 0.6%
hot dark matter Ωνh

2 0 − 0.3 5% 2%
cosmological constant ΩΛh

2 0 − 0.8 8% 0.5%
spatial curvature Ω0h

2 0.2 − 1.5 4% 0.7%
rate of expansion h 0.4 − 0.8 11% 2%
age of the universe t0 11 − 17 Gyr 10% 2%
spectral amplitude Qrms 20 − 30 µK 0.5% 0.1%
spectral tilt n

S
0.5 − 1.5 3% 0.5%

tensor-scalar ratio rts 0 − 1.0 25% 10%
reionization τ 0.01 − 1.0 20% 15%

Table 16.1: The parameters of the standard cosmological model. The standard model of cosmology has around 12 different parameters,
needed to describe the background space-time, the matter content and the spectrum of density perturbations. We include here the present
range of the most relevant parameters, and the percentage error with which the microwave background probes MAP and Planck (without
polarization) will be able to determine them in the near future. The rate of expansion is in units of H0 = 100 h km/s/Mpc.

significantly, so that Rk(final) = Rk(initial). Then Eq. (16.41) determines the final density contrast in terms of
the initial one. On smaller scales, there is a linear transfer function T (k), which may be defined as [84]

Rk(final) = T (k)Rk(initial) . (16.43)

To calculate the transfer function one has to specify the initial condition with the relative abundance of photons,
neutrinos, baryons and cold dark matter long before horizon crossing. The most natural condition is that the
abundances of all particle species are uniform on comoving hypersurfaces (with constant total energy density).
This is called the adiabatic condition, because entropy is conserved independently for each particle species X .
Given this condition, the transfer function is determined by the physical processes occuring between horizon entry
and matter domination. If the radiation behaves like a perfect fluid, its density perturbation oscillates during this
era, with decreasing amplitude. The matter density contrast living in this background does not grow appreciably
before matter domination because it has negligible self-gravity. The power spectrum is therefore given roughly by
Eq. (14.48). It is this function which should be compared with observations.

16.15 The new redshift catalogs, 2dF and Sloan Digital Sky Survey

Our view of the large-scale distribution of luminous objects in the universe has changed dramatically during the
last 25 years:[16] from the simple pre-1975 picture of a distribution of field and cluster galaxies, to the discovery
of the first single superstructures and voids, to the most recent results showing an almost regular web-like network
of interconnected clusters, filaments and walls, separating huge nearly empty volumes. The increased efficiency
of redshift surveys, made possible by the development of spectrographs and – specially in the last decade – by
an enormous increase in multiplexing gain (i.e. the ability to collect spectra of several galaxies at once, thanks to
fibre-optic spectrographs), has allowed us not only to do cartography of the nearby universe, but also to statistically
characterize some of its properties.[102] At the same time, advances in theoretical modeling of the development
of structure, with large high-resolution gravitational simulations coupled to a deeper yet limited understanding of
how to form galaxies within the dark matter halos, have provided a more realistic connection of the models to
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the observable quantities.[103] Despite the large uncertainties that still exist, this has transformed the study of
cosmology and large-scale structure into a truly quantitative science, where theory and observations can progress
side by side.
For a review of the variety and details about the different existing redshift catalogs,[16] see Fig. 16.10. Here I will
concentrate on two of the new catalogs, which are taking data at the moment and which will revolutionize the field,
the 2-degree-Field (2dF) Catalog and the Sloan Digital Sky Survey (SDSS). The advantages of multi-object fibre
spectroscopy have been pushed to the extreme with the construction of the 2dF spectrograph for the prime focus of
the Anglo-Australian Telescope.[104] This instrument is able to accommodate 400 automatically positioned fibres
over a 2 degree in diameter field. This implies a density of fibres on the sky of approximately 130 deg−2, and an
optimal match to the galaxy counts for a magnitude bJ ' 19.5, similar to that of previous surveys like the ESP,
with the difference that with such an area yield, the same number of redshifts as in the ESP survey can be collected
in about 10 exposures, or slightly more than one night of telescope time with typical 1 hour exposures. This is
the basis of the 2dF galaxy redshift survey. Its goal is to measure redshifts for more than 250,000 galaxies with
bJ < 19.5. In addition, a faint redshift survey of 10,000 galaxies brighter than R = 21 will be done over selected
fields within the two main strips of the South and North Galactic Caps. The survey is steadily collecting redshifts,
and there were about 93,000 galaxies measured by January 2000. See also the web page of 2dF,[104] where the
survey is continuously updated.

CLUSTERS
IRAS
CFA2+SSRS2
LCRS
APM

Figure 16.10: Compilation of large-scale structure observations, showing the power spectrum P (k) as a function of wavenumber k. No
corrections for bias, redshift distortions, or non-linear evolution have been made. Some of the redshift surveys have been rebinned to make
the points nearly independent. The black box comes from measurements of σ8 from present-day number abundances of rich clusters, and the
black point with error bars is from peculiar velocities. The height shows the 68% confidence interval. ΩM = 1 is assumed. The right panel
shows a simulation of high-precision future CMB and LSS observations. MAP (red boxes) and Planck (blue boxes) are simulated assuming
that CHDM is the correct model. Green error bars show the accuracy of the Sloan Digital Sky Survey and magenta error bars are for the
2 Degree Field Survey. No corrections are made for redshift distortions or non-linear evolution. The simulated data are indistinguishable
from the underlying CHDM model for a wide range of k. From Ref. [101].

The most ambitious and comprehensive galaxy survey currently in progress is without any doubt the Sloan Digital
Sky Survey.[105] The aim of the project is first of all to observe photometrically the whole Northern Galactic Cap,
30◦ away from the galactic plane (about 104 deg2) in five bands, at limiting magnitudes from 20.8 to 23.3. The
expectation is to detect around 50 million galaxies and around 108 star-like sources. This has already led to the
discovery of several high-redshift (z > 4) quasars, including the highest-redshift quasar known, at z = 5.0.[105]
Using two fibre spectrographs carrying 320 fibres each, the spectroscopic part of the survey will then collect spectra
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Figure 16.11: Constraint regions in the ΩM − H0 plane from various combinations of data sets. MAP data with polarization yields the
ellipse from upper left to lower right; assuming the universe flat gives a smaller region (short-dashed line). SDSS (kmax = 0.1h Mpc−1)
gives the vertical shaded region; combined with MAP gives the small filled ellipse. A projecton of future supernovae Ia results gives the
solid vertical lines as bounds; combined with MAP gives the solid ellipse. A direct 10% measurement of H0 gives the long-dashed lines
and ellipse. All regions are 68% confidence. The fiducial model is the ΩM = 0.35 flat ΛCDM model. The right figure shows the same as
before, but for constraints in the ΩM − ΩΛ plane. From Ref. [106].

from about 106 galaxies with r′ < 18 and 105 AGNs with r′ < 19. It will also select a sample of about 105

red luminous galaxies with r′ < 19.5, which will be observed spectroscopically, providing a nearly volume-
limited sample of early-type galaxies with a median redshift of z ' 0.5, that will be extremely valuable to study
the evolution of clustering. The data expected to arise from these new catalogs is so outstanding that already
cosmologists are making simulations and predicting what will be the scientific outcome of these surveys, together
with the future CMB anisotropy probes, for the determination of the cosmological parameters of the standard model
of cosmology, see Figs. 16.10 and 16.11.
As often happens in particle physics, not always are observations from a single experiment sufficient to isolate
and determine the precise value of the parameters of the standard model. We mentioned in the previous Section
that some of the cosmological parameters created similar effects in the temperature anisotropies of the microwave
background. We say that these parameters are degenerate with respect to the observations. However, often one
finds combinations of various experiments/observations which break the degeneracy, for example by depending
on a different combination of parameters. This is precisely the case with the cosmological parameters, as mea-
sured by a combination of large-scale structure observations, microwave background anisotropies, Supernovae Ia
observations and Hubble Space Telescope measurements, a feature named somewhat idiosyncratically as “cosmic
complementarity”.[106] It is expected that in the near future we will be able to determine the parameters of the
standard cosmological model with great precision from a combination of several different experiments, as shown
in Fig. 16.11.
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17
Conclusions

We have entered a new era in cosmology, were a host of high-precision measurements are already posing challenges
to our understanding of the universe: the density of ordinary matter and the total amount of energy in the universe;
the microwave background anisotropies on a fine-scale resolution; primordial deuterium abundance from quasar
absorption lines; the acceleration parameter of the universe from high-redshift supernovae observations; the rate of
expansion from gravitational lensing; large scale structure measurements of the distribution of galaxies and their
evolution; and many more, which already put constraints on the parameter space of cosmological models, see
Fig. 15.15. However, these are only the forerunners of the precision era in cosmology that will dominate the new
millennium, and will make cosmology a phenomenological science.
It is important to bear in mind that all physical theories are approximations of reality that can fail if pushed too far.
Physical science advances by incorporating earlier theories that are experimentally supported into larger, more en-
compassing frameworks. The standard Big Bang theory is supported by a wealth of evidence, nobody really doubts
its validity anymore. However, in the last decade it has been incorporated into the larger picture of cosmological
inflation, which has become the new standard cosmological model. All cosmological issues are now formulated in
the context of the inflationary paradigm. It is the best explanation we have at the moment for the increasing set of
cosmological observations.
In the next few years we will have an even larger set of high-quality observations that will test inflation and the
cold dark matter paradigm of structure formation, and determine most of the 12 or more parameters of the stan-
dard cosmological model to a few percent accuracy (see table 1). It may seem that with such a large number of
parameters one can fit almost anything. However, that is not the case when there is enough quantity and quality
of data. An illustrative example is the standard model of particle physics, with around 21 parameters and a host
of precise measurements from particle accelerators all over the world. This model is, nowadays, rigurously tested,
and its parameters measured to a precision of better than 1% in some cases. It is clear that high-precision mea-
surements will make the standard model of cosmology as robust as that of particle physics. In fact, it has been the
technological advances of particle physics detectors that are mainly responsible for the burst of new data coming
from cosmological observations. This is definitely a very healthy field, but there is still a lot to do. With the advent
of better and larger precision experiments, cosmology is becoming a mature science, where speculation has given
way to phenomenology.
There are still many unanswered fundamental questions in this emerging picture of cosmology. For instance,
we still do not know the nature of the inflaton field, is it some new fundamental scalar field in the electroweak
symmetry breaking sector, or is it just some effective description of a more fundamental high energy interaction?
Hopefully, in the near future, experiments in particle physics might give us a clue to its nature. Inflation had its
original inspiration in the Higgs field, the scalar field supposed to be responsible for the masses of elementary
particles (quarks and leptons) and the breaking of the electroweak symmetry. Such a field has not been found yet,
and its discovery at the future particle colliders would help understand one of the truly fundamental problems in
physics, the origin of masses. If the experiments discover something completely new and unexpected, it would
automatically affect inflation at a fundamental level.
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One of the most difficult challenges that the new cosmology will have to face is understanding the origin of the
cosmological constant, if indeed it is confirmed by independent sets of observations. Ever since Einstein introduced
it as a way to counteract gravitational attraction, it has haunted cosmologists and particle physicists for decades.
We still do not have a mechanism to explain its extraordinarily small value, 120 orders of magnitude below what is
predicted by quantum physics. For several decades there has been the reasonable speculation that this fundamental
problem may be related to the quantization of gravity. General relativity is a classical theory of space-time, and it
has proved particularly difficult to construct a consistent quantum theory of gravity, since it involves fundamental
issues like causality and the nature of space-time itself.
The value of the cosmological constant predicted by quantum physics is related to our lack of understanding of
gravity at the microscopic level. However, its effect is dominant at the very largest scales of clusters or superclusters
of galaxies, on truly macroscopic scales. This hints at what is known in quantum theory as an anomaly, a quantum
phenomenon relating both ultraviolet (microscopic) and infrared (macroscopic) divergences. We can speculate that
perhaps general relativity is not the correct description of gravity on the very largest scales. In fact, it is only in
the last few billion years that the observable universe has become large enough that these global effects could be
noticeable. In its infancy, the universe was much smaller than it is now, and, presumably, general relativity gave a
correct description of its evolution, as confirmed by the successes of the standard Big Bang theory. As it expanded,
larger and larger regions were encompassed, and, therefore, deviations from general relativity would slowly become
important. It may well be that the recent determination of a cosmological constant from observations of supernovae
at high redshifts is hinting at a fundamental misunderstanding of gravity on the very large scales.
If this were indeed the case, we should expect that the new generation of precise cosmological observations will
not only affect our cosmological model of the universe but also a more fundamental description of nature.
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