
Java for High Performance and Distributed Computing

Mark A. Baker, Aamir Shafi, and Matthew Grove
University of Reading, UK

{mark.baker@computer.org}

Abstract

The Java language first came to public attention in

1995; very soon after it was being speculated that Java
may be a good language for parallel and distributed
computing. Its core features, including being objected
oriented and platform independence, as well as having
built-in network support and threads, has encouraged
this view. Today, Java is being used in almost every
type of computer-based system, ranging from sensor
networks to high performance computing platforms,
and from enterprise applications through to complex
research-based simulations. In this paper we first
explore the pros and cons of Java for High
Performance and Distributed Computing. Then we
outline some software that is actively being used to
support high-performance and distributed
applications.

1. Introduction

Java [1] is a modern, object-oriented language based
on open, public standards. Objects allow a degree of
modularity, which makes them easier to understand
and maintain, also the paradigm makes it possible to
distribute code with a consistent, public API, while
keeping the implementation details private. The core
Java API is extensive and includes standard packages
for threads, sockets, Internet access, security, graphics,
sound, and other useful functions. This means, for
example, that Java programs which use these standard
packages, can execute unchanged on heterogeneous
platforms.

1.1 The Pros and Cons of Java

The Advantages of Java

One of the reasons that Java has been taken up so
rapidly is it overall simplicity. No programming
language is particularly simple, but Java is considered
a simple and easy to use object-oriented language
when compared to other popular languages, such as

C++ or C. Partially modelled on C++, Java has
replaced the complexity of multiple inheritance with a
structure called an interface, and also has eliminated
the use of pointers, which removes the possibilities of
a multitude of errors. In Java, memory management is
automatic, and many errors, such as buffer overflows,
and stray pointers are impossible. Another reason why
Java is considered simpler than C++ is because Java
uses automatic memory allocation and garbage
collection, whereas C++ requires the programmer to
allocate memory and reclaim memory.

Java is considered more reliable, as it has integrated
exception handling, which deals with error conditions
systematically and forces the programmer to take the
necessary action to handle errors. Exception handlers
can be written to catch a specific exception such as
number format exception, or an entire group of
exceptions by using a generic exception handler. Any
exception not specifically handled within a Java
program are caught by the Java run time environment
itself. C has essentially no runtime error checking and
memory allocation/retrieval is manual

Java has a mature security model, which has been
extensively tested by the community at large. At its
core, the Java language itself is type-safe and provides
automatic garbage collection, enhancing the robustness
of application code. A secure class loading and
verification mechanism ensures that only legitimate
Java code is executed. Today, a large set of application
programming interfaces (APIs), tools, and
implementations of commonly used security
algorithms, mechanisms, and protocols. This provides
the developer a comprehensive security framework for
writing applications, and also provides the user or
administrator a set of tools to securely manage
applications.

Java compilers, interpreters, and runtime systems have
come a long way too. Today, the execution of well-
written Java code can now be on a par with well
written C or C++ code. Most Java code is executed by

a JVM (Java Virtual Machine), which can be an
interpreter, a JIT (Just-In-Time) compiler, or an
adaptive optimising system such as HotSpot. Java
applications can execute with little or no change on
multiple hardware platforms where a compliant JVM
exists. This is a compelling argument for using Java, as
it obviates the heterogeneous nature of distributed
systems and promotes the ideal of “write once, run
anywhere”.

Java has built in support for threading. Threads were
designed into the language from the start, they are
simple to use, and increasingly needed with the rapid
take-up of multi-core processes. With threading comes
the need to provide concurrency control, which should
prevent race conditions, interference and deadlock.
Java has comprehensive support for general-purpose
concurrent programming, such as task scheduling,
concurrent collections, atomic variables,
synchronizers, locks, and nanosecond-granularity
timing.

When Java applications create objects, the JVM
allocates memory space for their storage - when the
object is no longer needed the memory space can be
reclaimed for later use. Garbage collection in Java
operates incrementally on separate generations of
objects rather than on all objects every time. The latest
version of Java adds the ability to customise the way
object memory is recovered, and this helping dispel the
idea that interpreted languages are slow.

Java was designed to be “Internet” aware, and to
support network programming with built-in support for
sockets, IP addresses, URLs and HTTP. Java native
includes support for more interesting protocols
including Remote Method Invocation (RMI), and those
found in CORBA and Jini.

Java has built-in support for comment-based
documentation. The source code file can also contain
its own documentation, which is stripped out and
reformatted into HTML via a separate program
javadoc. This way API documents can be created,
and this is a boon for documentation maintenance and
use.

The performance of Java-based applications depends
on a number of factors, including coding efficiency,
version of the JVM, underlying Operating System,
memory available. Java is now nearly equal to (or
faster than) C++ on low-level and numeric
benchmarks. This is not a shock really as Java is a
compiled language, via the JIT compiler.

There are a huge number of Java development tools,
for example the Eclipse platform [2], as well as a large
number of open source and free software that has been
made available by the community of programmers. If
nothing else, this software can be a starting place to
develop new ideas and more sophisticated
applications.

Finally programmer productivity is believed to be at
least two times greater with Java. A lot can be done in
a short amount of time with Java because it has such an
extensive library of functions already built into the
language, integrated development environments, and a
wide selection of supporting tools.

The Disadvantages of Java

With regards to memory management, there are no
destructors in Java. There is no "scope" of a variable
per se, to indicate when the object’s lifetime is ended –
the lifetime of an object is determined instead by the
garbage collector, The finalize() method is called
by the garbage collector and is supposed to be
responsible only for releasing "resources”, such as
open files, sockets, ports, URLs. All objects in C++
will be (or rather, should be) destroyed, but not all
objects in Java are garbage collected. The Java garbage
collector can be changed, but no explicit control over
object collection.

Although arrays in Java look similar, they have a very
different structure and behaviour in Java than they do
in C/C++. There is a read-only length member (size of
array) and run-time checking throws an exception if
you go out of bounds. In Java a two-dimensional array
is an array of one-dimensional arrays. Although may
expect that elements of rows are stored contiguously,
one cannot depend upon the rows themselves being
stored contiguously. In fact, there is no way to check
whether rows have been stored contiguously after they
have been allocated. The possible non-contiguity of
rows implies that the effectiveness of block-oriented
algorithms may be dependent on the particular
implementation of the JVM as well as the current state
of the memory manager.

There is a floating-point issue because it is required
that Java programs produce bitwise identical floating-
point results in every JVM. This ideal inhibits efficient
floating-point processing on some platforms. For
example, it eliminates the efficient use of floating-
point hardware on processors that utilise extended
precision in registers.

Java has a problem with accessing resources outside
the JVM, such as directly accessing hardware. Java
solves this with native methods (JNI) that allows calls
to functions written in another language (currently
only C and C++ are supported). Thus, you can always
solve a platform-specific problem (in a relatively non-
portable fashion, but then that code is isolated).
However, this approach does not comply with the
“write once run anywhere” philosophy of Java and
breaks the programming model because there is no
way to ensure code type safety. Also, there are
performance overhead in JNI, especially for large
messages, due to copying of the data from the JVM’s
heap onto the system buffer. JNI also may lead to
memory leaks because in C the programmer is
responsible for allocating and freeing the memory.
Finally, accessing languages that are not C/C++
requires a C/C++ wrapper to interact with other
languages such as Fortran or Delphi.

In the next sections we describe two Java-based system
that support High Performance and Distributed
applications.

2. MPJ Express: A High Performance Java
Messaging System

Since its introduction in the early 1990s, the Message
Passing Interface (MPI) [3] has now become the de
facto standard for writing HPC applications on clusters
and MPP systems. The MPI community has adopted
relatively conventional languages like C and Fortran,
which is largely a matter of economics as creating
entirely new development environments that match the
standards programmers expect today is expensive, and
contemporary parallel architectures predominately use
off-the-shelf micro-processors that can best be
exploited by off-the-shelf compilers.

There have been a number of Java-based messaging
systems developed over the last decade, for example
[4][5][6][7][8]. These systems have often used
different messaging mechanisms, ranging from Java
Sockets and Remote Method Invocation (RMI),
through to interacting with the underlying MPI system
using Java Native Interface (JNI), or using proprietary
messaging APIs. Experience gained with earlier Java
messaging systems suggests that there is no “one size
fits all” approach. The reason is that applications
implemented on top of these systems can have
different requirements. For some, the main concern
could be portability, while for others high-bandwidth

and low-latency communication. For some
applications the main concern could be portability,
while for others high-bandwidth and low-latency.

To address the contradictory issues of portability and
high-performance; a Java messaging system needs to
provide various communication devices. For example,
a Java NIO [9] based device, would satisfy the
portability requirements by following a pure Java
approach. A specialised device could provide high-
performance by interacting with Myrinet [10] or
QSNet [11] high-speed interconnects.

With the emergence of commodity SMP systems, and
more recently multi-core processors, further
requirements for messaging software have emerged.
New messaging system needs to support inter-node
and intra-node messaging to take advantage of this
type of architecture. Currently, the most popular way
of efficiently programming SMPs and multi-core
processors is using thread-based programming. One of
the stronger features of the Java programming
language is the built-in support for multi-threading that
can be exploited on multi-core processors for thread-
level parallelism. To support such thread-level
parallelism without any constraints, it is important to
have a thread-safe Java messaging software.

2.1 MPJ Express

We have developed MPJ Express [12], a thread-safe
Java messaging system, which conforms to MPI-like
API based on MPJ [13]. An important contribution of
MPJ Express is that it can handle nested parallelism on
multi-core processors and SMP systems by using
message passing and thread-level parallelism. MPJ
Express addresses the contradictory issues of high-
performance and portability by providing
communication devices using Java NIO (pure Java)
and Myrinet. It is possible for end users to switch
communication protocols at runtime.

MPJ Express has a layered design that allows
incremental development, and provides the capability
to update and swap layers in or out as needed. This
helps mitigate the contradictory requirements of end
users because they can choose to use proprietary
network devices or choose the pure Java ones that use
sockets. Figure 1 shows the MPJ Express layered
design, including the MPJ API, high-level, base-level,
mpjdev, and xdev layers.

MPJ Express currently provides two communication
devices that are used to implement the basic point-to-

point messaging. These devices include a Java NIO
based device called niodev and Myrinet eXpress
(MX) based device called mxdev. The higher levels of
the MPJ Express software, like the point-to-point and
collective communication layers, rely on these devices
for their functionality.

Figure 1: The Layered Architecture of MPJ Express

The implementation of the xdev device layer that
provides communication using the Java NIO package
is called niodev. The standard java.io package
does not support non-blocking I/O. This means that a
new thread has to be started to provide MPI-like non-
blocking communication. The Java NIO package
solves this problem by providing non-blocking
communication. Whenever there is something to read
from a particular socket channel, the NIO selector
generates a matching read event, which can read the
message. This concept is similar to select() in C,
which helps scalable and efficient I/O. In niodev,
every process connects to every other process through
two NIO channels; we use a blocking channel for
writing messages and non-blocking channel for
reading messages. There is a separate lock (per
destination) associated with each write channel, which
means every thread that tries to write a message first
acquires the associated lock. No lock is required for
reading messages because only one thread receives
messages. To implement various send modes - defined
by the MPI standard document - niodev implements
two communication protocols: eager send and
rendezvous.

Our Myrinet device called mxdev uses JNI to interact
with the MX library. It does not implement any
communication protocols because the MX library has

internally implemented these protocols. Because our
buffering API (mpjbuf) [13] can use direct byte
buffers, we have been able to avoid one of the main
overheads of using JNI - copying data between the
JVM and the OS. The NIO package makes it is
possible to avoid data copying overhead of JNI by
using direct byte buffers. In mxdev we retrieve the
address of the direct byte buffer in the native C code
by using the GetDirectBufferAddress()
method. This method returns the starting address of the
memory region referenced by the direct
ByteBuffer.

A challenging aspect of implementing Java messaging
is providing an efficient intermediate buffering layer.
The low-level communication devices and higher
levels of the messaging software use this buffering
layer to write and read messages. The heterogeneity of
these low-level communication devices poses
additional design challenges. For proprietary networks
like Myrinet and QSNet, NIO provides a viable option
because it is now possible to get memory addresses of
direct ByteBuffers, which can be used to register
memory regions for DMA transfers. Using direct
buffers may eliminate the overhead incurred by
additional copying when using JNI with JVMs that do
not support pinning.

We have designed an extensible buffering layer called
mpjbuf for MPJ Express. This buffering layer allows
various implementations based on different storage
mediums like direct or indirect ByteBuffers, byte
arrays, or memory allocated in the native C code. The
higher levels of MPJ Express use the buffering layer
through an interface. This implies that functionality is
not tightly coupled to the storage medium. The
motivation behind developing different
implementations of buffers is to achieve optimal
performance for lower level communication devices.
The buffering layer developed provides variants of
write and read methods. It also supports gather and
scatter functionality that provides the basis of support
for MPI-like derived datatypes. Implementing these
features in a Java messaging system is fairly unique
because derived datatypes were introduced in the MPI
standard for languages like C and Fortran. The derived
datatypes can be used for efficient communication of
non-contiguous sections of user data. Also, using
derived datatypes helps avoid the overheads of Java
object serialization and de-serialization.

An important component of a messaging system is the
mechanism used for bootstrapping processes across

various heterogeneous host nodes. The MPJ Express
distribution provides scripts for Windows and Linux
that can be used to start the daemon services on
compute-nodes. It also allows applications to be
executed using class files in an open directory
structure, or bundled as a JAR file.

We have compared the performance of MPJ Express,
with other messaging systems – elsewhere [15]. In
summary the performance evaluation of MPJ Express,
against other messaging systems shows that it can
achieve good performance but also revealed a
performance overhead, which can be classified as an
API design issue. With the emergence of Java NIO, the
mpiJava or MPJ API should be extended to support
communicating data directly to and from ByteBuffers
or higher abstraction buffers like mpjbuf.Buffers.

The emergence of SMP and multi-core processors
clusters has raise the need for new programming
models, which should provide a portable and efficient
solution to nested parallelism without introducing any
constraints. We use the term-nested parallelism to
signify using multi-threading and messaging to
program SMP and multi-core systems. As mentioned
before, a main design goal of MPJ Express has been to
develop thread-safe communication, which means that
the computation and communication within a process
can be parallelised on a per-thread basis. Such fine-
grained parallelism based on threads may for example,
be achieved by using an implementation of OpenMP
[16], or by using Java threads on their own. The
approach we have taken is to use both OpenMP and
Java threads to parallelise the computation and
communication. This approach allows application
users to freely use hybrid code based on OpenMP and
MPJ Express. Application developers are also free to
use Java’s built-in multi-threading, which may be
preferable for programmers who are more familiar
with Java threads than the OpenMP standard.

The approach we took was to write a hybrid
application using MPJ Express and JOMP [17]. Later
this file containing hybrid code with extension .jomp
was translated to .java extension and compiled to
produce class files. To execute JOMP-based
applications with our runtime, we passed a command
line switch jomp.threads and specified JOMP’s
JAR file to mpjrun. We did not encounter any
fundamental problems in using JOMP threads within a
MPJ Express process. In addition, we managed to use
JOMP with the latest JDK version. However, we made
some important optimisations to the JOMP software.

One of these included replacing the busy-wait style
implementation of the barrier method, which resulted
in high CPU use on a node, with a new barrier
implementation. The new implementation provides an
alternative to the default four-way tournament barrier
originally implemented for JOMP. The JOMP library
starts a team of threads at the start of the execution.
The master thread is responsible for executing serial
parts of the code. During this time the worker threads
are doing a barrier waiting for the master thread to
reach a parallel region and call the barrier.

2.2 Gadget-2

To help establish the practicality of real scientific
computing using message passing Java we ported
Gadget-2 [18] to Java using MPJ Express from scratch.
The Java version was developed as an experiment to
help us understand where Java stands in comparison to
C. In addition, the Java version is a test case to gauge
the performance of MPJ Express in a real-world
application. We also tested our ideas of introducing
nested parallelism and measured the performance
gains.

Gadget-2 is a free production code for cosmological N-
body and hydrodynamic simulations. The code is
written in the C and parallelised using MPI. It
simulates the evolution of very large, cosmological-
scale systems under the influence of gravitational and
hydrodynamic forces. The universe is modelled by a
sufficiently large number of test particles, which may
represent ordinary matter or dark matter. The main
simulation loop increments time steps and drifts
particles to the next time step. This involves
calculating gravitational forces for each particle in the
simulation and updating their accelerations. We are
particularly interested in the parallelisation strategy,
which is based on an irregular and dynamically
adjusted domain decomposition, with copious
communication between processors.

The original C version of Gadget-2 was manually
translated to the Java. We deliberately kept similar data
structures in the translated version, so that we could
cross reference the original source code for debugging.
Currently there are some functional limitations
compared with the C version. For example, the Java
version only provides the option of using BH Oct tree
for calculating gravitational forces. For
communication, of course we use MPJ Express.
Gadget-2 extensively uses the point-to-point and
collective MPI methods.

The biggest simulation that we carried out with the
Java version contained 56 million particles on 16
nodes - each MPJ Express process contained roughly
3.5 million particles. We carried out the tests on a
larger cluster called NW-GRID located at the
Daresbury Laboratory, UK. The system consists of 96
nodes divided into three racks, each containing 32
nodes with 2 dual core 2.4 GHz AMD Opteron 64-bit
processors. Each node has Gigabit and is running
SuSE GNU/Linux with kernel 2.6.11.4-21.11-smp.
The C compiler used in GCC 3.3.5 with support for
64-bit processor and POSIX threads enabled. JDK 1.5
update 7 was used to compile and run the Java code.
The JDK used is specialised for AMD Opteron 64-bit
processors and the virtual machine used was Java
HotSpot 64-Bit Server VM. The evaluation presented
is based on first hundred time steps of the simulation,
which is 10% of the total simulation.

Figure 2: A Comparison of C and Java versions of Gadget-2

Figure 2 shows the total execution time of the C
Gadget-2 and Java Gadget-2 code. It can be seen that
the Java version achieves comparable performance,
with 30% or less performance overhead relative to the
C version. A performance comparison of the Java and
JOMP Gadget-2 version is shown in Figure 3. As each
node contains 2 dual core Opteron processors we ran 4
JOMP threads in each MPJ Express process to exploit
each core or CPU efficiently in a node. The two
versions ran custom initial conditions with 2 million
particles with the Periodic Boundary Conditions
(PBCs) were turned on to increase the tree walk time.
We expect to see large performance gains in this case
because we have extensively used thread-parallelism
for tree walks. The Java version with four JOMP
threads clearly shows the advantages of our approach
of using thread parallelism. Using JOMP threads has
increased the performance of the simulation
significantly. The overall execution time has been
reduced by a factor of 2 to 3, depending on total

number of processors used. Due to limitations of time
we were unable to benchmark this simulation with
versions of the code, which use multiple MPI
processes on a node. We aim to do this in future.

Figure 3: The Execution Time for Single and Multi-threaded
Java Gadget-2 for the Cluster Formation Simulation on NW-
GRID Cluster.

2.3 MPJ Express Summary

We have designed and implemented a new Java
messaging software called MPJ Express. This
messaging system coupled with Java or JOMP threads
can help efficiently program parallel applications on
next-generation systems. A unique feature of MPJ
Express is that it provides thread-safe communication
devices that allow multiple threads in an application to
communicate safely. MPJ Express is currently
available for download as free and open-source
software. James Gosling, one of the founders of Java,
called MPJ Express one of his favourite MPI-like
library in his Blog “MPI Meets Multicore” [19].

To help establish the practicality of scientific
computing using a Java message passing system we
ported Gadget-2 to Java using MPJ Express. Gadget-2
is a massively parallel structure formation code.
Versions of the original C code have been used in the
so-called “Millennium Simulation” that evolves ten
billion dark matter particles from the origin of the
universe to the current day. The performance
evaluation of the Java version revealed that it could
achieve comparable performance to the original C
code. The performance of Java Gadget-2 reinforces
our belief that Java is a viable option for HPC. With
careful programming, it is possible to achieve
performance in the same general ballpark as the C
code.

3. Tycho: A Wide-area Messaging
Framework with an Integrated
Virtual Registry

In any distributed environment the various remote
entities need a means to publish their existence so that
clients, needing their services, can search and find the
appropriate ones. The publication of information is via
a registry service, and the interaction is via a high-level
messaging service. Typically, separate libraries
provide these two services. Tycho [20] is an
implementation of a wide-area asynchronous
messaging framework with an integrated distributed
registry. This integrated software frees developers
from the need to assemble their applications from a
range of potentially diverse middleware offerings,
which simplifies and speeds application development
and more importantly allow developers to concentrate
on their own domain of expertise.

3.1 Tycho’s Architecture

Tycho is a Java-based framework based on a Service
Oriented Architecture (SOA) that uses a publish,
subscribe and bind paradigm. We have used an
architecture similar to the Internet, where every node
provides reliable core services, and the complexity is
kept to the edges. This implies that the core services
can be kept to the minimum needed, and endpoints can
provide higher-level and more sophisticated services,
that may fail, but will not cause the overall system to
crash. The design philosophy for Tycho has been to
keep its core relatively small, simple and efficient, so
that it has a minimal memory foot-print, is easy to
install, and is capable of providing robust and reliable
services. More sophisticated services can then be built
on this core and are provided via libraries and tools to
applications. This will ensure Tycho is flexible and
extensible so that it will be possible to incorporate
additional features and functionality later. Tycho’s
functionality has all been incorporated within a single
Java JAR with the only requirement being a Java 1.5
JDK for building and running Tycho-based
applications.

Tycho consists of the following components:
• Mediators that allow producers and consumers to

discover each other and establish remote
communications,

• Consumers that typically subscribe to receive
information or events from producers,

• Producers that gather and publish information for
consumers.

In Tycho, producers and/or consumers (clients) can
publish their existence in a directory service known as
the Virtual Registry (VR). A client uses the VR to
locate other clients, which act as a source or sink for
the data they are interested in. The VR is a distributed
service provided by a network of mediators. Where
possible, clients communicate directly, however, for
clients that do not have direct access to the Internet,
the mediator provides wide-area connectivity by acting
as a gateway or proxy into a localised Tycho
installation.

Registry

Consumer

Registry

Core

Mediator

Producer

Core

Consumer Producer

WAN (HTTP)

LAN (Socket)

WAN (P2P)

Figure 4: A View of Tycho's Architecture

Figure 4 shows Tycho clients communicating between
two remote sites connected via the Internet. The Tycho
VR is made up of a collection of services that provides
the management of client information and facilitates
locating and querying remote Tycho installations. A
client registers with a local mediator, part of the VR,
when it starts-up. The VR provides a locally unique
name for each client and periodically checks registered
entities to ensure their liveliness, removing stale
entries if necessary. The VR consists of the following
components:
• The transport handler allows different protocols to

be used between Tycho components. Currently,
TCP sockets, SSL, HTTP(S), and Internet Relay
Chat are supported.

• The local store provides an abstract interface to a
mediator's information store. The store is
implemented using a variety of data storage
technologies, including a JDBC-based storage
medium and an in-memory data structure (simple
store). JDBC permits the use of a range of SQL
storage technologies ranging from Oracle to
MySQL.

• The query parser and result annotator components
translate queries and responses into an
intermediate internal format in order to allow
Tycho to support different query languages and

permit interoperability with other systems in the
future. Tycho currently supports a subset of the
ANSI-SQL query language and LDIF [21] as a
response mark up.

Tycho's VR provides information for uniquely
identifying a client, URLs that are used by the
transport handlers to locate and communicate with a
client and a schema field, which can be used to store
information about the capabilities of a producer or
consumer.

Security is an essential requirement for any distributed
system. Tycho’s architecture is designed to support
both encryption and access control to provide a secure
environment. Encryption is provided at the transport
handler level using SSL to encrypt messages sent via
the HTTP, Socket and IRC handlers. Access control is
provided using a layered approach. In keeping with the
design philosophy of Tycho, we re-use existing
infrastructure. Access control is can be via the use of a
proxy server, or the security features of an IRC
daemon.

3.2 Performance Tests

A performance study of Tycho against similar systems
has been made. For the purposes of evaluating Tycho’s
messaging performance, comparative tests were made
with the NaradaBrokering [22] system and the
performance of Tycho’s virtual registry was compared
to Globus MDS4 [23] and to R-GMA [24], further
details can be found elsewhere [25], a summary is
provided next.

When looking at point-to-point performance, on a
LAN for messages less than 2 Kbytes, Tycho and
NaradaBrokering have comparable performance.
Tycho achieves 95% of the maximum bandwidth,
whereas NaradaBrokering uses 65.3%. Overall, the
performance of the two systems is similar. Tyco’s
current performance is inhibited by the fact that it
creates a new socket for each message send, whereas
NaradaBrokering reuses sockets instances once they
have been created. Incorporating such as scheme in
Tycho will further reduce its latency.

The scalability tests show that Tycho and
NaradaBrokering producers and consumers are stable
under heavy load, although performance is weaker
when there is a large ratio of consumers to producers.
The heap size for NaradaBrokering becomes a limiting
factor in circumstances where a broker is receiving
messages faster than it can send them, as the internal

message buffer fills until the heap is consumed. The
Tycho tests were performed without modifying the
heap size, as the use of new sockets per message
automatically throttles performance and prevents
messages from being received faster than they can be
sent.

We tested Tycho against R-GMA and MDS4 in order
to show that our philosophy of keeping the core
functionality as simple as possible yields performance
gains over these systems while still supporting the
registry functionality required. In Tycho, more
complex functionality is added to the edge of the
implementation rather than by increasing the
complexity of the core, thus is it is essential that the
core perform well. Tycho,

When testing the affect of the number of records on
response time, we see that when selecting a single
record from 100,000, Tycho responds 32 seconds
faster than R-GMA. MDS4 runs out of heap space for
larger records sizes, which suggests that they should
look at either storing the data more efficiently or
moving to a file-backed store that is not limited by
heap size. The performance tests show Tycho's VR had
a lower response latency than R-GMA and MDS4.
With 100 clients Tycho was 94 seconds faster than R-
GMA and 65 seconds faster than MDS4. The results
highlight that one of the strengths of Tycho is its
performance under load. Tycho's performance is linear
with regard to both increasing numbers of clients and
response sizes.

3.3 Example Applications

Tycho is being used in several projects including
GridRM [26], Slogger [26], and the VOTechBroker
[27], which is part of the European Virtual
Observatory project [28].

The Tycho swarm utility provides generic content
distribution. The main bottleneck in traditional client-
server content distribution using a system, such as a
Web server and browser, is the bandwidth available to
the server. In order to reduce the impact of this
bottleneck, swarm downloading makes use of the
upload bandwidth of the clients downloading content,
as well as the bandwidth of the servers. A popular
implementation of this peer-to-peer content
distribution system is BitTorrent [29], which is a file
sharing protocol. In a swarm content distribution
system each participant is called a peer. A peer with a
complete copy of the content is called a seed. Together
all participating peers and seeds are called a swarm.

Content is broken into multiple pieces of an arbitrary
size, commonly called chunks. Peers request chunks
from all other peers participating in the swarm. At the
start of the publishing, only the seeds will have chunks
available, but when a peer downloads a chunk it makes
it available to the rest of the swarm. In this way the
bandwidth resources of the entire swarm are utilised to
distribute the content rather than just the bandwidth
from the seeds. This can lead to considerable speed-
ups when there are a large number of peers, or seed
bandwidth is limited. In this type of system there needs
to be a mechanism for peers to locate each other; in the
current version of BitTorrent a central tracker is used.

Figure 5: A high-level of Tycho’s swarm utility. Content is
being distributed among a swarm of seven peers containing

two seeds

Figure 5 shows a Tycho swarm participating in content
distribution. The utility implements peers and seeds as
a single Tycho client, which acts as a producer and
consumer simultaneously. When content is published
using a Tycho swarm, the seed client registers all of
the chunk information into the Tycho VR. Clients then
query the VR to request a list of the locations of
chunks that are available. Clients can then request and
receive chunks using Tycho messages. When a client
successfully downloads a chunk it updates its entry in
the VR to say it now has the chunk available. When a
client runs out of available chunks and has not
completed the content download, it queries the VR
requesting additional locations for any chunks that it
does not have. This is possible because of the fine-
grained queries supported by Tycho, which means that
the addresses of all peers, which have one or more
chunks, can be located using a single SQL query. If a
client exhausts all of the sources for chunks when it
sends a chunk to another client, it appends a request to
be notified when the client has new chunks available.
When a client receives this request it re-queries the
VR. An MD5 hash uniquely identifies each file, which

is available for download. The records in the VR
describing each available file contain the MD5 hash,
the original file name and the total size of the content.

A number of performance tests showed that the
implementation provides higher performance than
client-server content distribution. The tests published
files at least up to 100 Gbytes in size and that
performance scales with number of peers.

3.4 Tycho Summary

Tycho’s has a relatively small, simple and efficient
core, so that it has a minimal memory footprint, is easy
to install, and is capable of providing robust and
reliable services. More sophisticated services can then
be built on this core and are provided via libraries and
tools to applications. This provides us with a flexible
and extensible framework where it is possible to
incorporate additional feature and functionality, which
are created as producers or consumers, and do not
affect the core. Tycho’s functionality has all been
incorporated within a single Java JAR and requires
only Java 1.5 JDK for building and running
applications.

Tycho performance is comparable to that of
NaradaBrokering, a more mature system. Whereas,
compared to MDS4 and R-GMA, Tycho shows
superior performance and scalability to both these
systems. In addition, we would argue that both MDS4
and R-GMA have problems with memory utilisation
and without significant extra effort limited scalability.
Additional APIs and specifications can be easily
incorporated into Tycho by simply creating compliant
producers and consumers. An important advantage of
Tycho’s architecture is that addition of further
producers/consumers will not affect its core, or
existing producers/consumers.

4. Overall Summary and Conclusions

In this paper we first discussed the pros and cons of
Java as a language and technology for developing
High Performance and Distributed systems and
applications. We then moved on to describe a Java
messaging system (MPJ Express) that supports parallel
applications, and then a system (Tycho) that provides
asynchronous messaging and an integrated registry that
can be used for a range of distributed applications.

Java clearly encourages better software engineering by
promoting object-oriented programming and by

providing a system that allows programs to be
executed anywhere that a compliant JVM exists. Java
has many extra safety features including array bounds
checking that could help identify potential bugs in the
code. We found, for example, that in the original
Gadget-2 code a seventh element of a six-element
array was accessed. The Java Gadget-2 helped identify
the error by throwing an ArrayOutOfBound exception.

References

[1] Java, http://www.java.com
[2] Eclipse, http://www.eclipse.org/
[3] MPI, http://www-unix.mcs.anl.gov/mpi/
[4] M. Baker, D. Carpenter, G. Fox, S. Ko and X. Li,

mpiJava: A Java MPI Interface, First UK Workshop,
Java for High Performance Network Computing at
EuroPar 1998, September 1998,
http://www.cs.cf.ac.uk/hpjworkshop/

[5] Glenn Judd, Mark Clement, and Quinn Snell, DOGMA:
Distributed Object Group Management Architecture,
ACM 1998 Workshop on Java for High-Performance
Network Computing, Concurrency: Practice and
Experience, 10(11-13), 1998

[6] K. Dincer, jmpi and a Performance Instrumentation
Analysis and Visualization Tool for jmpi, First UK
Workshop, Java for High Performance Network
Computing at EuroPar 1998, September 1998,
http://www.cs.cf.ac.uk/hpjworkshop/

[7] Steven Morin, Israel Koren, and C. Mani Krishna, Jmpi:
Implementing the message passing standard in Java,
Proceedings of the 16th International Parallel and
Distributed Processing Symposium (IPDPS), CS Press,
page 191, 2002

[8] William Pugh and Jaime Spacco, MPJava: High-
Performance Message Passing in Java Using Java.nio,
Proceedings of Workshops on Languages and
Compilers for Parallel Computing, pages 323–339, 2003

[9] Java NIO, http://javanio.info/
[10] Myrinet, http://www.myri.com/
[11] QSNet, http://www.quadrics.com/
[12] MPJ Express, http://mpj-express.org
[13] Bryan Carpenter, Vladimir Getov, Glenn Judd, Anthony

Skjellum, and Geoffrey Fox, MPI for Java: Position
Document and Draft Specification, Technical report,
Java Grande Forum, November 1998,
http://www.javagrande.org/reports.htm.

[14] M.A. Baker, D.B. Carpenter and Aamir Shafi, A
Buffering Layer To Support Derived Types And
Proprietary Networks For Java HPC, the international
Journal of Scalable Computing - Practice and
Experience, 2006, ISSN 1895-1767

[15] M.A. Baker, Bryan Carpenter, and Aamir Shafi, MPJ
Express: Towards Thread Safe Java HPC, Procs of the
IEEE International Conference on Cluster Computing
(Cluster 2006), Barcelona, Spain, September, 2006,
ISSN: 1552-5244

[16] OpenMP, http://www.openmp.org/

[17] JOMP,
http://www2.epcc.ed.ac.uk/computing/research_activitie
s/jomp

[18] Gadget-2, http://www.mpa-garching.mpg.de/gadget/
[19] James Gosling’s Blog,

http://blogs.sun.com/jag/entry/mpi_meets_multicore
[20] Tycho, http://www.acet.rdg.ac.uk/projects/tycho
[21] LDIF, http://en.wikipedia.org/wiki/LDIF
[22] NaradaBrokering, http:// www.naradabrokering.org
[23] Globus MDS, http://www.globus.org/toolkit/mds/
[24] R-GMA, http://www.r-gma.org/
[25] M.A. Baker, and Matthew Grove, Tycho: A Wide-area

Messaging Framework with an Integrated Virtual
Registry, accepted for publication in a Special Issue on
Grid Technology with the International Journal of
Supercomputing, 2006, ISSN: 0920-8542

[26] GridRM, http://gridrm.org
[27] VOTechBroker, http://dsg.port.ac.uk/projects/votb/
[28] Virtual Observatory, http://www.euro-vo.org/
[29] BitTorrent, http://www.bittorrent.com/

